Operating Systems: ToyOS
Shankar

September 5, 2018

ToyOS: Hardware

ToyOS-1: no IO

ToyOS-2: Wait/Wakeup on PCB queue

Toy OS-3: 10: synchronous, no interrupt, no dma
Toy OS-4: 10: synchronous, interrupt, dma

Toy OS-5: 10: asynchronous, interrupt, dma

Overview ToyOS: hw

m Goal: to make concrete the essence of how an OS shares
computer hardware securely among user processes.

Hardware: processor, memory, timer, io-adaptor + device

Kernel 4+ User processes

Images initially in memory; no process creation
Pseudo machine code

Timer interrupt — context switch
Address-space protection

No filesystem, no ...

m ToyQOS versions
m1: noio
= 2: wait/wakeup process synchronization
= 3: io synchronous, no intrpts or DMA
= 4: io synchronous, intrpts, DMA
= 5: io asynchronous,intrpts, DMA

Processor (aka CPU) -1 Toy0S: hw

m State
= general purpose regs (gpr)
= instruction pointer (ip)
= stack pointer (sp)
= high-/low-address (hi, lo)
m processor status (ps): intrpts on/off, mode kernel/user, ...

m Instructions
= move, arith, logic, io, stack, control (jump, call, intrpt)
= some are privileged: user-mode execution — exception

m Stack
» push reg: mem|[sp] < reg, sp— — /] or sp++
m pop reg: sp++; reg < mem]sp]| /] or sp— —

m Function call
w call addr: push ip; ip « addr
» return-from-function: pop ip

Processor (aka CPU) -2 Toy0S: hw

mswin (n=0,1,..,4) /! sw-interrupt; from cpu
= 0: exception // invalid opcode/address/div 0/...
» 1-4: syscalls /! user access to OS services
...

mhwin (n=5,..9) /! hw-interrupt; from external device
= 5. timer

= 6: io-adaptor

.
m swi/hwi n

» push ip; push ps; ip <— mem[n]; ps < intrpt-off, kernel-mode
m return-from-interrupt

= pop ps; pop ip

m reset/power-up: ip < 0x100

IO Adaptor

m 10 device similar to a disk
= holds (multi-word) blocks at locations

ToyOS: hw

= i0 request by process: [r/w, location, addr-of-buffer]

m Data register dbr
m holds a word to read or write

m Control register ctrl

op: read/write

= loc: block’s location in device

= addr: address of buffer in memory for block

(if dma on)

= intrpt: on/off; on — interrupt when operation done
= dma: on/off // assuming dma is in the adaptor

= busy: true if operation ongoing

// read-only

ToyOS: Hardware

ToyOS-1: no IO

ToyOS-2: Wait/Wakeup on PCB queue

Toy OS-3: 10: synchronous, no interrupt, no dma
Toy OS-4: 10: synchronous, interrupt, dma

Toy OS-5: 10: asynchronous, interrupt, dma

Memory at start ToyOS-1: no io

m Separate area for OS and for each user process

m OS area:
m data structures

s functions

= updateRungPch()
= scheduler()

= mem[0] — exceptionHndlr() // swi 0: exception
« mem[5] — timerIntHndlr() // hwi 5: timer

» kernel stack // used by kernel code; no OS process for now

m Each user process

= contiguous area: [low-address, high-address]
m code, data, stack

OS data structures Toy0S-1: no io

m PCB (process control block): one per process
// holds state of process when not running

gpr initially arbitrary

sp " " bottom of process stack

ps " " intrpts on, mode user

ip " " start addr of process code

hi, lo " " high/low addr of process memory

ioreq il // 1o request, if any

= Better: store ps and ip on stack instead of in PCB fields

m PCBs circulate in two queues
= runQ: // running process; at most 1 entry
= readyQ: // ready processes; awaiting cpu

Initially all PCBs in readyQ

Timer Interrupt Handler Toy0S-1: no io

m timerIntHndlr(): // here on timer interrupt

/* runQ holds pcb of interrupted process
cpu.sp — top of stack of runQ.pcb
stack top has (values of) ps and ip "at interrupt"
cpu.ps: interrupts off, kernel mode

*/

updateRunQPcb()

move runQ.pcb to tail of readyQ
scheduler()

// return? from function? from interrupt?

