
Project 2: Signals

Due Mar 6

You will implement the Signal() and Kill() system calls, preserving basic functions of pipe (to permit
SIGPIPE) and fork (to permit SIGCHLD).

The primary goal of this assignment is to develop an understanding of the behavior of signal handlers and
the interactions between signals and processes. This assignment also reinforces register state manipulation
from the fork and exec assigment, adding changes to the user stack.

1 Signals

A signal is an inter-process communication mechanism that involves causing one of a small array of functions
to be invoked in another process. Each process can use the “signal” system call to manipulate a table that
lists signal handlers (function pointers) to be invoked at the request of another process. To send a signal,
a process calls the “kill” system call with the pid of the target and the signal number to send. The signal
number represents the index into the table of signal handlers in the target process. The kernel will then
arrange for the signal handler function to be called within the process. This is your main task.

The tricky part is to ensure that when the signal handler returns, control is passed back to the kernel and
the process can resume from wherever it was. To accomplish this task, we define a “return signal” system
call that will be invoked as the signal handler returns. In implementing signals, you will need to to arrange
for the process to have both a context when executing the signal handler and a saved context that the signal
handler will return to after the signal handler completes.

2 System Calls and the Application Interface

The Signal() system call will register a handler, which will be a function that takes an integer argument
representing the signal number. The Signal() call can also take a behavior, to, for example, ignore a signal
or return to default behavior.

Registered signal handlers are preserved across Fork(), and discarded across Exec() for reasons that
should be obvious.

The Kill() system call will deliver a signal to a given process. Signal delivery need not take place
synchronously, rather, a signal may be queued for later delivery. This is comparable to how an interrupt
might arrive while the processor has interrupts disabled: the interrupt will be delivered once interrupts are
enabled. In the signals case, the signal may be delivered just as the process is about to regain the processor.

Other actions automatically generate signals (you will need to implement these), including the death of
a child that is not being Wait()ed for (SIGCHLD), and a write to a pipe that has no readers (SIGPIPE).

3 Getting Started

Implement the following system calls.

Sys Signal: This system call registers a signal handler for a given signal number. The signal handler is a
function that takes the signal number as an argument (it may not be useful to it), processes the signal
in some way, then returns nothing (void). If called with SIGKILL, return an error (EINVALID). The
handler may be set as the pre-defined “SIG DFL” or “SIG IGN” handlers. SIG IGN tells the kernel

1



that the process wants to ignore the signal (it need not be delivered). SIG DFL tells the kernel to
revert to its default behavior, which is to terminate the process on SIGKILL, SIGPIPE, SIGUSR1,
and SIGUSR2, and to discard (ignore) SIGCHLD and SIGALARM. A process may set SIG DFL or
SIG IGN after setting the handler to something else.

Sys RegDeliver: The signal handling infrastructure requires a special “trampoline” user function to be
implemented. This “trampoline” invokes the system call Sys ReturnSignal (see below) at the conclusion
of the signal handler. The purpose of RegDeliver is to deliver the user space address of the trampoline
function. This system call should only fire once; it is invoked by Sig Init when called by the Entry
function in src/libc/entry.c; i.e., this function is invoked prior to running the user program’s main().

Sys Kill: In this project, Kill will be used to send a signal to a certain process. So in addition to the
PID, Sys Kill will take a signal number as defined above. It should be implemented as setting a flag
in the process to which the signal is to be delivered, so that when the given process is about to start
executing in user space again, rather than returning to where it left off, it will execute the appropriate
signal handler instead.

Sys ReturnSignal: This system call is not invoked by user-space programs directly, but rather is executed
by some stub code at the completion of a signal handler. That is, Sys Kill sends process P a signal,
which causes it to run its signal handler. When this handler completes, we will have set up its stack
so that it will “return” to the trampoline registered by Sys RegDeliver. This trampoline wil invoke
Sys ReturnSignal to indicate that signal handling is complete.

Sys WaitNoPID: The Sys Wait system call takes as its argument the PID of the child process to wait
for, and returns when that process dies. The Sys WaitNoPID call, in contrast, takes a pointer to an
integer as its argument, and reaps any zombie child process that happens to have terminated. It places
the exit status in the memory location the argument points to and returns the pid of the zombie. If
there are no dead child process, then the system call should return ENOZOMBIES.

