
Operating Systems: ToyOS

Shankar

September 5, 2018



Outline ToyOS: hw

ToyOS: Hardware

ToyOS-1: no IO

ToyOS-2: Wait/Wakeup on PCB queue

Toy OS-3: IO: synchronous, no interrupt, no dma

Toy OS-4: IO: synchronous, interrupt, dma

Toy OS-5: IO: asynchronous, interrupt, dma



Overview ToyOS: hw

Goal: to make concrete the essence of how an OS shares
computer hardware securely among user processes.

Hardware: processor, memory, timer, io-adaptor + device

Kernel + User processes
Images initially in memory; no process creation
Pseudo machine code
Timer interrupt → context switch
Address-space protection
No �lesystem, no ...

ToyOS versions
1: no io
2: wait/wakeup process synchronization
3: io synchronous, no intrpts or DMA
4: io synchronous, intrpts, DMA
5: io asynchronous,intrpts, DMA



Processor (aka CPU) � 1 ToyOS: hw

State
general purpose regs (gpr)
instruction pointer (ip)
stack pointer (sp)
high-/low-address (hi, lo)
processor status (ps): intrpts on/o�, mode kernel/user, ...

Instructions
move, arith, logic, io, stack, control (jump, call, intrpt)
some are privileged: user-mode execution → exception

Stack
push reg : mem[sp] ← reg; sp−− // or sp++
pop reg : sp++; reg ← mem[sp] // or sp−−

Function call
call addr : push ip; ip ← addr
return-from-function: pop ip



Processor (aka CPU) � 2 ToyOS: hw

swi n (n = 0, 1, ..., 4) // sw-interrupt; from cpu

0: exception // invalid opcode/address/div 0/...
1�4: syscalls // user access to OS services
...

hwi n (n = 5, ..., 9) // hw-interrupt; from external device

5: timer
6: io-adaptor
...

swi/hwi n

push ip; push ps; ip ← mem[n]; ps ← intrpt-o�, kernel-mode

return-from-interrupt

pop ps; pop ip

reset/power-up: ip ← 0x100



IO Adaptor ToyOS: hw

IO device similar to a disk

holds (multi-word) blocks at locations
io request by process: [r/w, location, addr-of-bu�er]

Data register dbr

holds a word to read or write

Control register ctrl

op: read/write
loc: block's location in device
addr: address of bu�er in memory for block (if dma on)
intrpt: on/o�; on → interrupt when operation done
dma: on/o� // assuming dma is in the adaptor
busy: true if operation ongoing // read-only



Outline ToyOS-1: no io

ToyOS: Hardware

ToyOS-1: no IO

ToyOS-2: Wait/Wakeup on PCB queue

Toy OS-3: IO: synchronous, no interrupt, no dma

Toy OS-4: IO: synchronous, interrupt, dma

Toy OS-5: IO: asynchronous, interrupt, dma



Memory at start ToyOS-1: no io

Separate area for OS and for each user process

OS area:

data structures

functions

updateRunqPcb()
scheduler()
mem[0] → exceptionHndlr() // swi 0: exception
mem[5] → timerIntHndlr() // hwi 5: timer

kernel stack // used by kernel code; no OS process for now

Each user process

contiguous area: [low-address, high-address]
code, data, stack



OS data structures ToyOS-1: no io

PCB (process control block): one per process
// holds state of process when not running

gpr initially arbitrary
sp " " bottom of process stack
ps " " intrpts on, mode user
ip " " start addr of process code
hi, lo " " high/low addr of process memory

ioreq " " nil // io request, if any

Better: store ps and ip on stack instead of in PCB �elds

PCBs circulate in two queues

runQ: // running process; at most 1 entry
readyQ: // ready processes; awaiting cpu

Initially all PCBs in readyQ



Timer Interrupt Handler ToyOS-1: no io

timerIntHndlr(): // here on timer interrupt

/* runQ holds pcb of interrupted process
cpu.sp → top of stack of runQ.pcb
stack top has (values of) ps and ip "at interrupt"
cpu.ps: interrupts o�, kernel mode

*/

updateRunQPcb()
move runQ.pcb to tail of readyQ
scheduler()

// return? from function? from interrupt?



