
Project 1: Fork and Exec

Due Feb 20

You will implement the Fork() and Exec() operations, preserving the semantics of Pipe() across both:
that both parent and child have the same file descriptors attached to the pipe, both parent and child may
read and write to the pipe, and the exec’d program inherits the file descriptors of the process.

The primary goal of this assignment is to develop an understanding of the process control block (struct
Kernel Thread) and user context structures (struct User Context).

1 Desired Semantics

In general, Fork() here should work as described in the man page for fork (fork(2)), with the following
exceptions and specifics. GeekOS lacks many of the features that “real” fork() must make decisions about,
such as signal inheritance, what to do about multiple threads, and resource limits.

• Fork() must return the child’s pid in the parent and zero in the child. The Child’s pid must be new
and sequential.

• Global variables must start out the same, but each process updates its own copy.

• The stack should appear the same at the point of the Fork call, but each process has its own copy.

• File descriptions are shared: when either process updates the position in a file, that should update the
position as seen by the other process. We don’t have files with positions yet, but for now, pretend that
we do.

• Fork() should return ENOMEM if a memory allocation fails.

1.1 Process Creation

The existing scheme for creating new processes is the Spawn() function. Spawn() is a bit like the Windows
CreateProcess function, which creates a new process with a program name to implement. It does everything,
which means it contains the core of both Fork() and Exec(). Spawn lacks a facility for creating the inter-
mediate state: copying the address space from parent to child. It also lacks the functionality we seek with
inheriting file descriptors. Finally, Spawn() creates the new process with an empty context rather than at
the point of a fork. We’ll discuss these features in a bit more detail than those you’ll find already in the
code.

Each process is represented by a “struct kthread.” There are kernel processes, which are really threads
inside the kernel, since they all share the same address space. User processes have a “userContext” in
the kthread: the userContext contains the stuff unique to user processes: their own address spaces, file
descriptors, etc.

To Fork(), a new kthread must be created. Unlike in Spawn(), the contents of memory should not be the
result of loading a program file, it should be a copy of the memory of the parent. In a real operating system
with paging, this copy would occur lazily (and efficiently) via copy-on-write.

1.2 Copying the address space

Look in userseg.c to note how a user context can be created. The kernel has memcpy(). This one is pretty
easy.

1

1.3 Files and inheriting file descriptors

Copy the file descriptor array from parent to child. Since files can now be shared between processes, you
will need to add a reference count in struct File. Initialize the reference count in the appropriate places and
modify it accordingly for Fork() and Exec().

1.4 Register Context

When a function makes a system call, the user process’s registers are pushed onto the top of the kernel’s
per-process stack. The kernel’s stack is in kthread’s stackPage, while the stack pointer is esp. At the very
beginning of a system call, esp coincides with the struct Interrupt State *state argument, pointing to the
location on the stack where the user’s registers are stored. However, if, during the system call another
interrupt occurs, esp will be updated to the current value of the actual esp register. Therefore, the user’s
registers should always be accessed using the state variable, not esp.

When cloning a process, the child should have substantially the same kernel stack, to represent substan-
tially the same registers (one will be different).

pipe(&r, &w) returns r=3, w=4

struct User_Context

0 1 2 3 4 5

struct File

ops = readPipeOps

refCount = 2

fsData

struct File

ops = writePipeOps

refCount = 2

fsData

after the fork

struct User_Context

0 1 2 3 4 5

struct Pipe

readers = 1 writers = 1

pointer to data buffer

buffered
data

Figure 1: Illustration of the file descriptor table (top), where entries point to struct File objects, after Fork().
There are two struct File objects for the pipe. The pipe object must track whether there are any readers or
writers and keep buffered data, the File object must track how many processes (kthreads) hold a reference
to the File.

1.5 Fork Bomb

One of the tests will be a fork bomb test which will rapidly deplete the available memory as more and more
processes are created. At some point a Malloc call will fail, and you must handle this appropriately. In
addition, you will need to upgrade the Exit function in kthread.c.

