	Authentication Overview (NS chapter 9)	
Computer and Network Security CMSC 414 AUTHENTICATION Udaya Shankar shankar@cs.umd.edu	 Authentication Overview (NS chapter 9) Context: Large set of principals attached to an open channel (eg, Internet). Each principal repeatedly attempts to initiate a connection (i.e., session) with a specified principal upon successful connection establishment, exchanges messages closes the connection waits for an arbitrary (but bounded) time Authentication is about ensuring When a principal A assumes it is connected to a principal B, A is indeed exchanging messages with B, and not some attacker C. When principal A assumes confidentiality/integrity of the message exchange, this is indeed the case. Principal can be a human or an executing computer program Programs can use high-quality secrets (eg, from space of 2¹²⁸) Human principals are restricted to low-quality secrets (eg, space of 2³²) and cannot do cryptographic operations. When we say a program principal A assumes it is connected to B, we mean that A's program's variables indicate that A is connected to B. 	
3/27/2013 shankar authentication slide 1	3/27/2013 shankar authentication slide 2	
Typical authentication scenario	Types of Attacks	
<pre>principal computer Internet computer principal A n_A n_B B connection conversation disconnection disconnection establishment: A authenticates B: [B,A,accpt] msg sent by B in response to [A,B,conn] B authenticates A: [A,B,accpt] A [B,A,conn] Simultaneously establish a shared secret (session key) for conversation Conversation: B conversation: B conversation: Conversation: B authenticates A: [A,B,accpt] A [B,A,conn] B authenticates A: [A,B,accpt] [B,A,conn] B authenticates A: [A,B,accpt]</pre>	An authentication protocol must identify the attacks it is supposed to handle • network attacker • end-point attacker • dictionary attack • An authentication mechanism cannot protect against all attacks, eg, • overrun (take over) a human principal • overrun memory while program principal is doing login authentication Attackers can span multiple classes Attackes can sequentially mount attacks of different classes • Eg, record encrypted conversation; much later learn session key	

Types of Attacks (contd)	Types of Attacks (contd)	
 Network-based attacks (roughly in order of increasing difficulty) Sending messages with wrong values in fields: spoofing: C at n_c sends messages with sender id as [A] changing "reject" to "accept" spoofing: C at n_c sends messages with sender addr/id as [n_A,A] Eavesdropping: observing messages in the channel. Easy in WLANs and LANs (because of broadcast nature) Not easy in wired point-to-point links (but doable) tap router ports compromise route computation algorithm Intercepting messages, changing them, resending them. Relatively easy in WLANs and LANs (because of broadcast nature) Not easy in point-to-point (but doable) 	 End-host based attacks (roughly in order of increasing difficulty) Principal C says it is principal A on a computer n_A (eg, public workstation) online dictionary attack Read data on hard disk (or back-up tapes) of n_A or A obtain old keys (encrypted or plaintext) password files, obtain current keys (encrypted or plaintext) password files, offline dictionary attack on encrypted passwords Overrun computer n_A while A is not at n_A while A is at n_A Read data in memory of n_A while A is executing (unlikely) Overrun a (human or program) principal mail client, web browser 	
3/27/2013 shankar authentication slide 5	3/27/2013 shankar authentication slide 6	
 Surrous statuat Types of Attacks (contd) Dictionary attacks (aka password-guessing attacks) Finding a secret by searching through a space of possible secrets Doable only if the space is small enough (given reasonable time/resources) A secret from a small space is said to be low-quality A secret from a large space is said to be high-quality Examples: 128-bit key from a decent random number generator is high-quality Passwords, and keys obtained from them, are low-quality (typically) Online dictionary attack: interacts with authenticator at every guess Offline dictionary attack: interacts with authenticator just once 	 Three types of authentication Password-based authentication Authenticating oneself by showing a secret password to the remote peer (and to the network) Always vulnerable to eavesdropping attack Always vulnerable to online dictionary attack Usually protection: limit frequency of incorrect password entries Address-based authentication authenticating oneself by using a physically-secured terminal/computer Conceptually similar to password-based authentication ?? Cryptography-based authentication authenticating oneself by showing evidence of a secret key to the remote peer (and to the network) but without exposing the secret to the peer (or to the network) Note: secret key can be obtained from a password 	

Password-based authentication

- A authenticates itself by supplying a password.
- Always vulnerable to eavesdropping attack and online dictionary attack

Approach 1:

3/27/2013 shankar

A (passwd pw _A)	n _A	channel	n _B	B (passwd file with [X, pw _x] for each X)
enter [A, B, pw	/ _A]			
	• se	end [n _A ,n _B ,A,B,pw _A]		
			a • r r	check rcvd [A, pw _A] against passwd file natch authenticates A; nsgs from n _A until logout assumed to be from A

- Vulnerable to eavesdropping and to online dictionary attack
 - Defense against latter: limit number of successive failed attempts

Password-based authentication (contd)

Approach 2:

• Like approach 1 except B's password file has entries (X, hash(pwx)) for each X

proach I.	
(passwd pw_A) n_A channel n_B B (passwd file with [X, pw_X] for each X)	A (passwd pw_A) n_A channel n_B B (passwd file with [X, hash(pw_X)] for each X)
enter [A, B, pw _A] • send [n _A ,n _B ,A,B,pw _A] • check rcvd [A, pw _A] against passwd file • match authenticates A; msgs from n _A until logout assumed to be from A Vulnerable to eavesdropping and to online dictionary attack • Defense against latter: limit number of successive failed attempts Vulnerable to exposure of password file (overrun of n _B or B)	 enter [A, B, pw_A] send [n_A,n_B,A,B,pw_A] check hash(rcvd pw_A) against passwd file entry for A match authenticates A Vulnerable to eavesdropping and to on-line dictionary attack (as before) Vulnerable to password file exposure but requires offline dictionary attack Defense 1: store (X, salt, hash(pw_X, salt)) Defense 2: store (X, encrypt_K(pw_X)) where K is high-quality key maintained only in B's memory and not hard disk (i.e., manually entered when B is activated).
7/2013 shankar authentication slide 9	3/27/2013 shankar authentication slide 10
 Password-based authentication (contd) andling situation where A may interact with many servers Store A's password in every server that A may access. Disadvantage: handling changes to password. Disadvantage: All password files need to be protected well. Store A's password in a special authentication node. Server authenticates A by checking A's password with authentication node (and presumably forgetting password after authenticating A). Disadvantage: performance bottleneck. Advantage: single node to protect 	Address-based authentication A uses only a special set of computers A is authenticated by the address (network, link level, etc) of its computer. Valid if Access to special computers is well-guarded Network is protected against spoofing/interception of messages Examples: Unix: os-wide /etc/hosts.equiv file, per-user .rhosts file. VMS: PROXY database Early main-frame machines accessed by dumb terminals. Operator console on many workstations (eg, single-user mode in Linux) Conceptually like password-based authentication except that "password" is now associated with a physical device (eg, network interface card).