Update runQ PCB ToyOS-1: no io

updateRunqPcb(): // save the state of the interrupted process

/* Called from an interrupt (swi/hwi) handler
runQ holds pcb of last running process
cpu.sp → stack top of runQ.pcb
stack top has ip@call, ps@intrpt, ip@intrpt
cpu.ps: interrupts o�, kernel mode

*/

runQ.pcb.gpr ← cpu.gpr
runQ.pcb.ip/ps ← ip/ps @intrpt from stack
runQ.pcb.sp ← cpu.sp // adjusted to "at interrput"
cpu.sp ← kernel stack bottom // fresh start
push ip@call // from runQ.pcb's stack
return-from-function



Scheduler ToyOS-1: no io

scheduler(): // located at Reset address (0x100)

/* Wait for non-empty readyQ, dispatch process at head.
Called from intrpt handler, runQ empty, intrpts disabled,
cpu.sp → kernel stack

*/

while (readyQ empty) // busy wait with interrupts enabled
cpu.ps ← interrupts on
cpu.ps ← interrupts o�

move pcb at readyQ.head to runQ

// dispatch runQ.pcb
cpu.gpr/sp/hi/lo ← runQ.pcb.gpr/sp/hi/lo

push runQ.pcb.ps/ip // using stack of process to be run

return-from-interrupt // pops ps and ip atomically



Exception Handler ToyOS-1: no io

exceptionHndlr(): // here on execution; kill running process

remove runQ.pcb
delete pcb
scheduler()
// caller never comes here



Outline ToyOS-2: wait/wakeup

ToyOS: Hardware

ToyOS-1: no IO

ToyOS-2: Wait/Wakeup on PCB queue

Toy OS-3: IO: synchronous, no interrupt, no dma

Toy OS-4: IO: synchronous, interrupt, dma

Toy OS-5: IO: asynchronous, interrupt, dma



Overview ToyOS-2: wait/wakeup

User instructions:

swi 1: syscall-wait(q) // q is a PCB queue
swi 2: syscall-wakeup(q)

OS functions

waitHndlr(q) // swi 1 handler
wakeupHndlr(q) // swi 2 handler

OS data structure

mem[1] → waitHndlr(.)
mem[2] → wakeupHndlr(.)
PCB queue(s) on which to synchronize



Functions ToyOS-2: wait/wakeup

waitHndlr(q): // here on swi 1: syscall-wait(q)

updateRunqPcb
move runQ.pcb to q
scheduler()

wakeupHndlr(q): // here on swi 2: syscall-wakeup(q)

if (q not empty)
move q.head.pcb to readyQ

return-from-interrupt



Outline ToyOS-3: io syn/int/dma

ToyOS: Hardware

ToyOS-1: no IO

ToyOS-2: Wait/Wakeup on PCB queue

Toy OS-3: IO: synchronous, no interrupt, no dma

Toy OS-4: IO: synchronous, interrupt, dma

Toy OS-5: IO: asynchronous, interrupt, dma



IO Overview ToyOS-3: io syn/int/dma

Start from ToyOS-2

Add io capability to user process
if io device is busy: process waits in an io queue
if io device is not busy: process does io (accessing io adaptor);
upon completion, wakes up a process (if any) waiting on io.

User instructions:
swi 3: syscall-io(op, loc, addr)

OS data structure
ioQ: PCB queue of processes with io requests, all waiting
mem[3] → ioReqHndlr() // swi 3: syscall-io(op,loc,addr)
ioAvail: �ag indicating whether io device is available

OS functions
ioReqHndlr(op,loc,addr) // swi 3 handler
// executed by user process in kernel mode with intrpts on



IO Request Handler ToyOS-3: io syn/int/dma

ioReqHndlr(op, loc, addr): // here on swi 3, intrpt o�, kernel

runQ.pcb.ioreq ← [op, loc, addr]
while (not ioAvail):
swi 1 (ioQ): // syscall-wait(ioQ)

ioAvail ← false
set cpu.ps.intrpt on // share cpu
io-adaptor.ctrl ← [op, loc, addr, no intrpt, no dma]

for (j in 0 . . . blksize−1):
while (io-adaptor.ctrl.busy) nop // busy wait

if (op = w) io-adaptor.dbr ← mem[addr + j]
else mem[addr + j] ← io-adaptor.dbr

while (io-adaptor.ctrl.busy) nop: // busy wait

ioAvail ← true
swi 2 (ioQ) // syscall-wakeup(ioQ); start next io, if any
return-from-interrupt



Outline ToyOS-4: io syn/int/dma

ToyOS: Hardware

ToyOS-1: no IO

ToyOS-2: Wait/Wakeup on PCB queue

Toy OS-3: IO: synchronous, no interrupt, no dma

Toy OS-4: IO: synchronous, interrupt, dma

Toy OS-5: IO: asynchronous, interrupt, dma



IO Overview ToyOS-4: io syn/int/dma

Start from ToyOS-2

Add io capability to user process
process waits in an io queue, starting io if device is available
io intrpt handler wakes up process; starts new io (if any)

User instructions:
swi 3: syscall-io(op, loc, addr)

OS data structure
ioQ: PCB queue of processes with io requests
process at head (if any) is being served

mem[3] → ioReqHndlr(.) // swi 3: syscall-io(op,loc,addr)
mem[6] → ioIntHndlr(.) // hwi 6: io-adaptor intrpt

OS functions
ioReqHndlr(op,loc,addr) // swi 3 handler
ioIntHndlr() // hwi 6 handler



IO Request Handler ToyOS-4: io syn/int/dma

ioReqHndlr(op, loc, addr): // here on swi 3: syscall-io

runQ.pcb.ioreq ← [op, loc, addr]
if (ioQ empty) // io device not busy
io-adaptor.ctrl ← [op, loc, addr, dma, intrpt]

swi 1 (ioQ) // syscall-wait(ioQ)

// return? from function? from interrupt?



