
3/27/2013 shankar authentication slide 1

Computer and Network Security
CMSC 414

AUTHENTICATION

Udaya Shankar
shankar@cs.umd.edu

3/27/2013 shankar authentication slide 2

Authentication Overview (NS chapter 9)

Context:
• Large set of principals attached to an open channel (eg, Internet).
• Each principal repeatedly

• attempts to initiate a connection (i.e., session) with a specified principal
• upon successful connection establishment, exchanges messages
• closes the connection
• waits for an arbitrary (but bounded) time

Authentication is about ensuring
• When a principal A assumes it is connected to a principal B,
A is indeed exchanging messages with B, and not some attacker C.

• When principal A assumes confidentiality/integrity of the message exchange,
this is indeed the case.

Principal can be a human or an executing computer program

• Programs can use high-quality secrets (eg, from space of 2128)
• Human principals are restricted to low-quality secrets (eg, space of 232)
and cannot do cryptographic operations.

• When we say a program principal A assumes it is connected to B,
we mean that A’s program’s variables indicate that A is connected to B.

3/27/2013 shankar authentication slide 3

Typical authentication scenario

Goal: achieves following inspite of attacks
• Connection establishment:

• A authenticates B: [B,A,accpt] msg sent by B in response to [A,B,conn]
• B authenticates A: [A,B,accpt] . . . A . . . [B,A,conn]
• Simultaneously establish a shared secret (session key) for conversation

• Conversation: encryption / MAC
• Disconnection: A and B close their connection and forget any session key

connection

conversation

disconnection

[nB,nA, [B,A, accpt]] [B,A,accpt]

data msgs

disconnect msgs

computer

nB

Internet computer

nA

principal

A

[B,A,accpt]

[nA,nB, [A,B, conn]] [A,B,conn]
[A,B,conn]

principal

B

[A,B,accpt]

3/27/2013 shankar authentication slide 4

Types of Attacks

An authentication protocol must identify the attacks it is supposed to handle
• network attacker
• end-point attacker
• dictionary attack
• …

An authentication mechanism cannot protect against all attacks, eg,
• overrun (take over) a human principal
• overrun memory while program principal is doing login authentication

Attackers can span multiple classes

Attackes can sequentially mount attacks of different classes
• Eg, record encrypted conversation; much later learn session key

3/27/2013 shankar authentication slide 5

Types of Attacks (contd)

Network-based attacks (roughly in order of increasing difficulty)
• Sending messages with wrong values in fields:

• spoofing: C at nc sends messages with sender id as [A]
• changing “reject” to “accept”
• spoofing: C at nc sends messages with sender addr/id as [nA,A]
• …

• Eavesdropping: observing messages in the channel.
• Easy in WLANs and LANs (because of broadcast nature)
• Not easy in wired point-to-point links (but doable)

� tap router ports
� compromise route computation algorithm

• Intercepting messages, changing them, resending them.
• Relatively easy in WLANs and LANs (because of broadcast nature)
• Not easy in point-to-point (but doable)

3/27/2013 shankar authentication slide 6

Types of Attacks (contd)

End-host based attacks (roughly in order of increasing difficulty)
• Principal C says it is principal A on a computer nA

 (eg, public workstation)
• online dictionary attack

• Read data on hard disk (or back-up tapes) of nA or A
• obtain old keys (encrypted or plaintext) password files, ⋅⋅⋅
• obtain current keys (encrypted or plaintext) password files, ⋅⋅⋅
• offline dictionary attack on encrypted passwords

• Overrun computer nA
• while A is not at nA
• while A is at nA

• Read data in memory of nA while A is executing (unlikely)
• Overrun a (human or program) principal

• mail client, web browser

3/27/2013 shankar authentication slide 7

Types of Attacks (contd)

Dictionary attacks (aka password-guessing attacks)
• Finding a secret by searching through a space of possible secrets
• Doable only if the space is small enough (given reasonable time/resources)
• A secret from a small space is said to be low-quality
• A secret from a large space is said to be high-quality
• Examples:

• 128-bit key from a decent random number generator is high-quality
• 20-bit key from a decent random number generator is low-quality
• Passwords, and keys obtained from them, are low-quality (typically)

• Online dictionary attack: need to interact with authenticator at every guess
• Offline dictionary attack: interacts with authenticator just once

3/27/2013 shankar authentication slide 8

Three types of authentication

• Password-based authentication

• Authenticating oneself by showing a secret password to the remote peer
(and to the network)

• Always vulnerable to eavesdropping attack
• Always vulnerable to online dictionary attack

� Usually protection: limit frequency of incorrect password entries

• Address-based authentication

• authenticating oneself by using a physically-secured terminal/computer
• Conceptually similar to password-based authentication ??

• Cryptography-based authentication

• authenticating oneself by showing evidence of a secret key
to the remote peer (and to the network)
but without exposing the secret to the peer (or to the network)

• Note: secret key can be obtained from a password

3/27/2013 shankar authentication slide 9

Password-based authentication

• A authenticates itself by supplying a password.
• Always vulnerable to eavesdropping attack and online dictionary attack

Approach 1:

A (passwd pwA) nA channel nB
B (passwd file with
[X, pwX] for each X)

• enter [A, B, pwA]

 • send [nA,nB,A,B,pwA]
 • check rcvd [A, pwA]

against passwd file
• match authenticates A;
msgs from nA until logout
assumed to be from A

• Vulnerable to eavesdropping and to online dictionary attack

• Defense against latter: limit number of successive failed attempts

• Vulnerable to exposure of password file (overrun of nB or B)

3/27/2013 shankar authentication slide 10

Password-based authentication (contd)

Approach 2:
• Like approach 1 except B’s password file has entries (X, hash(pwX)) for each X

A (passwd pwA) nA channel nB
B (passwd file with
[X, hash(pwX)] for each X)

• enter [A, B, pwA]

 • send [nA,nB,A,B,pwA]

 • check hash(rcvd pwA) against
passwd file entry for A

• match authenticates A

• Vulnerable to eavesdropping and to on-line dictionary attack (as before)

• Vulnerable to password file exposure but requires offline dictionary attack

• Defense 1: store (X, salt, hash(pwX, salt))

• Defense 2: store (X, encryptK(pwX)) where K is high-quality key maintained
only in B’s memory and not hard disk (i.e., manually entered when B is
activated).

3/27/2013 shankar authentication slide 11

Password-based authentication (contd)

Handling situation where A may interact with many servers

• Store A’s password in every server that A may access.

• Disadvantage: handling changes to password.
• Disadvantage: All password files need to be protected well.

• Store A’s password in a special authentication node.

• Server authenticates A by checking A’s password with authentication node
(and presumably forgetting password after authenticating A).