 Cryptographic authentication A authenticates itself to B by performing a cryptographic operation on a quantity composed of a part supplied by B and a secret shared by A and B. Because operation is cryptographic, the secret is not disclosed by eavesdropping. Limitations if A is human A can only remember low-quality secret, ie, password. A cannot do cryptographic operations. So A inputs password into computer n_A which converts password to key. Hence vulnerable to overrun of n_A. Transforming password to secret-key-crypto key Obtain key by (say) hashing password (and, for AES, taking specified 128 bits). Not ok for public key crypto, where keys have constraints. Here is an(wacko?) approach to obtain an RSA key: Use password a seed to specified pseudo-random number generator, and choose first two primes generated. 	 Using password to get high-quality secret (eg, public-key-crypto key) from directory service Use password to decrypt a high-quality key kept in a directory service. Let K_A be A's high-quality key. Let K_{Apw} be the low-quality) key obtained from A's password (eg, by hashing) Directory service stores enc(K_A, K_{Apw}) (ie, K_A encrypted by K_{Apw}). Computer n_A gets [A, enc(K_A, K_{Apw})] from directory service, K_{Apw} from A's password, and decrypts to get K_A Is this vulnerable to offline dictionary attack? Guess candidate password, say cpw. Obtain candidate low-quality key cK_{Apw} (e.g., by hashing cpw). Obtain candidate high-quality key cK_A by decrypting enc(K_A, K_{Apw}) with cK_A. But cannot decide whether cK_A is correct because K_A has no structure. (Note: in RSA, encrypt [d], not [d,n] because latter has structure) But it is vulnerable with a bit more work in some cases, eg, If A uses a session key encrypted with K_A, use cK_A to obtain candidate session key, and check if it can decrypt conversation. If A's signature on a document produced using K_A is available, check if cK_A matches the signature.
3/27/2013 shankar authentication slide 13	3/27/2013 shankar authentication slide 14
Protecting against eavesdropping and server passwd file exposure (spfe) Easy with public key crypto • A has private key. • B stores A's public key (so exposing B's database does no damage). • Authentication: • B sends a random value to A • A encrypts using A's private key and sends back • B checks received value using A's public key Handling spfe (but not eavesdropping) with hash/secret-key crypto • B stores hash of A's password • Authentication: • A sends password to B • B compares hash of recieved password with stored hash Handling eavesdropping (but not spfe) with secret-key crypto • A and B share a secret K _{AB} (eg, A's password). • Authentication: • A sends [A,login] to B • B sends random number R to A • A responds with K _{AB} {R} // NOTE: "K _{AB} {R}" short for "enc(R, K _{AB})" Handling both with secret-key crypto • Lamport's hash scheme	Lamport's Hash Scheme (NS Chapter 12)• One-way authentication (B authenticaes A); ie, assumes B is not spoofed.• A stores password.• B stores for A:• n: positive integer, initially say 1000; number of logins remaining• nhpw: n-fold hash of pw; ie, hash ⁿ (pw)A (stores password pw)B (stores (A: n, nhpw))send [A,B,conn]send [A,B,conn]send [A,B,x]if hash(x) = nhpw then A authenticated $n \leftarrow n-1$ $nhpw \leftarrow x$ When n becomes 1, need to reset with new pw and nEnhancement with salt:• Initially: A chooses salt; B stores [A, n, salt, hash ⁿ (pw salt)]• Login: B responds with [n, salt]; A responds with hash ⁿ⁻¹ (pw salt)• To use same pw with many servers: salt = random number server id.

Scaling to network of N principals
 Straightforward approach: Distinct key for every pair of principals. Not scalable: N² storage cost at each node N cost for adding new principal Use hierarchy of trusted intermediaries KDC (key distribution center) in secret-key crypto CA (certification authority) in public-key crypto
3/27/2013 shankar authentication slide 18
 KDC: single-domain case (cont) Advantages of KDC: Adding new principal: one interaction between principal and KDC Revocation of principal: deactivate principal's master key at KDC Disadvantages of KDC: KDC can impersonate anyone to anyone. KDC compromise makes the whole network vulnerable. KDC failure means no new sessions can be started. KDC can be a performance bottleneck. Last two can be alleviate by having KDC replicas, but need to protect all replicas when a principal's master key is changed, need to sync replicas

KDCs for multi-domain case

Case 1: A in domain (with KDC X) wants to talk to B in domain (with KDC Y), and X and Y share a key, say K_{X-Y} .

