
412-S12 (shankar) Exam 1 Page 1 of 3

3 problems. 45 points total. Closed book, closed notes, no electronic devices

1. [15 points] This question concerns the projects.

a. What are refcounts used for?

Solution [5 points]
To determine when a thread’s memory can be reaped.
3 points for saying what refcounts are (i.e., the number of interested threads) but not what they are used for.

b. In project 2 what is the purpose of the trampoline function?

Solution [5 points]
To initiate restoring of a user thread’s stack at the end of of a user signal handler so that the user resumes execution
from the point where it was previously switched out.

c. Why do we need WaitNoPID if there is already a Wait function?

Solution [5 points]
To kill dead child processes with non-zero refcounts without knowing their pids.
(If the parent knows the pid, it can use Wait (without blocking).)

412-S12 (shankar) Exam 1 Page 2 of 3

2. [15 points] Jobs W, X, Y, Z have the following arrival times and service durations (in seconds):
▪ W: arrival time 0; service duration 5. (So if no other job arrives, W leaves at time 5.)
▪ X: arrival time 3; service duration 6.
▪ Y: arrival time 5.; service duration 6.
▪ Z: arrival time 9; service duration 4.

a. Assuming fifo scheduling, obtain the departure time and response time of each job. (The response time of a job is the

time it stays in the system.)

Solution [6 points]

W: arrival 0; service 5; departure 5; response 5
X: arrival 3; service 6; departure 11; response 8
Y: arrival 5; service 6; departure 17; response 12
Z: arrival 9; service 4; departure 21; response 12

b. Repeat part a assuming fifo queueing with round-robin scheduling using quantum of 2 seconds.

Solution [9 points]
Below solution assumes Z joins behind Y at 9. It’s also possible for Y to rejoin behind Z.

Interval Fifo queue at end of interval (job being served at left)
0 to 3 W 2
3+ W 2, X 6
4+ X 6, W 1
5+ X 5, W 1, Y 6
6+ W 1, Y 6, X 4
7+ Y 6, X 4 W departs
9+ X 4, Y 4, Z 4 (assuming Z joins behind Y)
11+ Y 4, Z 4, X 2
13+ Z 4, X 2, Y 2
15+ X 2, Y 2, Z 2
17+ Y 2, Z 2 X departs

19+ Z 2 Y departs
21+ Z departs

X

Y

W

Z

0 1 2 3 4 5 6 7 8 9 10 11 .. 13 .. 15 .. 17 .. 19 .. 21

X

Y

W

Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

412-S12 (shankar) Exam 1 Page 3 of 3

3. [15 points]
Here is a skeleton of a program that starts threads t1, …, tn executing functions F1, …, FN. Each part below states a
synchronization constraint. Fill in W, Xi, Yi, Zi to satisfy the constraint. The only synchronization construct you can use
are semaphores. No busy waiting. Elegance and brevity count. The solution to part a is given below to illustrate.

a. At any time at most one thread is in any Bi.
 W: Semaphore s = 1; Xi: <nothing>; Yi: P(s); Zi: V(s);

b. At any time at most 4 threads are in any Bi.

Solution [5 points]

 W: Semaphore s = 4; Xi: <nothing>; Yi: P(s); Zi: V(s);

c. Assume there are only two threads, t1 and t2. Assume that B1 and B2 are atomically executed by the hardware.
Ensure that the executions of B1 and B2 alternate, starting with B1. That is, in any evolution of the program, the
subsequence of executions of B1 and B2 has the form B1, B2, B1, B2, ….

Solution [5 points]

 W: Semaphore s1 = 1;
 Semaphore s2 = 0;

 X1: <nothing> X2: <nothing>

 Y1: P(s1); Y2: P(s2);

 Z1: V(s2); Z2: V(s1);

Other than semaphores, the only atomicity you can assume is atomic reads and writes of integers;
e.g., cannot assume that x++ is atomic.

Cannot have t1 or t2 skip an execution of B1 or B2; e.g., cannot have t1 execute A1, A1, B1, A1, ….

d. Repeat part c but now allow B1 and B2 to be code chunks that are not atomically executed by the hardware. Ensure
also that there is no overlap in the executions of B1 and B2.

Solution [5 points]
Part b solution also works here.

// global variables; initialization
W // you supply this
spawn thread t1 executing F1 ;
spawn thread t2 executing F2 ;
 ….
spawn thread tN executing FN ;

Fi
 Xi; // you supply this
 while true {
 Ai;
 Yi; // you supply this
 Bi;
 Zi; // you supply this
}