Update runQ PCB ToyOS-1: no io

m updateRungPcb(): // save the state of the interrupted process

/* Called from an interrupt (swi/hwi) handler
runQ holds pcb of last running process
cpu.sp — stack top of runQ.pcb
stack top has ip@call, ps@intrpt, ip@intrpt
cpu.ps: interrupts off, kernel mode

*/

runQ.pcb.gpr < cpu.gpr

runQ.pcb.ip/ps < ip/ps Qintrpt from stack
runQ.pcb.sp < cpu.sp // adjusted to "at interrput"
cpu.sp < kernel stack bottom // fresh start
push ip@call // from runQ.pcb's stack

return-from-function

Scheduler ToyOS-1: no io

m scheduler(): // located at Reset address (0x100)

/* Wait for non-empty readyQ, dispatch process at head.
Called from intrpt handler, runQ empty, intrpts disabled,
cpu.sp — kernel stack

*/
while (readyQ empty) // busy wait with interrupts enabled

Cpu.ps <— interrupts on
cpu.ps < interrupts off

move pcb at readyQ.head to runQ

// dispatch runQ.pcb

cpu.gpr/sp/hi/lo < runQ.pcb.gpr/sp/hi/lo

push runQ.pcb.ps/ip // using stack of process to be run
return-from-interrupt // pops ps and ip atomically

m exceptionHndlr(): //" here on execution; kill running process

remove runQ.pcb
delete pcb
scheduler()

// caller never comes here

ToyOS: Hardware

ToyOS-1: no IO

ToyOS-2: Wait/Wakeup on PCB queue

Toy OS-3: 10: synchronous, no interrupt, no dma
Toy OS-4: 10: synchronous, interrupt, dma

Toy OS-5: 10: asynchronous, interrupt, dma

m User instructions:

m swi 1: syscall-wait(q) // qis a PCB queue
= swi 2: syscall-wakeup(q)

m OS functions

= waitHndlr(q) // swi 1 handler
= wakeupHndlr(q) // swi 2 handler

m OS data structure

= mem[1] — waitHndlr(.)
= mem[2] — wakeupHndlr(.)
= PCB queue(s) on which to synchronize

= waitHndlr(q): // here on swi 1: syscall-wait(q)
updateRungPch
move runQ.pcb to q
scheduler()

m wakeupHndlr(q): // here on swi 2: syscall-wakeup(q)

if (g not empty)
move q.head.pcb to readyQ
return-from-interrupt

ToyOS: Hardware

ToyOS-1: no IO

ToyOS-2: Wait/Wakeup on PCB queue

Toy OS-3: 10: synchronous, no interrupt, no dma
Toy OS-4: 10: synchronous, interrupt, dma

Toy OS-5: 10: asynchronous, interrupt, dma

IO Overview ToyQS-3: io syn/intfdma
m Start from ToyOS-2

m Add io capability to user process
= if io device is busy: process waits in an io queue
m if io device is not busy: process does io (accessing io adaptor);
upon completion, wakes up a process (if any) waiting on io.

m User instructions:
= swi 3: syscall-io(op, loc, addr)

m OS data structure
= i0Q: PCB queue of processes with io requests, all waiting
= mem[3] — ioReqHndIr() // swi 3: syscall-io(op,loc,addr)
= i0Avail: flag indicating whether io device is available

m OS functions
= ioReqHndIr(op,loc,addr) // swi 3 handler
// executed by user process in kernel mode with intrpts on

IO Request Handler Toy0S-3: io syn/int/dma

m ioReqHndlr(op, loc, addr): // here on swi 3, intrpt off, kernel
runQ.pcb.ioreq < [op, loc, addr]
while (not ioAvail):
swi 1 (i0Q): // syscall-wait(ioQ)
ioAvail < false
set cpu.ps.intrpt on // share cpu
io-adaptor.ctrl < [op, loc, addr, no intrpt, no dma]

for (jin 0 ... blksize—1):

while (io-adaptor.ctrl.busy) nop // busy wait
if (op = w) io-adaptor.dbr «— mem[addr +]
else mem[addr + j] < io-adaptor.dbr

while (io-adaptor.ctrl.busy) nop: // busy wait

ioAvail < true
swi 2 (i0Q) // syscall-wakeup(ioQ); start next io, if any
return-from-interrupt

ToyOS: Hardware

ToyOS-1: no IO

ToyOS-2: Wait/Wakeup on PCB queue

Toy OS-3: 10: synchronous, no interrupt, no dma
Toy OS-4: 10: synchronous, interrupt, dma

