1. [20 points] A byte-addressable segmentation system has 46-bit virtual address, 32-bit physical address, and 16-bit segment number. A segment’s size can be any number of bytes up to its maximum. A segment in physical memory always starts at a 4 KB-aligned address (i.e., the least significant 12 bits are zero). Each segment table entry includes 8 bits for access and usage.

 a. Draw the segment table for a process. Give the number of rows in the table and the label and size of each field.

 b. The hardware has a TLB of 6 entries managed with LRU replacement. Draw the TLB, showing its fields and their sizes. Indicate which part of the TLB is associatively searched.
2. [10 points] A process with 3 physical pages initially empty issues the following string of virtual page references. What is the smallest possible number of page faults. Justify your answer.

<table>
<thead>
<tr>
<th>virtual pages in memory</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>8</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>2</th>
</tr>
</thead>
</table>

3. [10 points] A demand-paging system uses page-fault frequency to adjust the physical page allocation and swap state of processes. Specifically, each pcb has a variable \(x \) that is zero when the pcb is created or swapped in, and is incremented by 1 at each page fault of its process.

A thread periodically reads and zeros the \(x \) values of all swapped-in processes and then “adjusts” the allocations and swap state. The goal is to keep the \(x \) values it reads close to 20.

Give an appropriate “adjustment” rule (i.e., that selects processes and changes their allocation or swap state)