• Disadvantage: performance bottleneck.
• Advantage: single node to protect

3/27/2013 shankar authentication slide 12

Address-based authentication

• A uses only a special set of computers
• A is authenticated by the address (network, link level, etc) of its computer.

• Valid if

• Access to special computers is well-guarded
• Network is protected against spoofing/interception of messages

• Examples:

• Unix: os-wide /etc/hosts.equiv file, per-user .rhosts file.
• VMS: PROXY database
• Early main-frame machines accessed by dumb terminals.
• Operator console on many workstations (eg, single-user mode in Linux)

• Conceptually like password-based authentication except that “password” is
now associated with a physical device (eg, network interface card).

3/27/2013 shankar authentication slide 13

Cryptographic authentication

• A authenticates itself to B by performing a cryptographic operation on a
quantity composed of a part supplied by B and a secret shared by A and B.

• Because operation is cryptographic, the secret is not disclosed by
eavesdropping.

Limitations if A is human
• A can only remember low-quality secret, ie, password.
• A cannot do cryptographic operations.
• So A inputs password into computer nA which converts password to key.
Hence vulnerable to overrun of nA.

Transforming password to secret-key-crypto key
• Obtain key by (say) hashing password (and, for AES, taking specified 128 bits).
• Not ok for public key crypto, where keys have constraints.
Here is an(wacko?) approach to obtain an RSA key:
• Use password as seed to specified pseudo-random number generator,
and choose first two primes generated.

3/27/2013 shankar authentication slide 14

Using password to get high-quality secret (eg, public-key-crypto key)
from directory service

Use password to decrypt a high-quality key kept in a directory service.
• Let KA be A’s high-quality key.

• Let KApw be the low-quality) key obtained from A’s password (eg, by hashing)

• Directory service stores enc(KA, KApw) (ie, KA encrypted by KApw).
• Computer nA gets [A, enc(KA, KApw)] from directory service,
KApw from A’s password, and decrypts to get KA

• Is this vulnerable to offline dictionary attack?
• Guess candidate password, say cpw.
• Obtain candidate low-quality key cKApw (e.g., by hashing cpw).
• Obtain candidate high-quality key cKA by decrypting enc(KA,KApw) with cKA.
But cannot decide whether cKA is correct because KA has no structure.
(Note: in RSA, encrypt [d], not [d,n] because latter has structure)

• But it is vulnerable with a bit more work in some cases, eg,
� If A uses a session key encrypted with KA, use cKA to obtain candidate
session key, and check if it can decrypt conversation.

� If A’s signature on a document produced using KA is available,

check if cKA matches the signature.

3/27/2013 shankar authentication slide 15

Protecting against eavesdropping and server passwd file exposure (spfe)

Easy with public key crypto
• A has private key.
• B stores A’s public key (so exposing B’s database does no damage).
• Authentication:

• B sends a random value to A
• A encrypts using A’s private key and sends back
• B checks received value using A’s public key

Handling spfe (but not eavesdropping) with hash/secret-key crypto
• B stores hash of A’s password
• Authentication:

• A sends password to B
• B compares hash of recieved password with stored hash

Handling eavesdropping (but not spfe) with secret-key crypto
• A and B share a secret KAB (eg, A’s password).
• Authentication:

• A sends [A,login] to B
• B sends random number R to A
• A responds with KAB{R} // NOTE: "KAB{R}” short for “enc(R, KAB)”

Handling both with secret-key crypto
• Lamport’s hash scheme

3/27/2013 shankar authentication slide 16

Lamport’s Hash Scheme (NS Chapter 12)

• One-way authentication (B authenticaes A); ie, assumes B is not spoofed.
• A stores password.
• B stores for A:

• n: positive integer, initially say 1000; number of logins remaining
• nhpw: n-fold hash of pw; ie, hashn(pw)

A (stores password pw) B (stores (A: n, nhpw))

send [A,B,conn]

 send [B,A,n]

x ← hashn−1(pw)
send [A,B,x]

if hash(x) = nhpw then A authenticated

n ← n−1

nhpw ← x

When n becomes 1, need to reset with new pw and n

Enhancement with salt:
• Initially: A chooses salt; B stores [A, n, salt, hashn(pw | salt)]
• Login: B responds with [n, salt]; A responds with hashn−1(pw | salt)
• To use same pw with many servers: salt = random number | server id.

3/27/2013 shankar authentication slide 17

Lamport’s hash scheme (contd)

Reset option 1:
• A chooses new[n, nhpw] and sends it to B unencrypted.

• Adequate against an attacker that can eavesdrop, intercept, spoof?
• Adequate given assumption that B-to-A authentication is not needed?

Reset option 2:
• A sends new[n, nhpw] encrypted by a key obtained via Diffie-Helman.

• Is this any better wrt to the attackers?

Small n attack:

• C impersonates B’s network address and waits for A to login
• C responds with m smaller than current n and thus gets hashm(pw) from A
• C can now impersonate A (for n−m logins)

Lamport’s Hash without workstation

• Instead of just password, A has hashi(pw) for i = 1, 2, ⋅⋅⋅, n-1 written down
• At each login, A uses last entry and crosses it out.
• Not vulnerable to “small n” attack.
• Is this any different from writing down a high-quality key?

SKEY: Internet deployed version of Lamport’s hash

3/27/2013 shankar authentication slide 18

Scaling to network of N principals

• Straightforward approach:

• Distinct key for every pair of principals.
• Not scalable:

� N2 storage cost at each node
� N cost for adding new principal

• Use hierarchy of trusted intermediaries

• KDC (key distribution center) in secret-key crypto
• CA (certification authority) in public-key crypto

3/27/2013 shankar authentication slide 19

KDC: single-domain case

A KDC B
send [A, KDC, B, conn]
 generate session key KAB

generate tktAB= [KB{A, B, KAB}] (ticket)
send [KDC, A, KA{A, B, KAB}, tktAB]

send [A, Y, B,conn, tktAB]
 decrypt tktAB and get KAB
< --- authentication betweeen A and B using KAB ---- >

KDC

A B Z

1

2

3

• KDC is a host in network;
serves shared-secret keys

• Every principal X in domain shares a
key KX with KDC (off-line)

• When A wants to talk to B,
it gets a ticket from KDC
(online steps 1, 2, 3)

3/27/2013 shankar authentication slide 20

KDC: single-domain case (cont)

• Advantages of KDC:

• Adding new principal: one interaction between principal and KDC

• Revocation of principal: deactivate principal’s master key at KDC

• Disadvantages of KDC:

• KDC can impersonate anyone to anyone.
KDC compromise makes the whole network vulnerable.

• KDC failure means no new sessions can be started.

• KDC can be a performance bottleneck.