and X and Y share a key, A X (KDC of D ₁) send [A,X, conn to B in D ₂] generate session key generate tkt _{A-Y} = [K _X , send [X,A, K _A {A, Y, K send [A,Y, conn to B in D ₂ , tkt _{A-Y}] send [A,B, K _{A-B} {A, B, conn}, tkt _{A-f}	Y (KDC of D2)BY (KDC of D2)BY (A, Y, K_{A-Y})Y (A, Y, K_{A-Y})Y (A, Y, K_{A-Y})Igenerate session key K_{A-B}generate tkt_{A-B} = [K_{B-Y}{A, B, K_{A-B}}]send [Y,A, K_{A-Y}{A, B, K_{A-B}}, tkt_{A-B}]	 In a large internetwork with many dom unlikely that every two domains will hat But if there is a sequence of domains D for every i, KDC of D_i and KDC of D_{i+1} hat then A of D₁ can securely obtain a sessi Let X_i be the KDC of D_i A talks to X₁ and gets [session-key, ti A talks to X₂ and gets [session-key, ti and so on until A talks to X_N and gets [session-key, ti How does A get the sequence X₁, X₂,, Static hierarchy with additional links Good if A also passes along the seque B can see whether it trusts every KDG 	ave a shared key. D ₁ , D ₂ ,, D _N such that ave a shared key ion key to talk to B of D _N : ticket _{A-X2}] to talk to X ₂ ticket _{A-X3}] to talk to X ₃ ticket _{A-B}] to talk to B ., X _N . s (perhaps cached) for efficiency. ence of domains to be traversed, so that
(A)	single-domain case CA is a host but need not be networked; generates certificates (signed public keys) and CRLs (certificate revocations) Online directory server (DS) periodically gets certificates and CRLs from CA DS serves certificates and CRLs to anyone (online steps 3, 4) Every principal X in domain - generates a public-key pair - gets its public key signed by CA (certificate) - gets CA's public key (all off-line) When A wants to talk to B, A shows B its certificate and CRL B shows similar documents to A (online steps 1, 2)	 CA: single-doma Each principal has a public-key pair. Remembers its own private key and CA CA generates certificate (signed public) [(serial no, X, pubkey_x, expdate), privkey_{CA}{(serial no, X, pubkey_x, exp) Certificates are publicly disseminated (A authenticates B as follows (ignoring c) Obtain certificate for B from anywhet If certificate not expired and signatu then A has B's public key. A sends challenge and expects challed after which A and B settle on a session CA does not need to be online or net CA crash does not stop new sessions Certificates need not be secured (expected and serve false public keys and thus impected and serves false public keys and the serves false public keys and the serves false public keys and the serves false public keys and t	A's public key. c key) for each principal X: (e.g., at directory services). (e.g., at directory services). certificate revocation): ere, typically from B. ure verifies (using CA's public key), enge encrypted by B's private key, on key. tworked, so can be more secure. from starting until expiration date. scept for deletion of certificates). nversations (unlike KDC). But it can

Case 2: KDCs chain from source to destination

CA: handling revocation	CAs for multi-domain case
 Certificate revocation is more complex than in KDC. CA periodically (eg, hourly) issues CRL (Certificate Revocation List) signed {issue time, list of certificates revoked at issue time} 	Case 1: A in domain with CA X wants to talk to B in domain with CA Y, and X and Y have certificates for each other.
 A authenticates B (in presence of CRL) by obtaining (typically from B) a certificate for B that has not expired (as above), and a CRL that does not have B and was issued sufficiently recently, eg, at the start of the current period. A sends a challenge and awaits challenge encrypted by B's private key, after which A and B settle on a session key. X.509 format for certificate and CRL Certificate = [user name, user public key, expiration time, serial number, CA's signature on entire contents of certificate] CRL = [issue time, list of serial numers of unexpired revoked certificates] 	A X directory service Y directory service B • Gets from X's directory service a certificate for Y signed by X; A can verify certificate because A has X's public key; so A now has Y's public key. • • Gets from Y's directory service a certificate for B signed by Y; A can verify certificate because A now has Y's public key; so A now has B's public key • • A can now send messges to B encrypted with B's public key •
3/27/2013 shankar authentication slide 25	3/27/2013 shankar authentication slide 26
CAs for multi-domain case (contd)	Session keys
 Case 2: CA chain from source to destination In a large internetwork with many domains, unlikely that the CAs of every two domains will have a certificate for each other. But if there is a sequence of domains D₁, D₂,, D_N such that for every i, directory services of D_i and D_{i+1} have certificates for each other signed by their CA's then A of D₁ can securely obtain the public key of B of D₂ by iterating: Let X_i be the CA of D_i A gets certificate for X₂ signed by X₁ A gets certificate for X₃ signed by X₂ and so on until A gets certificate for X_N signed by X_{N-1} A gets certificate for B signed by X_N 	 Session keys Protect the data exchange after a connection is established Should be different from long-term shared key used for authentication so long-term key does not "wear out" (offline crypto attack) Should be unique for each session If compromised, only affects data sent in that session. Can be given to relatively untrusted software Session key should be forgotten after session ends Delegation or authentication forwarding If A, when logged into B, wants to access C (eg, printer), then B needs to authenticate itself as A to C. A can log into C explicitly (too much trouble) A can give B its password (too risky) A can give B a ticket (called delegation or authentication forwarding) with types of access allowed by B (eg, A's print queue) expiry time (typically short)

Establishing session key with secret-key authentication (NS Ch 12)	Establishing session key with public-key authentication (NS Ch 12)	
 Consider A and B with shared key K_{AB}. During authentication, A and B have exchanged challenges, eg: R₁ (in one-way auth) R₁, R₂ (in two-way auth) Session key can be R₁ and/or R₂ encrypted by a specfied function g of K_{AB}, eg, g(K_{AB})){R₁} or (g(K_{AB})){R₁⊕R₂} g(K_{AB}) is K_{AB}+1, K_{AB}-1, -K_{AB}, etc Attack: if C obtains K_{AB} later, C can decrypt (recorded) conversation. Session key should not be g(R₁) or g(R₁,R₂) encrypted by K_{AB}, eg, K_{AB}{g(R₁)}. Otherwise, later C can impersonate B, send g(R₁) as a challenge to A, 	 A chooses random R as session key and sends {R}_B to B. Attack: C spoofs A (after authentication) and choose its own R₁ as session-key. So important to have R be part of authentication. A chooses R as session key and sends [{R}_B]_A Here C cannot inject spurious R₁ as session-key Attack: If C later obtains B's private key, C can extract R and decrypt conversation. A picks R₁, B picks R₂, they exchange {R₁}_B and {R₂}_A, set R₁⊕R₂as session key. Attack: Here C has to overrun both A and B to obtain session key. 	
 Send g(R₁) as a chattenge to A, get back K_{AB}{g(R₁)}, and decrypt earlier conversation between A and B. Defense: include sender id in challenges. Session key can obtained by Diffie-Hellman after/during authentication (the Diffie-Hellman exchange messages are encrypted by K_{AB}). Then even if C obtains K_{AB} later, it still cannot decrypt conversation. 	 Session key can be obtained by Diffie-Hellman after/during authentication (the Diffie-Hellman exchange messages are encrypted or signed). Then even if C overruns A and B, it still cannot decrypt conversation. 	
3/27/2013 shankar authentication slide 29	3/27/2013 shankar authentication slide 30	
Authentication of People (KPS 10)	Authentication of People (contd)	
 Constraints when authenticating human: Can only remember low-quality secret (eg, 10 letter "pronounceable" password). 	Good password, ie, random 128-bit, not feasible20 random digits	
Cannot perform cryptographic operations.	 11 random chars (from 0-9, a-z, A-Z, couple of punctuation marks) Computer-generated random pronounceable password Case insensitive: 4.5 bits of randomness per character 	
Human authentication based on one or more of	 Every third character a vowel, 6 vowels: 2.5 bits of randomness per vowel 	
What you know: passwordWhat you have: authentication tokens, eg,	Requires 16 characters	
physical keys, ATM card	 Human-generated passwords About 2 bits of randomness per character 	
 What you are: biometric features, eg, fingerprint, voice recognition, retina scan 	 So require about 32 character password If password is too good, users write it down 	
Password limitationsEavesdropping	Workable approach	
 Online dictionary attack defense: limit number of attempts after which user must talk to admin problem: vandal can easily lock up accounts (denial-of-service) defense: limit speed of attempts Exposure of password file on server 	 "pass-phrase" with intentional misspelling, punctuation marks, symbols (eg, \$ for \$), odd capitalization, etc. 	
 Doing offline dictionary attack if password file is hashed. Exposing passwords in email, script files, etc. 		