3.1 The default handler

If the default handler is invoked for a signal that will terminate the process (e.g., SIGKILL),
Print("Terminated %d.\n", CURRENT_THREAD->pid); and invoke Exit.

3.2 Reentrancy and Preemption

Sending a signal should appear as if setting a flag in the PCB about the pending signal; the signal handler
need not be executed immediately. In particular, if the process is executing a signal handler, do not start
executing another signal handler. Further, multiple invocations of kill() to send the same signal to a process
before it begins handling even one will have the same effect as just one invocation of kill(). For example, if two
children finish while another handler is executing (and blocked), the SIGCHLD handler will be called only
once. However, if one child finishes while the parent’s SIGCHLD handler is executing, another SIGCHLD
handler should be called when it completes. See the sigaction() man page if in doubt about reentrancy. The
delivery order of pending signals is not specified. (They need not be delivered in the order received.)

4 Helpers in signal.c

To implement signal delivery, you will need to implement (at least) five routines in src/geekos/signal.c:

Send Signal: takes as its arguments a pointer to the kernel thread to which to deliver the signal, and the
signal number to deliver. This should set a flag in the given thread to indicate that a signal is pending.
This flag is used by Check Pending Signal, described next.

Check Pending Signal: is called by code in lowlevel.asm when a kernel thread is about to be context-
switched to. It should return true only if all of the following THREE conditions hold:

2



1. A signal is pending for that user process.

2. The process is about to start executing in user space. This can be determined by checking the
Interrupt State’s CS register: if it is not the kernel’s CS register (see include/geekos/defs.h), then
the process is about to return to user space.

3. The process is not currently handling another signal (recall that signal handling is non-reentrant).

Set Handler: use this routine to register a signal handler provided by the Sys Signal system call.

Setup Frame: this routine is called when Check Pending Signal returns true, to set up a user process’s
user stack and kernel stack so that when it starts executing, it will execute the correct signal handler,
and when that handler completes, the process will invoke the Sys ReturnSignal system call to go back
to what it was doing. IF instead the process is relying on SIG IGN or SIG DFL, handle the signal
within the kernel. IF the process has defined a signal handler for this signal, this function will have to
do the following:

1. Choose the correct handler to invoke.

2. Acquire the pointer to the top of the user stack. This is below the saved interrupt state stored
on the kernel stack (espUser in struct User Interrupt State).

3. Push onto the user stack a snapshot of the interrupt state (i.e. user registers) that is currently
stored at the top of the kernel stack.

4. Push onto the user stack the number of the signal being delivered.

5. Push onto the user stack the address of the “signal trampoline” that invokes the Sys ReturnSignal
system call, and was registered by the Sys RegDeliver system call, mentioned above.

6. Change the current kernel stack such that (notice that you already saved a copy in the user stack)

(a) The user stack pointer is updated to reflect the changes made in step 3 - 5.

(b) The saved program counter (eip) points to the signal handler.

Complete Handler: this routine should be called (by your code) when the Sys ReturnSignal call is invoked,
to indicate a signal handler has completed. It needs to restore back on the top of the kernel stack the
snapshot of the interrupt state currently on the top of the user stack.

5 Hints

You get to choose where in geekos you want to store signal related data structures. Given the behavior of
signals across Fork and Exec, there is perhaps a preferred location, but you are free to implement it however
you like.

Remember that the “call” assembly instruction does two things: it pushes the address of the next
instruction on the stack as the return address, and it overwrites the instruction pointer to the top of the
called routine. To invoke a function in assembly (using x86 conventions) requires:

1. saving any caller-save registers (not necessary for us),

2. pushing the arguments onto the stack right-to-left,

3. calling the function,

4. popping the arguments off (or, equivalently, incrementing the stack pointer above the arguments),

5. restoring any saved caller-save registers (not needed for us).

You’ll probably forget to push or pop something, creating an off-by-something error on a stack pointer
that will lead to an exception. You should be able to tell which direction you’re off by looking for values
that are in the wrong place (for example, finding a segment number in the base pointer field).

If you would like to blow your mind, read https://cseweb.ucsd.edu/~hovav/dist/rop.pdf or maybe a
summary http://en.wikipedia.org/wiki/Return-oriented_programming. We use this sort of technique
(point the return address to a function) for good, but it could be powerful evil.

3

https://cseweb.ucsd.edu/~hovav/dist/rop.pdf
http://en.wikipedia.org/wiki/Return-oriented_programming