• Last two can be alleviate by having KDC replicas, but
� need to protect all replicas
� when a principal’s master key is changed, need to sync replicas

3/27/2013 shankar authentication slide 21

KDCs for multi-domain case

Case 1: A in domain (with KDC X) wants to talk to B in domain (with KDC Y),
 and X and Y share a key, say KX-Y.

A X (KDC of D1) Y (KDC of D2) B
send [A,X, conn to B in D2]

 generate session key KA-Y
generate tktA-Y = [KX-Y{A, X, KA-Y}]
send [X,A, KA{A, Y, KA-Y}, tktA-Y]

send [A,Y, conn to B in D2, tktA-Y]

 generate session key KA-B
generate tktA-B = [KB-Y{A, B, KA-B}]
send [Y,A, KA-Y{A, B, KA-B}, tktA-B]

send [A,B, KA-B{A, B, conn}, tktA-B]

3/27/2013 shankar authentication slide 22

KDCs for multi-domain case (contd)

Case 2: KDCs chain from source to destination

• In a large internetwork with many domains,
unlikely that every two domains will have a shared key.

• But if there is a sequence of domains D1, D2, ⋅⋅⋅, DN such that
for every i, KDC of Di and KDC of Di+1 have a shared key
then A of D1 can securely obtain a session key to talk to B of DN:
• Let Xi be the KDC of Di
• A talks to X1 and gets [session-key, ticketA-X2] to talk to X2
• A talks to X2 and gets [session-key, ticketA-X3] to talk to X3
• and so on until
• A talks to XN and gets [session-key, ticketA-B] to talk to B

• How does A get the sequence X1, X2, ⋅⋅⋅, XN.

• Static hierarchy with additional links (perhaps cached) for efficiency.
• Good if A also passes along the sequence of domains to be traversed, so that
B can see whether it trusts every KDC on the chain.

3/27/2013 shankar authentication slide 23

CA: single-domain case

CA

A B Z
1

2

• CA is a host but need not be networked;
generates certificates (signed public keys)
and CRLs (certificate revocations)

• Online directory server (DS) periodically gets
certificates and CRLs from CA

• DS serves certificates and CRLs to anyone
(online steps 3, 4)

• Every principal X in domain
- generates a public-key pair
- gets its public key signed by CA (certificate)
- gets CA’s public key
(all off-line)

• When A wants to talk to B,
A shows B its certificate and CRL
B shows similar documents to A
(online steps 1, 2)

DS

3 4

3/27/2013 shankar authentication slide 24

CA: single-domain case (contd)

• Each principal has a public-key pair.
Remembers its own private key and CA’s public key.

• CA generates certificate (signed public key) for each principal X:
• [(serial no, X, pubkeyX, expdate),
 privkeyCA{(serial no, X, pubkeyX, expdate)}].

• Certificates are publicly disseminated (e.g., at directory services).

• A authenticates B as follows (ignoring certificate revocation):

• Obtain certificate for B from anywhere, typically from B.
• If certificate not expired and signature verifies (using CA’s public key),
then A has B’s public key.

• A sends challenge and expects challenge encrypted by B’s private key,
after which A and B settle on a session key.

• Advantages

• CA does not need to be online or networked, so can be more secure.
• CA crash does not stop new sessions from starting until expiration date.
• Certificates need not be secured (except for deletion of certificates).
• Compromised CA cannot decrypt conversations (unlike KDC). But it can
serve false public keys and thus impersonate any principal.

3/27/2013 shankar authentication slide 25

CA: handling revocation

• Certificate revocation is more complex than in KDC.
• CA periodically (eg, hourly) issues CRL (Certificate Revocation List)

• signed {issue time, list of certificates revoked at issue time}

• A authenticates B (in presence of CRL) by obtaining (typically from B)
• a certificate for B that has not expired (as above), and
• a CRL that does not have B and was issued sufficiently recently, eg,
at the start of the current period.

• A sends a challenge and awaits challenge encrypted by B’s private key,
after which A and B settle on a session key.

• X.509 format for certificate and CRL

• Certificate =
 [user name, user public key, expiration time, serial number,
 CA’s signature on entire contents of certificate]

• CRL = [issue time, list of serial numers of unexpired revoked certificates]

3/27/2013 shankar authentication slide 26

CAs for multi-domain case

Case 1: A in domain with CA X wants to talk to B in domain with CA Y,
 and X and Y have certificates for each other.

A X directory service Y directory service B
• Gets from X’s directory service a certificate for Y signed by X;
A can verify certificate because A has X’s public key;
so A now has Y’s public key.

• Gets from Y’s directory service a certificate for B signed by Y;
A can verify certificate because A now has Y’s public key;
so A now has B’s public key

• A can now send messges to B encrypted with B’s public key

3/27/2013 shankar authentication slide 27

CAs for multi-domain case (contd)

Case 2: CA chain from source to destination

• In a large internetwork with many domains, unlikely that the CAs of every two
domains will have a certificate for each other.

• But if there is a sequence of domains D1, D2, ⋅⋅⋅, DN such that
for every i, directory services of Di and Di+1 have certificates for each other
signed by their CA’s
then A of D1 can securely obtain the public key of B of D2 by iterating:
• Let Xi be the CA of Di
• A gets certificate for X2 signed by X1
• A gets certificate for X3 signed by X2
• and so on until
• A gets certificate for XN signed by XN-1
• A gets certificate for B signed by XN

3/27/2013 shankar authentication slide 28

Session keys

Session keys
• Protect the data exchange after a connection is established
• Should be different from long-term shared key used for authentication

• so long-term key does not “wear out” (offline crypto attack)
• Should be unique for each session

• If compromised, only affects data sent in that session.
• Can be given to relatively untrusted software

• Session key should be forgotten after session ends

Delegation or authentication forwarding
• If A, when logged into B, wants to access C (eg, printer),
then B needs to authenticate itself as A to C.
• A can log into C explicitly (too much trouble)
• A can give B its password (too risky)
• A can give B a ticket (called delegation or authentication forwarding) with

� types of access allowed by B (eg, A’s print queue)
� expiry time (typically short)

3/27/2013 shankar authentication slide 29

Establishing session key with secret-key authentication (NS Ch 12)

• Consider A and B with shared key KAB.
During authentication, A and B have exchanged challenges, eg:
• R1 (in one-way auth)

• R1, R2 (in two-way auth)

• Session key can be R1 and/or R2 encrypted by a specfied function g of KAB, eg,
• g(KAB)){R1} or (g(KAB)){R1⊕R2}
• g(KAB) is KAB+1, KAB−1, −KAB , etc

Attack: if C obtains KAB later, C can decrypt (recorded) conversation.