Authentication of People (contd)	Authentication of People (contd)	
 Login Trojan Horse to capture passwords Leave program running on public terminal that imitates login prompt gets password from naive user and attempts to exit inconspicuously eg, exit with "login failed" message better yet: runs virtual OS for duration of user session Defenses by OS/hardware: Have special prompt symbol at any input field by non-login program Allow only login screen to fill entire display Non-mappable key to interrupt any running program eg, alt-ctrl-del (but often OS allows remapping of this) Display number of unsuccessful login attempts since last successful login. Any defense fails given a sufficiently naive user Passwords can also be used for non-login purposes (protecting individual files) 	 Authentication tokens: physical device that a person carries around: Magnetic strip cards Credit cards, debit cards, id cards, money card, etc Can hold high-quality secret and other data (usually read-only) If card has picture or signature, then also serves as biometric check by human. Smart card (embedded CPU and memory) can hold high-quality secret memory can be password protected can do cryptographic operations (challenge/response) Advantages, disadvantages, features Tokens can be lost or stolen (unless it is attached/embedded in user) So usually needs to be augmented with password When token is lost, need an override that is usually not much less convenient than the override for "I forgot my password" Requires custom hardware (key slot, card reader, etc) on every access device exception is cryptographic calculator (or readerless smart card) 	
3/27/2013 shankar authentication slide 33	3/27/2013 shankar authentication slide 34	
Authentication of People (contd)	Authentication of People (contd)	
 Cryptographic calculator (or readerless smart card) Smart card that <u>does not require special hardware</u>. Has display and keyboard for human interaction User enters password to unlock device User enters challenge into device and reads cryptographic response Time-based alternative User enters password to unlock device Card displays encryption of current time, which user enters as authentication information. Authenticating computer checks that result is valid Needs to check for all possible current times within allowed clock drift. Advantages: Saves half the typing Works with password "form-factor" authentication protocols 	 Biometric authentication devices Retinal scanner scans blood vessels in back of your eye expensive and "psychologically threatening" (look into laser device) Iris scanner Less intrusive than retinal scanner (can use camera several feet away). Fingerprint reader devices available but automation has not been successful for many years Face recognition not intrusive but not very accurate; susceptible to false negatives Handprint readers More false positives than fingerprint readers, but cheaper/fewer problems Voiceprints Cheap and can be as accurate as fingerprinting Can be defeated with tape recording False negatives (voice change due to illness) Keystroke timing False negatives (injury) Signature Not accurate based only on static signature Accurate if also based on timing info 	

Security Handshake Pitfalls (NS chapter 11)

Assume A initiates connection to B.

Can classify the authentication protocols along following features:

- One-way authentication:
 - B authenticates A (eg, login) or
 - A authenticates B (server B with public key, client A w/o public key)
- Mutual-authentication:
 - B authenticates A and A authenticates B
- Secret-key crypto vs Public-key crypto

One-Way Authentication

Solution 1.1: one-way auth, secret-key (K_{AB})

Α	В
send [A,B, conn]	
	send challenge [B,A,R]
send response [A,B, f{K _{AB} , R}]	

Note

- Response $f{K_{AB},R}$ is a keyed-hash of R or R encrypted with K_{AB}
- Challenge R must be <u>new</u> (a **nonce**) so that f{K_{AB},R} has not been sent before (by A or by B) and hence has not been seen by attacker.
- If challenge R is obtained from a clock or a counter and if B may have received past msgs m to which it sent $f{K_{AB},m}$ responses (eg, another authentication protocol with A using K_{AB}) then
 - B must ensure that challenge R is not among these msgs, or
 - response should also indicate the sender (eg, f{K_{AB},A,R})
- These problems are not there if R is obtained from a random number generator.

Question: Would these attacks, if successful, yield session key?

tion slide 37	3/27/2013 shankar

authentica

authentication slide 38

Some vulnerabilities:

3/27/2013 shankar

- If $K_{\mbox{\scriptsize AB}}$ is derived from password, an eavesdropper can do offline dictionary attack.
- If attacker gets B's password file, it can impersonate A
- Protecting password file is harder if B is replicated or A uses same password on different servers.

Solution 1.2: one-way auth, secret-key (K_{AB})

Α	В
send [A, B, conn]	
	send challenge [B,A, K _{AB} {R}]
send [A,B, R]	

Note

- Requires challenge to be reversable (ie, encryption, not keyed-hash).
- R should not only be a nonce but unpredictable (ie, randomly generated).
 - Eg, if R is obtained from a counter, an attacker can impersonate A because it would know that the next challenge generated by B is R+1.

Vulnerabilities: as in solution 1.1 plus the following:

- If K_{AB} derived from password and R has structure, then
 - a spoofer (w/o eavesdropping) can get K_{AB}{R} and do offline dictionary attack.
 Note: R is randomly generated and need not have structure.