2

The Exit function is called when a thread terminates. Most threads (non-detached) are created with
a reference count of 2, one for themselves and one for their parent. The memory contents associated with
a given thread are only released when the reference count is decremented to 0. As currently written Exit
only releases the reference a thread has to itself. Because the parent reference is never released, all of the
memory allocated to the process won’t be freed, despite its no longer being needed. You must modify the
Exit function so that upon termination, a process “informs” all of its children of its imminent demise. This
can be accomplished using the owner field in the struct kthread, as well as the s allThreadList.

1.6 Synchronization

With Fork(), particularly with SMP, comes the possibility that two of your processes may be running at the
same time. If not careful about preventing concurrent access to the same operations, you may create a race
condition that will cause data corruption at random; alternately, you may cause a deadlock condition - no
processes can make progress.

In this section, I use “process” and “kernel thread” interchangeably, since the code you’re writing is in
the kernel, running in a thread (they share an address space in the kernel), on behalf of a process.

1.6.1 The hammer

Disable Interrupts() and Enable Interrupts() grab and release the “big” global lock. Begin Int Atomic() and
End Int Atomic() grab and release the global lock if it is not already held, allowing routines to be called
with or without the lock.

These routines will prevent interrupts from occurring on the current processor and grab a lock that
prevents the interrupt handler from running on any other processor. That means that the timer interrupt
will eventually block execution of the other processor’s activity.

Any process waiting for the global lock spins, with interrupts disabled, expecting the code on the other
processor to release the global lock. (That is, it would be bad if the other processor is somehow not going
to release the global lock.)

System calls in geekos start with interrupts disabled, but as you can imagine, if that operation requires
a device to do something, interrupts have to be enabled.

1.6.2 The knife

Mutex Lock and Mutex Unlock (see synch.c) will put a blocked thread on a wait queue until the lock is
released. See, for example, the use of mutexes in vfs.c to guard the list of file systems.

Using a mutex requires that interrupts be enabled. That is, the calling code expecting to request a mutex
has to know that it might not get it immediately. Another thread might need to run, and data structures
that might be shared should be in a consistent state.

1.6.3 The rock

The spinlock is quite possibly not a good synchronization tool, but it appears in geekos and may be useful
for guarding data structures for brief periods efficiently.

Each list in geekos (see list.h) is guarded by a spinlock. This spinlock is meant to defend the list against
accidental concurrent access, but because of its limitations, may not be appropriate protection.

Simple list operations automatically grab and release that lock. Some operations, such as “get next in
list” expect the lock to be held. Consult the list.h source to determine which functions are appropriate for
you.

From http://en.wikipedia.org/wiki/Spinlock,

Because they avoid overhead from operating system process rescheduling or context switching,
spinlocks are efficient if threads are only likely to be blocked for a short period. For this reason,
spinlocks are often used inside operating system kernels. However, spinlocks become wasteful if
held for longer durations, as they may prevent other threads from running and require reschedul-
ing. The longer a lock is held by a thread, the greater the risk is that the thread will be interrupted

3

http://en.wikipedia.org/wiki/Spinlock

by the OS scheduler while holding the lock. If this happens, other threads will be left “spinning”
(repeatedly trying to acquire the lock), while the thread holding the lock is not making progress
towards releasing it. The result is an indefinite postponement until the thread holding the lock
can finish and release it. This is especially true on a single-processor system, where each waiting
thread of the same priority is likely to waste its quantum (allocated time where a thread can
run) spinning until the thread that holds the lock is finally finished.

1.7 Rules and Hints

Follow the path of Spawn() and determine which features are part of Exec() and which features are part of
Fork(). Most everything that you need is already present. If possible, reuse of existing functions is preferred
to copying over large chunks of code.

Proper implementation of the file reference count will require modifications to Open(), Pipe(), Close() in
addition to possible changes in Fork() and Exec().

You may modify any function needed, regardless of whether a TODO P(PROJECT FORK) macro is
present.

2 Tests

There are a few public tests: fork-p1, forkpipe, and forkexec. They are intended to cover the bulk of the
functionality described here.

Expect “secret” tests to exercise other behavior described in this handout. “Secret” tests are likely to
cover bizarre mistakes such as failing to replicate the data segment and failing to count references for pipes.

4

	Desired Semantics
	Process Creation
	Copying the address space
	Files and inheriting file descriptors
	Register Context
	Fork Bomb
	Synchronization
	The hammer
	The knife
	The rock

	Rules and Hints

	Tests