• Session key should not be g(R1) or g(R1,R2) encrypted by KAB, eg, KAB{g(R1)}.
Otherwise, later C can impersonate B, send g(R1) as a challenge to A,
get back KAB{g(R1)}, and decrypt earlier conversation between A and B.
Defense: include sender id in challenges.

• Session key can obtained by Diffie-Hellman after/during authentication
(the Diffie-Hellman exchange messages are encrypted by KAB).
Then even if C obtains KAB later, it still cannot decrypt conversation.

3/27/2013 shankar authentication slide 30

Establishing session key with public-key authentication (NS Ch 12)

• A chooses random R as session key and sends {R}B to B.

Attack: C spoofs A (after authentication) and choose its own R1 as session-key.

So important to have R be part of authentication.

• A chooses R as session key and sends [{R}B]A
Here C cannot inject spurious R1 as session-key

Attack: If C later obtains B’s private key, C can extract R and decrypt
conversation.

• A picks R1, B picks R2, they exchange {R1}B and {R2}A, set R1⊕R2as session key.

Attack: Here C has to overrun both A and B to obtain session key.

• Session key can be obtained by Diffie-Hellman after/during authentication
(the Diffie-Hellman exchange messages are encrypted or signed).
Then even if C overruns A and B, it still cannot decrypt conversation.

3/27/2013 shankar authentication slide 31

Authentication of People (KPS 10)

Constraints when authenticating human:
• Can only remember low-quality secret
(eg, 10 letter “pronounceable” password).

• Cannot perform cryptographic operations.

Human authentication based on one or more of
• What you know: password
• What you have: authentication tokens, eg,

• physical keys, ATM card
• What you are: biometric features, eg,

• fingerprint, voice recognition, retina scan

Password limitations
• Eavesdropping
• Online dictionary attack

• defense: limit number of attempts after which user must talk to admin
� problem: vandal can easily lock up accounts (denial-of-service)

• defense: limit speed of attempts
• Exposure of password file on server

• Doing offline dictionary attack if password file is hashed.
• Exposing passwords in email, script files, etc.

3/27/2013 shankar authentication slide 32

Authentication of People (contd)

Good password, ie, random 128-bit, not feasible

• 20 random digits
• 11 random chars (from 0-9, a−z, A−Z, couple of punctuation marks)
• Computer-generated random pronounceable password

• Case insensitive: 4.5 bits of randomness per character
• Every third character a vowel, 6 vowels: 2.5 bits of randomness per vowel
• Requires 16 characters

• Human-generated passwords
• About 2 bits of randomness per character
• So require about 32 character password

• If password is too good, users write it down

Workable approach
• “pass-phrase” with intentional misspelling, punctuation marks,
 symbols (eg, $ for S), odd capitalization, etc.

3/27/2013 shankar authentication slide 33

Authentication of People (contd)

Login Trojan Horse to capture passwords
• Leave program running on public terminal that imitates login prompt

• gets password from naive user and attempts to exit inconspicuously
� eg, exit with “login failed” message
� better yet: runs virtual OS for duration of user session

• Defenses by OS/hardware:

• Have special prompt symbol at any input field by non-login program
• Allow only login screen to fill entire display
• Non-mappable key to interrupt any running program

� eg, alt-ctrl-del (but often OS allows remapping of this)
• Display number of unsuccessful login attempts since last successful login.
• Any defense fails given a sufficiently naive user

Initial distribution of passwords needs to be secure

Passwords can also be used for non-login purposes (protecting individual files)

3/27/2013 shankar authentication slide 34

Authentication of People (contd)

Authentication tokens: physical device that a person carries around:

Magnetic strip cards
• Credit cards, debit cards, id cards, money card, etc
• Can hold high-quality secret and other data (usually read-only)
• If card has picture or signature, then also serves as biometric check by human.

Smart card (embedded CPU and memory)
• can hold high-quality secret
• memory can be password protected
• can do cryptographic operations (challenge/response)

Advantages, disadvantages, features
• Tokens can be lost or stolen (unless it is attached/embedded in user)

• So usually needs to be augmented with password
• When token is lost, need an override that is usually not much less
convenient than the override for “I forgot my password”

• Requires custom hardware (key slot, card reader, etc) on every access device
• exception is cryptographic calculator (or readerless smart card)

3/27/2013 shankar authentication slide 35

Authentication of People (contd)

Cryptographic calculator (or readerless smart card)

• Smart card that does not require special hardware.
• Has display and keyboard for human interaction

• User enters password to unlock device
• User enters challenge into device and reads cryptographic response

• Time-based alternative
• User enters password to unlock device
• Card displays encryption of current time, which user enters as
authentication information.

• Authenticating computer checks that result is valid
� Needs to check for all possible current times within allowed clock drift.

• Advantages:
� Saves half the typing
� Works with password “form-factor” authentication protocols

3/27/2013 shankar authentication slide 36

Authentication of People (contd)

Biometric authentication devices
• Retinal scanner

• scans blood vessels in back of your eye
• expensive and “psychologically threatening” (look into laser device)

• Iris scanner
• Less intrusive than retinal scanner (can use camera several feet away).

• Fingerprint reader
• devices available but automation has not been successful for many years

• Face recognition
• not intrusive but not very accurate; susceptible to false negatives

• Handprint readers
• More false positives than fingerprint readers, but cheaper/fewer problems

• Voiceprints
• Cheap and can be as accurate as fingerprinting
• Can be defeated with tape recording
• False negatives (voice change due to illness)

• Keystroke timing
• False negatives (injury)

• Signature
• Not accurate based only on static signature
• Accurate if also based on timing info

3/27/2013 shankar authentication slide 37

Security Handshake Pitfalls (NS chapter 11)

Assume A initiates connection to B.

Can classify the authentication protocols along following features:

• One-way authentication:
• B authenticates A (eg, login) or
• A authenticates B (server B with public key, client A w/o public key)

• Mutual-authentication:
• B authenticates A and A authenticates B

• Secret-key crypto vs Public-key crypto

3/27/2013 shankar authentication slide 38

One-Way Authentication

Solution 1.1: one-way auth, secret-key (KAB)

A B
send [A,B, conn]
 send challenge [B,A,R]
send response [A,B, f{KAB, R}]

Note

• Response f{KAB,R} is a keyed-hash of R or R encrypted with KAB

• Challenge R must be new (a nonce) so that f{KAB,R} has not been sent before
(by A or by B) and hence has not been seen by attacker.

• If challenge R is obtained from a clock or a counter and
if B may have received past msgs m to which it sent f{KAB,m} responses
(eg, another authentication protocol with A using KAB)
then
• B must ensure that challenge R is not among these msgs, or
• response should also indicate the sender (eg, f{KAB,A,R})

• These problems are not there if R is obtained from a random number
generator.