Feature

If A and B have clocks that are within D seconds of each other and R has a timestamp (in addition to the random number), then this also authenticates B to A in the following sense:

- A assured that K_{AB} {R} message was originally sent by B within last D seconds
- A not assured that $K_{AB}\{R\}$ was sent in response to its [A,B,conn] msg
 - Can be fixed by including a nonce in [A,B,conn] and in R.

Solution 1.3: one-way auth, secret-key (K_{AB}), timestamp-based

Assuming A and B have clocks that are within D seconds of each other.

A send [A,B, conn, K _{AB} {ts}] Note • Single transmission suffices, no • B does not need to maintain sta Vulnerable • Replay attack within clock skew • defense: B remembers ts sent	te per active connection	 send [A,B, conn] send [A,B, [R]_A] // [R]_A is R encrypted with A's private Note B's pw file contains A's public key; ca Need to ensure that R has distinct str messages 	an be readable (but not modifiable)
 Replay attack if K_{AB} used with n defense: include server id alc 	nultiple servers		
	-hash, B has much more work y possible value in D and compare. hencrypted ts in conn msg. (Is this as secure?)		
3/27/2013 shankar	authentication slide 41	3/27/2013 shankar	authentication slide 42

Solution 1.5: one-way auth, public-key (encrypted challenge, open response)

Α	В
send [A,B, conn]	
	send challenge [B,A, $\{R\}_A$]
	$(\{R\}_A \text{ is } R \text{ encrypted with } A's \text{ public key})$
send [A,B, R]	

Note

- B's pw file contains A's public key; can be readable (but not modifiable)
- Need to ensure that R has distinct structure that is not used for sending confidential messages to A
- Why is ok to send response R in the open, instead of say $\{R\}_{B}$

Solution 1.4: one-way auth, public-key (open challenge, signed response)

Α	В
send [A,B, conn]	
	send challenge [B,A, R]
send $[A,B, [R]_A]$	
// $[R]_A$ is R encrypted with A's private key	

Mutual (two-way) Authentication (A initiates connection to B)

Solution 2.1: two-way auth, secret key (K_{AB})

	Α	В
1	send [A,B, conn]	
2		send challenge $[B,A, R_1]$
3	send response [A,B, f{K _{AB} , R ₁ }]	
4	send challenge [A,B, R ₂]	
5		send response [B,A, f{K _{AB} , R ₂ }]

Note

- Consists of two 2-way handshakes
- Messages 3 and 4 can be combined into one message
- Vulnerable to B's passwd file being read
- If K_{AB} obtained from passwd, vulnerable to offline dictionary attack
 - by attacker who can eavesdrop
 - by attacker who can impersonate B
 - Impersonating server B is harder than impersonating client A (assuming server is always connected whereas client is momentary)
- Interchanging order of R₁ and R₂ introduces further vulnerability (below)

Solution 2.2: solution 2.1 with R_1 - R_2 order interchanged

Α	В		C	В
1 send [A,B, conn, R ₂]			1 send [A,B, conn, R_2]	
2	send [B,A, R_1 , f{K _{AB} , R_2 }]		2	send [B,A, R_1 , f{K _{AB} , R_2 }]
3 send [A,B, $f\{K_{AB}, R_1\}$]			1' send [A,B, conn, R ₁]	
Note			2'	send [B,A, S ₁ , f{K _{AB} ,R ₁ }]
 Reduces solution 2.1 to one 	a 2 way bandshaka			
	•		3 send [A,B, $f\{K_{AB}, R_1\}$]	
 As usual, vulnerable to B's 			C has success	sfully impersonated A to B
 Usual offline dictionary att and K_{AB} obtained from pass 			Possible defenses:	
•	n do offline dictionary attack			accept it (difficult with replicated servers)
(without eavesdropping)	in do offine dictionary attack			nder of challenge (but then offline dictionary
(menode caresa opping)			attack)	
			Use different keys for each di	
			 K_{AB} (for A → B) and K_{BA} (K_{BA} can be predictably relation 	
			[eg, K_{AB} +1, K_{AB} -1, - K_{AB} , or K	
			Thumb-rule: Initiator should b	pe first to authenticate itself
3/27/2013 shankar	au	thentication slide 45	3/27/2013 shankar	authentication slide 4
Solution 2.3: two-way auth, A 1 send [A,B, conn, f(K _{AB} , ts)	B)]		Solution 2.4: two-way auth, pu A 1 send [A,B, conn, {R ₂ } _B] 2	ublic keys B send [B,A, R ₂ , {R ₁ }]
2	send [B,A, f(K _{AB} , ts +1)]		3 send [A,B, R ₁]	
Note			Note	
 One 2-way handshake suffi 				not vulnerable to overruning B.
 Msg 1 assures B that msg w 	as generated by A and sent within cl	ock skew	 Is it necessary to encrypt resp 	
	tamp values ts and ts+1			vate key and B's public key (already discussed A's private key encrypted by A's pwd gned by A's private key
			Solution 2.5: two-way auth, pu	ublic keys, variant of solution 2.4
			Δ	В
			1 send [A, B, conn, R_2]	
			2 3 send [A,B, [R ₁] _A]	send [B,A, $[R_2]_B$, R_1]

Solution 2.2 vulnerable to reflection attack

Extensions for dyna	amic contex	Authenticat	ion with KDC mediator
Dynamic context: • users join and leave domains • users do not share pre-assigned keys • users rely on KDCs / CAs / directory service • users change passwords • replicated KDCs • etc New attacks become relevant: • attacker with an <u>old</u> password of a user (tr • others? New situations have to be handled: • user A presents user B a ticket issued unde • user A contacts a KDC that still has an old • etc	ying to impersonate user) r old password of B	send [A,B, conn, tkt _{AB}] < A and B do mutual (exa send [A,B, R ₂ , K _{AB} {R ₁ }] < A and B use K _{AB} (or derivative Note: • Even if C is spoofing A, C cannot	KDC needed (or is that already done above)?
3/27/2013 shankar	authentication slide 49	3/27/2013 shankar	authentication slide 50
Needham-Schroed	er Protocol	Needhar	n-Schroeder (cont)
Below N_1 , N_2 , N_3 are nonces.AKDC1send [A,KDC, conn B, N_1]2generate session key K generate tkt_{AB} = [K_B{A}, send [KDC,A, K_A{N_1, B,} 33send [A,B, tkt_{AB}, K_{AB}{N_2}]455send [A,B, K_{AB}{N_3-1}] < use K_{AB} (or derivative, eg, (K_{AB}+1){N_1})	B, K _{AB} }] K _{AB} , tkt _{AB} }] send [B,A, K _{AB} {N ₂ -1, N ₃ }]	 C records above exchange (ref C steals K_B; B changes key C decrypts tkt_{AB} and get K_{AB} C waits until A initiates connect C intercepts A's new msg 1, ref A responds with new msg 2 (= C intercepts, responds with K_A 	bassword of B can impersonate B to A: fer to them as <u>old</u> msgs 1, 2, 3, 4, 5) ction to B esponds with old msg 2 (= K _A {B, K _{AB} , tkt _{AB} }) [tkt _{AB} , K _{AB} {new N ₂ }] to B _B {new N ₂ - 1} (C knows K _{AB}) res that C cannot replay old KDC reply to C to talk to B)