Toy OS-5: 10: asynchronous, interrupt, dma

IO Overview ToyOS-4: io syn/int/dma
m Start from ToyOS-2

m Add io capability to user process
= process waits in an io queue, starting io if device is available
= i0 intrpt handler wakes up process; starts new io (if any)

m User instructions:
= swi 3: syscall-io(op, loc, addr)

m OS data structure
= i0Q: PCB queue of processes with io requests
= process at head (if any) is being served
= mem[3] — ioReqHndlr(.) /1 swi 3: syscall-io(op,loc,addr)
= mem[6] — iolntHndlr(.) // hwi 6: io-adaptor intrpt

m OS functions
= ioReqHndIr(op,loc,addr) // swi 3 handler
= iolntHndlr() // hwi 6 handler

m ioReqHndlr(op, loc, addr): // here on swi 3: syscall-io
runQ.pcb.ioreq < [op, loc, addr]
if (ioQ empty) // io device not busy
io-adaptor.ctrl < [op, loc, addr, dma, intrpt]
swi 1 (i0Q) // syscall-wait(ioQ)

// return? from function? from interrupt?

|O Interrupt Handler Toy0S-4: io syn/int/dma

m iolntHndIr(): // here on hwi 6: io-adaptor interrupt

/* runQ holds pcb of interrupted process or is empty
cpu.sp — stack top of runQ.pcb or of Kernel stack
stack top has ps and ip values " " at interrupt"
cpu.ps: interrupts off, kernel mode
i0Q is not empty: its head's io request has just completed
*/
swi 1(i0Q) // syscall-wakeup(ioQ)
if (i0Q not empty) // start io for next waiting process
io-adaptor.ctrl < [i0Q.head.pcb.ioreq, dma, intrpt]
return-from-interrupt

/* This handler uses the interrupted process stack or kernel stack.
Interrupt has nothing to do with interrupted process.

*/

ToyOS: Hardware

ToyOS-1: no IO

ToyOS-2: Wait/Wakeup on PCB queue

Toy OS-3: 10: synchronous, no interrupt, no dma
Toy OS-4: 10: synchronous, interrupt, dma

Toy OS-5: 10: asynchronous, interrupt, dma

m Synchronous 10
= ioRegHndIr(x) returns only after x is served

m Asynchronous 10
= ioReqHndIr(x) is non-blocking (returns “immediately”)

= i0ReqQ: queue of io requests // not PCBs
= ioReqHndIr(x): adds x to ioReqQ; returns

m ioServer: kernel thread that serves requests from ioReqQ

» i0Q: now used only by ioServer

= waits here for nonempty ioReqQ or io interrupt

IO Overview — 2 ToyQS-5: io asyn/int/dma
m Start from ToyOS-2

m User instructions:
= swi 3: syscall-io(op, loc, addr)

m OS data structure
= i0Q: PCB queue; holds at most 1 process (executing ioServer)
process at head (if any) waiting for io request/intrpt

= mem[3] — ioReqHndIr(.) /1 swi 3: syscall-io(op,loc,addr)
= mem[6] — iolntHndlr(.) // hwi 6: io-adaptor intrpt
m ioReqQ
m ioServer's PCB: as usual except // actually TCB
m ps: intrpts-off, mode-kernel // so hi/lo irrelevant

m ip: points to ioServerFn()

m ioReqHndlr(op, loc, addr): // here on swi 3: syscall-io
add [op,loc,addr] to ioReqQ
if (ioReqQ has 1 entry)
swi 2(i0Q) // syscall-wakeup(ioQ); wake up ioServer
return-from-interrupt

m iolntHndlr(): //" here on io interrupt
/* i0Q has ioServer PCB only */
syscall-wakeup(ioQ)
return-from-interrupt

IO Server ToyQS-5: io asyn/int/dma

m ioServerFn(): // executed by kernel thread “ioServer”
/* kernel mode, intrpts off, non terminating
while (true)
if (ioReqQ empty) // note: " while" not needed

swi 1(i0Q) // syscall-wait(ioQ)
// 10ReqQ not empty

if (io-adaptor.ctrl busy) // should not happen
swi 1(i0Q) // syscall-wait(ioQ)
// 10oReqQ not empty, io device not busy

[op, loc, addr] « ioReqQ.head // need not be head
io-adaptor.ctrl < [op, loc, addr, intrpt, dma]

swi 1(i0Q) // syscall-wait(ioQ)
remove i0oReqQ.head

m Suppose ioReqQ becomes full.

m ioReqQ (and i0Q in synchronous 10) need not be FCFS.
Can choose request to serve to optimize performance.

m Disabling interrupts to protect OS resources is not desirable

= It blocks processes that do not need protected resources
= It works only in a single-processor system

More fine-grained mechanisms are needed

	ToyOS: Hardware
	ToyOS-1: no IO
	ToyOS-2: Wait/Wakeup on PCB queue
	Toy OS-3: IO: synchronous, no interrupt, no dma
	Toy OS-4: IO: synchronous, interrupt, dma
	Toy OS-5: IO: asynchronous, interrupt, dma