Question: Would these attacks, if successful, yield session key?

3/27/2013 shankar authentication slide 39

Some vulnerabilities:

• If KAB is derived from password, an eavesdropper can do offline dictionary
attack.

• If attacker gets B’s password file, it can impersonate A

• Protecting password file is harder if B is replicated
or A uses same password on different servers.

3/27/2013 shankar authentication slide 40

Solution 1.2: one-way auth, secret-key (KAB)
A B
send [A, B, conn]
 send challenge [B,A, KAB{R}]
send [A,B, R]

Note
• Requires challenge to be reversable (ie, encryption, not keyed-hash).
• R should not only be a nonce but unpredictable (ie, randomly generated).

• Eg, if R is obtained from a counter, an attacker can impersonate A
because it would know that the next challenge generated by B is R+1.

Vulnerabilities: as in solution 1.1 plus the following:
• If KAB derived from password and R has structure, then
a spoofer (w/o eavesdropping) can get KAB{R} and do offline dictionary attack.
• Note: R is randomly generated and need not have structure.

Feature
If A and B have clocks that are within D seconds of each other
and R has a timestamp (in addition to the random number),
then this also authenticates B to A in the following sense:
• A assured that KAB{R} message was originally sent by B within last D seconds
• A not assured that KAB{R} was sent in response to its [A,B,conn] msg

• Can be fixed by including a nonce in [A,B,conn] and in R.

3/27/2013 shankar authentication slide 41

Solution 1.3: one-way auth, secret-key (KAB), timestamp-based

Assuming A and B have clocks that are within D seconds of each other.

A B

send [A,B, conn, KAB{ts}]
 B decrypts, checks that ts within D

Note
• Single transmission suffices, no handshake needed
• B does not need to maintain state per active connection

Vulnerable
• Replay attack within clock skew D

• defense: B remembers ts sent by A within last D seconds (requires state)
• Replay attack if KAB used with multiple servers

• defense: include server id along with ts
May not be doable if servers are replicas of B (with same external id)

• B’s clock being set back

If encryption is replaced by keyed-hash, B has much more work
• B has to get keyed-hash of every possible value in D and compare.
• Can overcome by A including unencrypted ts in conn msg. (Is this as secure?)

3/27/2013 shankar authentication slide 42

Solution 1.4: one-way auth, public-key (open challenge, signed response)

A B
send [A,B, conn]
 send challenge [B,A, R]
send [A,B, [R]A]
 // [R]A is R encrypted with A’s private key

Note
• B’s pw file contains A’s public key; can be readable (but not modifiable)

• Need to ensure that R has distinct structure that is not used for signing
messages

3/27/2013 shankar authentication slide 43

Solution 1.5: one-way auth, public-key (encrypted challenge, open response)

A B
send [A,B, conn]
 send challenge [B,A, {R}A]

({R}A is R encrypted with A’s public key)

send [A,B, R]

Note

• B’s pw file contains A’s public key; can be readable (but not modifiable)

• Need to ensure that R has distinct structure that is not used for sending
confidential messages to A

• Why is ok to send response R in the open, instead of say {R}B

3/27/2013 shankar authentication slide 44

Mutual (two-way) Authentication (A initiates connection to B)

Solution 2.1: two-way auth, secret key (KAB)

 A B
1 send [A,B, conn]
2 send challenge [B,A, R1]
3 send response [A,B, f{KAB, R1}]

4 send challenge [A,B, R2]

5 send response [B,A, f{KAB, R2}]

Note
• Consists of two 2-way handshakes
• Messages 3 and 4 can be combined into one message
• Vulnerable to B’s passwd file being read
• If KAB obtained from passwd, vulnerable to offline dictionary attack

• by attacker who can eavesdrop
• by attacker who can impersonate B

� Impersonating server B is harder than impersonating client A
(assuming server is always connected whereas client is momentary)

• Interchanging order of R1 and R2 introduces further vulnerability (below)

3/27/2013 shankar authentication slide 45

Solution 2.2: solution 2.1 with R1-R2 order interchanged

 A B
1 send [A,B, conn, R2]

2 send [B,A, R1, f{KAB,R2}]

3 send [A,B, f{KAB, R1}]

Note

• Reduces solution 2.1 to one 3-way handshake

• As usual, vulnerable to B’s passwd file being read

• Usual offline dictionary attack if C eavesdrops
and KAB obtained from passwd

• If C can spoof A, then C can do offline dictionary attack
(without eavesdropping)

3/27/2013 shankar authentication slide 46

Solution 2.2 vulnerable to reflection attack

 C B
1 send [A,B, conn, R2]
2 send [B,A, R1, f{KAB,R2}]

1’ send [A,B, conn, R1]
2’ send [B,A, S1, f{KAB,R1}]

3 send [A,B, f{KAB, R1}]

 C has successfully impersonated A to B

Possible defenses:
• B remembers R1 and does not accept it (difficult with replicated servers)
• R has structure indicating sender of challenge (but then offline dictionary
attack)

• Use different keys for each direction:
• KAB (for A � B) and KBA (for A B)
• KBA can be predictably related to KAB
[eg, KAB+1, KAB–1, –KAB, or KAB ⊕ (F0F0...F0)16]

Thumb-rule: Initiator should be first to authenticate itself

3/27/2013 shankar authentication slide 47

Solution 2.3: two-way auth, secret key, timestamps

 A B
1 send [A,B, conn, f(KAB, ts)]

2 send [B,A, f(KAB, ts +1)]

Note

• One 2-way handshake suffices

• Msg 1 assures B that msg was generated by A and sent within clock skew

• “ts+1” can be replaced by any predicatable function of ts
• response should include structure indicating sender
(to defend against replay attack), or

• B must remember timestamp values ts and ts+1
(to defend against replay attack)

3/27/2013 shankar authentication slide 48

Solution 2.4: two-way auth, public keys

 A B
1 send [A,B, conn, {R2}B]
2 send [B,A, R2, {R1}A]
3 send [A,B, R1]

Note
• More rugged than secret-key: not vulnerable to overruning B.

• Is it necessary to encrypt response R1?

• Human A has to obtain its private key and B’s public key (already discussed):
• Directory service supplies A’s private key encrypted by A’s pwd
• B supplies B’s public key signed by A’s private key
• etc

__

Solution 2.5: two-way auth, public keys, variant of solution 2.4

 A B
1 send [A, B, conn, R2]
2 send [B,A, [R2]B, R1]
3 send [A,B, [R1]A]

3/27/2013 shankar authentication slide 49

 Extensions for dynamic contex

Dynamic context:
• users join and leave domains
• users do not share pre-assigned keys
• users rely on KDCs / CAs / directory services
• users change passwords
• replicated KDCs
• etc

New attacks become relevant:
• attacker with an old password of a user (trying to impersonate user)
• others?