Needham-Schroeder (cont)

- If EBC is used (instead of CBC) and each nonce fits in an encryption block, then C can impersonate A to B with reflection attack
 - C eavesdrops and gets msgs 3 and 4
 - Later C replays msg 3
 - B replies with $K_{AB}\{N_2$ 1, $N_4\}$ where $N_4 \neq N_3$
 - C needs to get K_{AB} {N₄ 1}, which it does as follows:
 - C replays msg 3 with $K_{AB}\{N_4\}$ replacing $K_{AB}\{N_2\}$ and gets $K_{AB}\{N_4-1\}$ from B
 - Replacing EBC with CBC makes attack not possible (but then there is no need for N₃-1; can just use N₃)

Needham-Schroeder (cont)

 $Vulnerability \ if \ N_1 \ sequential$

1. Attacker C overhears N_1 = $n\;$ during normal session between A and B

	Α	KDC	В
1	send [A,KDC, conn B, $N_1 =$	n]	
2		generate session generate ticket send [KDC,A, K _A {	$T_{AB} = [K_{B}\{A, B, K_{AB}\}]$
3 4 5	3 send [A,B, T _{AB} , K _{AB} {N ₂ }] 4		send [B,A, K _{AB} {N ₂ -1, N ₃ }]
	<> A and B exchange data, close>		

3/27/2013 shankar	authentication slide 53	3/27/2013 shankar	authentication slide 54

Needham-Schroeder vulnerability if $N_{\rm 1}$ sequential (cont)

2. Attacker C learns $K_B,$ spoofs A to KDC with N_1 = n+1 as follows

attacker C	KDC	В
6 send [A,KDC, conn B, $N_1 = n+1$]		
	generate session key J_{AB} generate ticket $S_{AB} = [K_B\{A, B, J_A $ send [KDC, A, $K_A\{N_1, B, J_{AB}, S_{AB}\}]$	

3. C steals $K_{\scriptscriptstyle B}\!.$ B changes its key.

C waits for A to connect to B, then impersonates KDC and then ${\rm B}$

	Α	attacker C	В
8	send [A,KDC, conn B, $N_1 =$	n+1] (intercepted by C)	
9		send [KDC, A, K_A {N ₁ , B, J_{AB} , S_{AB} }]	(replay msg 7)
10	send [A,B, S_{AB} , J_{AB} {L ₂ }]	(intercepted by C)	
		C decrypts S_{AB} (encrypted using (old) $K_B)$ and obtains J_{AB}	
	< C can now complete the authentication and impersonate B>		

Needham-Schroeder vulnerable to old password exposure

If C gets A's master key (say $K_{A})$ and A changes it (to say $J_{A}),$ C can still impersonate A to B (because B never talks to KDC).

	Α	KDC	В
1	send [A,KDC, B, N ₁]		
2		generate session key K_{AB} generate t $kt_{AB} = [K_B\{A, B $ send [KDC,A, $K_A\{N_1, B, J_A\}$, K _{AB} }]
3	send [A,B, tkt _{AB} , K_{AB} {N	2}]	
4			send [B,A, K _{AB} {N ₂ -1, N ₃ }]
5	send [A,B, K _{AB} {N ₃ -1}]		

C records above. Then C obtains $K_A.$ Then A changes master key to $J_A \; (\neq K_A).$

C	В
send [A,B, tkt _{AB} , $K_{AB}{M_2}$]	
	send [B,A, K _{AB} {M ₂ -1, M ₃ }]
send [A,B, $K_{AB}{M_3-1}]$	

3/27/2013 shankar

Needham-Schroeder vulnerable to old password exposure (cont)

Fix:

B sends a nonce encrypted by K_B in response to A's connection request, and looks for the nonce in the ticket.

Several ways to include such a B-KDC interaction:

Expanded Needham-Schroeder: requires two additional messages

	A	KDC	В		
1a	1a send [A,B, conn]				
1b			send [B,A, $K_B\{N_B\}$]		
1	send [A,KDC, c	$conn B, N_1, K_B\{N_B\}$	8]		
2	generate session key K_{AB} generate t $kt_{AB} = [K_B\{A, B, K_{AB}, N_B\}]$ 2 send [KDC, A, $K_A\{N_1, B, K_{AB}, tkt_{AB}\}]$				
3	send [A,B, tkt _A	_{.в} , К _{ав} {N ₂ }]			
4			send [B,A, K_{AB} {N ₂ -1, N ₃ }] (as before)		
5	send [A,B, K _{AB} {	[N ₃ -1}] (as before	re)		
	< A and	d B establish data	a session key (eg, (K_{AB}+1){N_2 \oplus N_3} ~>		
57277	2013 shankar		authentication slide 58		
Otway-Rees nonce N_c must be unpredictable, o/w C can impersonate B to A. Suppose N_c is sequential and equals 007 in one attempt. C does following:					
	C KD	00	В		
1	send [A,B, N _C =0	send [A,B, N _c =008, grbge]			
2			send [B,KDC, grbge, K _B {N _B , N _C =008, A,B}] (C records this)		
	KD	C rejects messag			
[Later A attempts to connect to B				

	Α	KDC	C		
3	3 send [A,B, N _c =008, K _A {N _A ,N _c =008,A,B}]				
4	C intercepts this msg 3				
-			send [B,KDC, msg 3 K_A field, msg 2 K_B field]		
5	accepts msg 4 (since its N _c 's match)				
5		send [KDC, B, N _C , K_A {N _A , K_{AB} }, K_B {N _B , K_{AB} }]			
	C intercepts msg 5				
	send [B,A, K _A {N _A , K _{AB} }]				
6	send [A,B, K _{AB} {"hello" }]				

At this point C has impersonated B to A.