IO Interrupt Handler ToyOS-4: io syn/int/dma

ioIntHndlr(): // here on hwi 6: io-adaptor interrupt

/* runQ holds pcb of interrupted process or is empty
cpu.sp → stack top of runQ.pcb or of Kernel stack
stack top has ps and ip values ``at interrupt''
cpu.ps: interrupts o�, kernel mode
ioQ is not empty: its head's io request has just completed

*/

swi 1(ioQ) // syscall-wakeup(ioQ)
if (ioQ not empty) // start io for next waiting process
io-adaptor.ctrl ← [ioQ.head.pcb.ioreq, dma, intrpt]

return-from-interrupt

/* This handler uses the interrupted process stack or kernel stack.
Interrupt has nothing to do with interrupted process.

*/



Outline ToyOS-5: io asyn/int/dma

ToyOS: Hardware

ToyOS-1: no IO

ToyOS-2: Wait/Wakeup on PCB queue

Toy OS-3: IO: synchronous, no interrupt, no dma

Toy OS-4: IO: synchronous, interrupt, dma

Toy OS-5: IO: asynchronous, interrupt, dma



IO Overview � 1 ToyOS-5: io asyn/int/dma

Synchronous IO

ioReqHndlr(x) returns only after x is served

Asynchronous IO

ioReqHndlr(x) is non-blocking (returns �immediately�)

ioReqQ: queue of io requests // not PCBs
ioReqHndlr(x): adds x to ioReqQ; returns
ioServer: kernel thread that serves requests from ioReqQ
ioQ: now used only by ioServer

waits here for nonempty ioReqQ or io interrupt



IO Overview � 2 ToyOS-5: io asyn/int/dma

Start from ToyOS-2

User instructions:

swi 3: syscall-io(op, loc, addr)

OS data structure

ioQ: PCB queue; holds at most 1 process (executing ioServer)

process at head (if any) waiting for io request/intrpt

mem[3] → ioReqHndlr(.) // swi 3: syscall-io(op,loc,addr)
mem[6] → ioIntHndlr(.) // hwi 6: io-adaptor intrpt

ioReqQ

ioServer's PCB: as usual except // actually TCB

ps: intrpts-o�, mode-kernel // so hi/lo irrelevant
ip: points to ioServerFn()



Interrupt Handlers ToyOS-5: io asyn/int/dma

ioReqHndlr(op, loc, addr): // here on swi 3: syscall-io

add [op,loc,addr] to ioReqQ
if (ioReqQ has 1 entry)
swi 2(ioQ) // syscall-wakeup(ioQ); wake up ioServer

return-from-interrupt

ioIntHndlr(): // here on io interrupt

/* ioQ has ioServer PCB only */
syscall-wakeup(ioQ)
return-from-interrupt



IO Server ToyOS-5: io asyn/int/dma

ioServerFn(): // executed by kernel thread �ioServer�

/* kernel mode, intrpts o�, non terminating
while (true)

if (ioReqQ empty) // note: ``while'' not needed
swi 1(ioQ) // syscall-wait(ioQ)

// ioReqQ not empty

if (io-adaptor.ctrl busy) // should not happen
swi 1(ioQ) // syscall-wait(ioQ)

// ioReqQ not empty, io device not busy

[op, loc, addr] ← ioReqQ.head // need not be head
io-adaptor.ctrl ← [op, loc, addr, intrpt, dma]

swi 1(ioQ) // syscall-wait(ioQ)
remove ioReqQ.head



Comments ToyOS-5: io asyn/int/dma

Suppose ioReqQ becomes full.

ioReqQ (and ioQ in synchronous IO) need not be FCFS.
Can choose request to serve to optimize performance.

Disabling interrupts to protect OS resources is not desirable

It blocks processes that do not need protected resources
It works only in a single-processor system

More �ne-grained mechanisms are needed


	ToyOS: Hardware
	ToyOS-1: no IO
	ToyOS-2: Wait/Wakeup on PCB queue
	Toy OS-3: IO: synchronous, no interrupt, no dma
	Toy OS-4: IO: synchronous, interrupt, dma
	Toy OS-5: IO: asynchronous, interrupt, dma