New situations have to be handled:
• user A presents user B a ticket issued under old password of B
• user A contacts a KDC that still has an old password of A
• etc

3/27/2013 shankar authentication slide 50

Authentication with KDC mediator

A KDC B
send [A,KDC, conn to B]
 generate session key KAB

generate tktAB = [KB{A, B, KAB}]

send [KDC,A, KA{KAB}, tktAB]

send [A,B, conn, tktAB]

<------ A and B do mutual authentication using KAB --------->
(example follows)

 send [B,A, R1]

send [A,B, R2, KAB{R1}]

 send [B,A, KAB{R2}]

<--- A and B use KAB (or derivative, eg, (KAB+1){R1⊕R2} as session key data --->

Note:
• Even if C is spoofing A, C cannot get access to KAB.
• Is authentication between A and KDC needed (or is that already done above)?
• Even if C is spoofing KDC, C cannot give a KAB that B will accept.

3/27/2013 shankar authentication slide 51

Needham-Schroeder Protocol

Below N1, N2, N3 are nonces.

 A KDC B

1 send [A,KDC, conn B, N1]

2

 generate session key KAB

generate tktAB = [KB{A, B, KAB}]

send [KDC,A, KA{N1, B, KAB, tktAB}]

3 send [A,B, tktAB, KAB{N2}]

4 send [B,A, KAB{N2−1, N3}]

5 send [A,B, KAB{N3−1}]

<---- use KAB (or derivative, eg, (KAB+1){N2⊕N3} as session key data --->

3/27/2013 shankar authentication slide 52

Needham-Schroeder (cont)

• Nonce N1 used to assure A that msg 2 is response by KDC to msg 1

If N1 not present, C with an old password of B can impersonate B to A:

• C records above exchange (refer to them as old msgs 1, 2, 3, 4, 5)

• C steals KB; B changes key

• C decrypts tktAB and get KAB

• C waits until A initiates connection to B

• C intercepts A’s new msg 1, responds with old msg 2 (= KA{B, KAB, tktAB})

• A responds with new msg 2 (= [tktAB , KAB{new N2}] to B

• C intercepts, responds with KAB{new N2 – 1} (C knows KAB)

• Msg 2: id B encrypted by KA ensures that C cannot replay old KDC reply to C
(i.e., KDC reply to request by C to talk to B)

• Msg 2: no need to doubly encrypt tktAB

3/27/2013 shankar authentication slide 53

Needham-Schroeder (cont)

• If EBC is used (instead of CBC) and each nonce fits in an encryption block,
then C can impersonate A to B with reflection attack

• C eavesdrops and gets msgs 3 and 4

• Later C replays msg 3

• B replies with KAB{N2 − 1, N4} where N4 ≠ N3

• C needs to get KAB{N4 − 1}, which it does as follows:

� C replays msg 3 with KAB{N4} replacing KAB{N2} and gets KAB{N4 − 1} from B

� Replacing EBC with CBC makes attack not possible
(but then there is no need for N3−1; can just use N3)

3/27/2013 shankar authentication slide 54

Needham-Schroeder (cont)

Vulnerability if N1 sequential

1. Attacker C overhears N1 = n during normal session between A and B

 A KDC B

1 send [A,KDC, conn B, N1 = n]

2

generate session key KAB
generate ticket TAB = [KB{A, B, KAB}]
send [KDC,A, KA{N1, B, KAB, TAB}]

3 send [A,B, TAB, KAB{N2}]
4 send [B,A, KAB{N2−1, N3}]
5 send [A,B, KAB{N3−1}]

 <------------- A and B exchange data, close ---------->

3/27/2013 shankar authentication slide 55

Needham-Schroeder vulnerability if N1 sequential (cont)

2. Attacker C learns KB, spoofs A to KDC with N1 = n+1 as follows

 attacker C KDC B

6 send [A,KDC, conn B, N1 = n+1]

7

generate session key JAB
generate ticket SAB = [KB{A, B, JAB}]
send [KDC,A, KA{N1, B, JAB, SAB}] (rcvd by C)

3. C steals KB. B changes its key.
 C waits for A to connect to B, then impersonates KDC and then B

 A attacker C B

8 send [A,KDC, conn B, N1 = n+1] (intercepted by C)

9 send [KDC,A, KA{N1, B, JAB, SAB}] (replay msg 7)

10 send [A,B, SAB, JAB{L2}] (intercepted by C)

C decrypts SAB (encrypted using (old) KB)
and obtains JAB

 <---- C can now complete the authentication and impersonate B ----->

3/27/2013 shankar authentication slide 56

Needham-Schroeder vulnerable to old password exposure

If C gets A’s master key (say KA) and A changes it (to say JA),
C can still impersonate A to B (because B never talks to KDC).

 A KDC B

1 send [A,KDC, B, N1]

2

generate session key KAB
generate tktAB = [KB{A, B, KAB}]
send [KDC,A, KA{N1, B, JAB, tktAB}]

3 send [A,B, tktAB, KAB{N2}]

4 send [B,A, KAB{N2−1, N3}]

5 send [A,B, KAB{N3−1}]

 C records above. Then C obtains KA. Then A changes master key to JA (≠ KA).

 C B

 send [A,B, tktAB, KAB{M2}]

 send [B,A, KAB{M2−1, M3}]

 send [A,B, KAB{M3−1}]

3/27/2013 shankar authentication slide 57

Needham-Schroeder vulnerable to old password exposure (cont)

Fix:
B sends a nonce encrypted by KB in response to A’s connection request,
and looks for the nonce in the ticket.