If A uses a data session key obtained from K_{AB}, C won't succeed (but o/w C can impersonate B to A during the data exchange).

Nonce types:

Α

- Large random number: best nonce
 - crypto operations are the best way to generate them

В

- Timestamp: not as good
 - clocks must have adequate synchronization and resolution
 - must recover from crashes
- Sequence numbers

send [A,B, conn]

3/27/2013 shankar

requires non-volatile storage

Example 1: using seq number nonce when unpredictable nonce is needed

Example 2: using sequential nonce when unpredictable nonce is needed

Α	В
send [A, B, conn]	
	send [B,A, R ₁]
send [A,B, K_{AB} {R ₁ }]	

C lies in wait for A to initiate to B

- When A initiates to B. C intercepts and sends challenge R_1+1 to A and gets $K_{AB}\{R_1+1\}$.
- Then C initiates connection to B impersonating A.

• B sends challenge R₁+1, for which C now has the correct response. **Worse than man-in-middle:** A does not have to be active for C to do attack.

send [A,B, R ₁]	send challenge [B,A, K _{AB} {R ₁ }]	Example 3: where sequence number nonce is adequate A sends (A,B, conn);
If R ₁ is sequential, C can impersonate A to B as follows		B sends challenge K_{AB} {R} A sends response $(K_{AB}+1)$ {R}.
C	В	
send [A, B, conn] send [A,B, R ₁ +1]	send [B,A, K_{AB} {R ₂ }] where R ₂ =R ₁ +1	

3/27/2013 shankar

Strong Password Protocols (NS chapter12)

- Basic strong password protocols (EKE, SPEKE, PDM)
 - Use Diffie-Hellman
 - Human A with password achieves high-quality authentication with B inspite of eavesdropper
 - No protection against reading of B's db
- Augmented strong password protocols (EKE, SPEKE, PDM)
 - Same as basic protocols except also provide low-quality protection against reading of B's db
- Can be used by human A to obtain a high-quality key (including private key)

EKE basic, SPEKE basic, PDM basic

- Protocols use Diffie-Hellman (DH)
- Mutual authentication
- Strong key protection against eavesdropping
- No protection against attacker reading B's db:
 - attacker gets the key obtained from A's password (no need for offline dictionary attack)

authentication slide 61

authentication slide 62

EKE basic

- DH encrypted with password derived key to share high-quality key
- Use shared high-quality key to do two-way authentication
- Strong protection against eavesdropping; none against B db reading

	inst eavesdropping, none against b ub reac	1115	 g^a mod p is less than p 		
A has password pw B has (A,W) where W = hash(pw)		pw)	• If encryption block size exceeds $\lceil \log_2 p \rceil$, extra bits must have random pad.		
public DH parameters: g and p			 Require p to be slightly more than a power of 2. If p is slightly less than a power of 2, then g^a mod p has structure: 		
choose rn a					
T _A ←g ^a mod p			 Msb = 1 implies most of the bits to 		
send [A, B, W $\{T_A\}$]			 Each incorrect candidate pw has 5 		
	choose rn b		 Can quickly narrow down to spa 		
	T _B ←g ^b mod p		Is this really a EKE issue, rather than	-	
	choose challenge C ₁				
	send [B, A, W{ T_B, C_1 }]				
	$K_{B} \leftarrow (T_{A})^{b} mod-p$				
$K_A \leftarrow (T_B)^a \mod p$					
generate challenge C ₂					
send [A,B, $K_A{C_1,C_2}$]					
	send [B,A, K{C ₂ }]				
A and B i	now share strong key $K_A = K_B = g^{ab} \mod p$				
3/27/2013 shankar	aut	nentication slide 65	3/27/2013 shankar	authentication slide 66	
	SPEKE basic		PDA	A basic	
Same as EKE except tha	t W takes the place of g.		• Like EKE but g=2 and prime p is obta	ined from password ($p = f_{p}(pw)$)	
Α	В				
stores password pw	stores (A,W) where W=hash(pw)		• To defend against offline dictionary,	require	
-	public p (prime)		 p to be a safe prime, i.e., (p-1)/2 	is also a prime	
choose rn a			• p mod 24 = 11		
$T_A \leftarrow W^a \mod p$			• etc		
send [A, B, T_A]					
	choose rn b				
	$T_{B} \leftarrow W^{b} \mod p$				
	send [B, A, T_B]				
	$K_B \leftarrow (T_A)^b \mod p$				
$K_A \leftarrow (T_B)^a \text{ mod-p}$					

A and B now share strong key $K_A = K_B = W^{ab} \mod p$

<-----> two-way authentication using shared key K ----->

Note: W must be perfect square mod-p, o/w W^a mod p/W^b mod p have structure

- Otherwise, W^a mod p (or W^b mod p) may not be a perfect square
- Eliminates 50% of candidate passwords.

But not as bad as EKE because this pruning occurs only once.

EKE basic (cont)

To defend against offline dictionary attack, need to ensure that

 $g^a \mod p$ (and $g^b \mod p$) has no structure:

- nst offline dictionary, require
 - e prime, i.e., (p-1)/2 is also a prime
- 1

 EKE augmented, SPEKE augmented, PDM augmented, SRP Mutual authentication Strong-key protection against eavesdropping Weak-key protection against attacker reading B's db: attacker can get A's pw by offline dictionary attack EKE augmented is described next; others are similar. 	EKE augmented• Public DH parameters g and p• A has password pw• two keys, W and W', obtained from pw (eg, using different hashes)• B has [A: W', $T_A' (= g^W \mod -p)$] (so W' is open but not W)• A and B do DH encrypted by W' to establish session key $g^{a\cdot b} \mod -p$:• A: random a; $T_A = g^a \mod -p$; $W'{T_A}$ to B• B: random b; $T_B = g^b \mod -p$; $W'{T_B}$ to A• $K_A = (T_B)^a \mod -p$ • $K_B = (T_A)^b \mod -p$	
	• A and B also independently generate DH key $g^{W \cdot b}$ mod-p for authentication: • A: $K_A' \leftarrow (T_B)^W \text{ mod-p}$ • B: $K_B' \leftarrow (T_A')^b \text{ mod-p}$	
3/27/2013 shankar authentication slide 69	3/27/2013 shankar authentication slide 70	
$\begin{array}{ c } \hline EKE \ augmented \ (cont) \\ \hline A \ \ has \ pw, W, W' & & & & & & & & & & & & & & & & & & &$	Obtaining credential (eg, private key) from network Earlier: directory service has privKey _A encrypted by key from A's password Can also be solved using strong password protocols EKE-based protocol for obtaining credential: Public DH parameters g and p A stores password pw W and W' are two keys obtained from password B stores (A, W, Y), where Y = W'{private key of A} A B Choose rn a Compute W = hash(pw) Send [A,B, W{g ^a mod p }] Compute g ^{ab} mod-p decrypt (g ^{ab} mod p){Y} to get private key	
3/27/2013 shankar authentication slide 71	3/27/2013 shankar authentication slide 72	

 More on authentication (rt comm sec) (NS chapter 16) Long-term secret of a principal: Master key or private half of a public key pair. Key escrow: Principal's long-term secret held by an escrow agent (eg, law enforcement). Principal usually has separate public key pairs for encryption and for signing. Signature key usually not escrowed. (o/w principal can deny a signed message) Perfect forward security (PFS) A session has PFS if an attacker who eavesdrops and later learns long-term secrets of participants still cannot obtain session key. Escrow-foilage A session has escrow-foilage if escrow agent cannot obtain session key by eavesdropping. Of course, escrow agent can always impersonate participant or do man-in-middle attack. 	$\begin{array}{l lllllllllllllllllllllllllllllllllll$
3/27/2013 shankar authentication slide 73	3/27/2013 shankar authentication slide 74
 Protection against denial-of-service attack Typically, when a server receives a (potential) connection request, it starts to maintain state for that client (eg, client id, challenge). An attacker can overwhelm such a server by flooding it with connection requests. Solution: server asks potential client do some work before storing state for the client. The work request is called a stateless cookie. (Not to be confused with web browser cookies.) 	A B (has secret S, not shared with anybody)send [A, B, conn]receive msg $c \leftarrow hash(A's ip address, S) // c: stateless cookiesend [B, A, c]forget creceive messagesend [A, B, conn, c]receive messageif c \neq hash(A's ip addr, S) then abortelse continue with authentication handshake• The above cookie just required A to send it back.• A more severe cookie c: random string to which the client has to return [x, c],where x is a n-bit number that hashes to c• n can be varied to inflict more/less work.$

End-point id hiding

Hide the ids of the communicating principals from eavesdroppers, spoofers, etc. Below, A and B are principals, and n_A and n_B are their respective Internet ids.

A (DH params g, p; pub sign key of B)	B (DH params g, p; pub sign key of A)	First session (compute DH key)	
generate a		A (DH params g, p; pub sign key of B)	B (DH params g, p; pub sign key of A)
$T_A \leftarrow g^a \mod p$		generate a	- (paramo 5, p, pap sign (6) si /()
send $[n_A, n_B, T_A]$		$T_A \leftarrow g^a \mod p$	
	receive msg	send [A, B, $[T_A]_A$]	
	generate b		receive msg
	$T_B \leftarrow g^b \mod p$		generate b, N_1
	$K_B \leftarrow (T_A)^b \mod p$ // session key		$T_B \leftarrow g^b \mod p$
	send $[n_B, n_A, T_B]$		$K_B \leftarrow (T_A)^b \mod p$ // DH key
receive message			send $[B, A, [T_B]_B, N_1]$
$K_A \leftarrow (T_B)^a \mod p$ // session key			session key $S_{B1} \leftarrow hash(N_1, K_B)$
send $[n_A, n_B, K_A \{ A, B, [T_A]_A \}]$		receive message	
	receive message	$K_A \leftarrow (T_B)^a \mod p$ // DH key	
	send $[n_B, n_A, K_B\{B, A, [T_B]_B\}]$	session key $S_{A1} \leftarrow hash(N_1, K_B)$	
Eavesdropper cannot see end-point id	Is (A and B)	< session key	S _{A1} = S _{B1} >
 Spoofer of B (more precisely, of n_B) call 			session
 Same can be done with secret key, sa 			T_A , K_A and T_B , K_B
• use L{T _A } and L{T _B } instead of $[T_A]_A$			· , , · , ·
3/27/2013 shankar	authentication slide 77	3/27/2013 shankar	authentication slide 78
Reusing DH key ac	cross sessions (cont)	Plausible	e deniability
Later session (reusing DH key)			
A (has T_A , T_B , K_A from before)	B (has T_A , T_B , K_B from before)	 Principal A has plausible deniability i participated in the session (even tho other in the session). 	in a session if nobody can prove that A ugh A and B may have authenticated each
start new session send [A, B, $[T_A]_A$] // reuse T_A		 Plausible deniability comes for free cook up the entire session) 	with secret key (any one participant can
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 Not possible with public key unless l key rather than signature public key; 	key is escrowed (eg, use encryption public).
receive message			
T_{B} has not changed, so reuse T_{A} and K_{A}			
session key $S_{A2} \leftarrow hash(N_2, K_A)$		Negotiating c	rypto parameters
<> session key S _{A2} = S _{B2} > close session		 In A-B session initiation, A sends crypaccepted. 	oto options and B responds with crypto
• Above, B authenticates A but not vice versa (ie, attacker can replay B msgs).		 Having crypto parameters negotiated allows same protocol to upgrade to better crypto algorithms when they become available. 	
• Easy to fix so that A authenticates B also.		 Because crypto options are negotiated before authentication, need to reconfirm after authentication (by reiterating the negotiation messages). 	
What is lost by reusing DH parameters?			הוכרמנוווצ נווכ ווכצטנומנוטוו וווכאאצכא).
3/27/2013 shankar	authentication slide 79	3/27/2013 shankar	authentication slide 80

Reusing DH key across sessions

- Goal: amortize cost of computing DH key
- Approach: define session key as function of DH key and a random nonce.