Several ways to include such a B-KDC interaction:

A KDC B

KB{NA}

A KDC B

KB{NA}

A KDC B

KB{NA}

Expanded
Needham-Schroeder:
▪ 7 msgs

Otway-Rees:
▪ 5 messages

Not good:
▪ requires KDC to
match up messages

3/27/2013 shankar authentication slide 58

Expanded Needham-Schroeder: requires two additional messages

 A KDC B

1a send [A,B, conn]

1b send [B,A, KB{NB}]

1 send [A,KDC, conn B, N1, KB{NB}]

2

generate session key KAB
generate tktAB = [KB{A, B, KAB, NB}]
send [KDC,A, KA{N1, B, KAB, tktAB}]

3 send [A,B, tktAB, KAB{N2}]

4 send [B,A, KAB{N2−1, N3}] (as before)

5 send [A,B, KAB{N3−1}] (as before)

 <---- A and B establish data session key (eg, (KAB+1){N2⊕N3} --->

3/27/2013 shankar authentication slide 59

Otway-Rees authentication protocol

Does mutual authentication and handles ticket invalidation in 5 messages

 A KDC B
1 generate nonces NA and NC

send [A,B, NC, KA{NA,NC,A,B}]

2

 generate nonce NB
send [B,KDC, KA{NA, NC, A, B},
 KB{NB, NC, A, B}]

3

 if NC same in KA{⋅⋅⋅} and KB{⋅⋅⋅}
 generate session key KAB
 send [KDC,B, NC, KA{NA,KAB}, KB{NB,KAB}]

4 send [B,A, KA{NA, KAB}]

5 send [A,B, KAB{“hello”}]

<--- A and B establish data session key --->

Note:
• Msg 3 assures B that request 1 was by A
• Msg 4 assures A that sender is B

3/27/2013 shankar authentication slide 60

Otway-Rees nonce NC must be unpredictable, o/w C can impersonate B to A.
Suppose NC is sequential and equals 007 in one attempt. C does following:

 C KDC B

1 send [A,B, NC=008, grbge]

2

send [B,KDC, grbge, KB{NB, NC=008, A,B}]
(C records this)

 KDC rejects message 2

 Later A attempts to connect to B

 A KDC C

3 send [A,B, NC=008, KA{NA,NC=008,A,B}]

4
C intercepts this msg 3
send [B,KDC, msg 3 KA field, msg 2 KB field]

5
accepts msg 4 (since its NC’s match)
send [KDC,B, NC, KA{NA,KAB}, KB{NB,KAB}]

C intercepts msg 5
send [B,A, KA{NA, KAB}]

6 send [A,B, KAB{“hello” }]

At this point C has impersonated B to A.
� If A uses a data session key obtained from KAB, C won’t succeed
(but o/w C can impersonate B to A during the data exchange).

3/27/2013 shankar authentication slide 61

Nonce types:
• Large random number: best nonce

• crypto operations are the best way to generate them
• Timestamp: not as good

• clocks must have adequate synchronization and resolution
• must recover from crashes

• Sequence numbers
• requires non-volatile storage

Example 1: using seq number nonce when unpredictable nonce is needed

A B
send [A,B, conn]
 send challenge [B,A, KAB{R1}]
send [A,B, R1]

If R1 is sequential, C can impersonate A to B as follows

C B

send [A, B, conn]
 send [B,A, KAB{R2}] where R2=R1+1
send [A,B, R1+1]

3/27/2013 shankar authentication slide 62

Example 2: using sequential nonce when unpredictable nonce is needed

A B
send [A, B, conn]
 send [B,A, R1]
send [A,B, KAB{R1}]

C lies in wait for A to initiate to B
• When A initiates to B,
C intercepts and sends challenge R1+1 to A and gets KAB{R1+1}.

• Then C initiates connection to B impersonating A.
• B sends challenge R!+1, for which C now has the correct response.
Worse than man-in-middle: A does not have to be active for C to do attack.

Example 3: where sequence number nonce is adequate
A sends (A,B, conn);
B sends challenge KAB{R}
A sends response (KAB+1){R}.

3/27/2013 shankar authentication slide 63

Strong Password Protocols (NS chapter12)

• Basic strong password protocols (EKE, SPEKE, PDM)

• Use Diffie-Hellman
• Human A with password achieves high-quality authentication with B
inspite of eavesdropper

• No protection against reading of B’s db

• Augmented strong password protocols (EKE, SPEKE, PDM)

• Same as basic protocols except also provide
low-quality protection against reading of B’s db

• Can be used by human A to obtain a high-quality key (including private key)

3/27/2013 shankar authentication slide 64

 EKE basic, SPEKE basic, PDM basic

• Protocols use Diffie-Hellman (DH)
• Mutual authentication
• Strong key protection against eavesdropping
• No protection against attacker reading B’s db:

• attacker gets the key obtained from A’s password
(no need for offline dictionary attack)

3/27/2013 shankar authentication slide 65

EKE basic

• DH encrypted with password derived key to share high-quality key
• Use shared high-quality key to do two-way authentication
• Strong protection against eavesdropping; none against B db reading

A has password pw B has (A,W) where W = hash(pw)

public DH parameters: g and p
choose rn a

TA ←ga mod p
send [A, B, W{TA}]
 choose rn b

TB ←gb mod p
choose challenge C1
send [B, A, W{TB,C1}]

KB ← (TA)
b mod-p

KA ← (TB)
a mod-p

generate challenge C2
send [A,B, KA{C1,C2}]

 send [B,A, K{C2}]
A and B now share strong key KA = KB = g

ab mod p

3/27/2013 shankar authentication slide 66

EKE basic (cont)

To defend against offline dictionary attack, need to ensure that
ga mod p (and gb mod p) has no structure:

• ga mod p is less than p

• If encryption block size exceeds log2 p, extra bits must have random pad.

• Require p to be slightly more than a power of 2.
If p is slightly less than a power of 2, then ga mod p has structure:
• Msb = 1 implies most of the bits to the right of msb are zeros
• Each incorrect candidate pw has 50% chance of violating structure

� Can quickly narrow down to space of candidate passwords.

Is this really a EKE issue, rather than a DH issue?

3/27/2013 shankar authentication slide 67

SPEKE basic

Same as EKE except that W takes the place of g.

A B
stores password pw stores (A,W) where W=hash(pw)

public p (prime)
choose rn a

TA ←Wa mod p
send [A, B, TA]
 choose rn b

TB ←Wb mod p
send [B, A, TB]

KB ← (TA)
b mod-p

KA ← (TB)
a mod-p

A and B now share strong key KA = KB = W
ab mod p

 <------ two-way authentication using shared key K ------->

Note: W must be perfect square mod-p, o/w Wa mod p/Wb mod p have structure
• Otherwise, Wa mod p (or Wb mod p) may not be a perfect square
• Eliminates 50% of candidate passwords.
But not as bad as EKE because this pruning occurs only once.

3/27/2013 shankar authentication slide 68

PDM basic

• Like EKE but g=2 and prime p is obtained from password (p = fp(pw))

• To defend against offline dictionary, require

• p to be a safe prime, i.e., (p−1)/2 is also a prime
• p mod 24 = 11
• etc

3/27/2013 shankar authentication slide 69

EKE augmented, SPEKE augmented, PDM augmented, SRP

• Mutual authentication
• Strong-key protection against eavesdropping
• Weak-key protection against attacker reading B’s db:

• attacker can get A’s pw by offline dictionary attack

EKE augmented is described next; others are similar.

3/27/2013 shankar authentication slide 70

EKE augmented

• Public DH parameters g and p

• A has password pw
• two keys, W and W’, obtained from pw (eg, using different hashes)

• B has [A: W’, TA’ (= g
W mod-p)] (so W’ is open but not W)

• A and B do DH encrypted by W’ to establish session key ga·b mod-p:

• A: random a; TA = g
a mod-p; W’{TA} to B

• B: random b; TB = g
b mod-p; W’{TB} to A

• KA = (TB)
a mod-p = KB = (TA)

b mod-p = ga·b mod-p

• A and B also independently generate DH key gW·b mod-p for authentication:

• A: KA’ ← (TB)
W mod-p

• B: KB’ ← (TA’)
b mod-p

3/27/2013 shankar authentication slide 71

EKE augmented (cont)
A has pw, W, W’ B has [A, W’, TA’ (= g

W mod-p)]

choose rn a;

TA ← ga mod-p
send [A, B, W’{TA}]

 extract TA from W’{TA} using W’
choose rn b;

TB ← gb mod-p

KB ← (TA)
b mod-p

KB’ ← (TA’)
b mod-p

H ← hash(KB , KB’)
send [B, A, W’{TB}, H]

extract TB from W’{TB} using W’

KA ← (TB)
a mod-p

KA’ ← (TB)
W mod-p

verify H = hash(KA , KA’) to authenticate B

H’ ← hash’(KA , KA’), where hash’ is another hash function
send [A, B, H’]

 verify H’ = hash’(KB, KB’) to authenticate A

A and B are mutually authenticated and share strong key K = gab mod p

3/27/2013 shankar authentication slide 72

Obtaining credential (eg, private key) from network

• Earlier: directory service has privKeyA encrypted by key from A’s password
• Can also be solved using strong password protocols

EKE-based protocol for obtaining credential:
• Public DH parameters g and p
• A stores password pw

• W and W’ are two keys obtained from password
• B stores (A, W, Y), where Y = W’{private key of A}

A B

choose rn a
compute W = hash(pw)
send [A,B, W{ ga mod p }]
 choose rn b

send [B,A, gb mod p, (gab mod p){Y}]
compute gab mod-p
decrypt (gab mod p){Y} to get private key

3/27/2013 shankar authentication slide 73

More on authentication (rt comm sec) (NS chapter 16)

Long-term secret of a principal: Master key or private half of a public key pair.

Key escrow:
• Principal’s long-term secret held by an escrow agent (eg, law enforcement).
• Principal usually has separate public key pairs for encryption and for signing.
Signature key usually not escrowed.
• (o/w principal can deny a signed message)

Perfect forward security (PFS)
• A session has PFS if an attacker who eavesdrops and later learns long-term
secrets of participants still cannot obtain session key.

Escrow-foilage
• A session has escrow-foilage if escrow agent cannot obtain session key by
eavesdropping.
• Of course, escrow agent can always impersonate participant or do man-in-
middle attack.

3/27/2013 shankar authentication slide 74

PFS/escrow-foilage usually achieved with authenticated Diffie-Hellman

Example based on public signature keys (below, [x]A denotes x signed by A):

A (DH params g, p; pub sign key of B) B (DH params g, p; pub sign key of A)
generate a

TA ← ga mod p
send [A, B, [A, TA]A]

 receive msg
verify signature on [A, TA]
generate b

TB ←gb mod p

KB ← (TA)
b mod p // session key

send [B, A, [B, TB]B]
receive message

KA ← (TB)
a mod p // session key = KB

send [A, B, H(KA)] // H: hash

 receive message
if H(KA) = H(KB) then A authenticted
send [A, B, H(1, KB)]

receive message
if H(1,KB) = H(1,KA) then B authenticated

3/27/2013 shankar authentication slide 75

Protection against denial-of-service attack

• Typically, when a server receives a (potential) connection request, it starts to
maintain state for that client (eg, client id, challenge).

• An attacker can overwhelm such a server by flooding it with connection
requests.

• Solution:
• server asks potential client do some work before storing state for the client.
• The work request is called a stateless cookie.
(Not to be confused with web browser cookies.)

3/27/2013 shankar authentication slide 76

Example: using a stateless cookie

A B (has secret S, not shared with anybody)
send [A, B, conn]

 receive msg

c ← hash(A's ip address, S) // c: stateless cookie
send [B, A, c]
forget c

receive message
send [A, B, conn, c]

 receive message

if c ≠ hash(A’s ip addr, S) then abort
else continue with authentication handshake

• The above cookie just required A to send it back.
• A more severe cookie c: random string to which the client has to return [x, c],
where x is a n-bit number that hashes to c
• n can be varied to inflict more/less work.

3/27/2013 shankar authentication slide 77

End-point id hiding

Hide the ids of the communicating principals from eavesdroppers, spoofers, etc.
Below, A and B are principals, and nA and nB are their respective Internet ids.

A (DH params g, p; pub sign key of B) B (DH params g, p; pub sign key of A)
generate a

TA ← ga mod p
send [nA, nB, TA]

 receive msg
generate b

TB ← gb mod p

KB ← (TA)
b mod p // session key

send [nB, nA, TB]

receive message

KA ← (TB)
a mod p // session key

send [nA, nB, KA{ A, B, [TA]A }]

 receive message
send [nB, nA, KB{ B, A, [TB]B }]

• Eavesdropper cannot see end-point ids (A and B)
• Spoofer of B (more precisely, of nB) can learn end-point ids.
• Same can be done with secret key, say L, instead of public key:

• use L{TA} and L{TB} instead of [TA]A and [TB]B respectively

3/27/2013 shankar authentication slide 78

Reusing DH key across sessions

• Goal: amortize cost of computing DH key
• Approach: define session key as function of DH key and a random nonce.

First session (compute DH key)

A (DH params g, p; pub sign key of B) B (DH params g, p; pub sign key of A)

generate a
TA ← ga mod p
send [A, B, [TA]A]

 receive msg
generate b, N1
TB ← gb mod p
KB ← (TA)

b mod p // DH key
send [B, A, [TB]B, N1]
session key SB1 ← hash(N1, KB)

receive message
KA ← (TB)

a mod p // DH key
session key SA1 ← hash(N1, KB)

< --------------- session key SA1 = SB1 ---------------------- >
close session

do not forget TA, KA and TB, KB

3/27/2013 shankar authentication slide 79

Reusing DH key across sessions (cont)

Later session (reusing DH key)

A (has TA, TB, KA from before) B (has TA, TB, KB from before)

start new session
send [A, B, [TA]A] // reuse TA

 generate N2 // reuse TB and KB

session key SB2 ← hash(N2, KB)
send [B, A, [TB]B, N2]

receive message
TB has not changed, so reuse TA and KA

session key SA2 ← hash(N2, KA)

< --------------- session key SA2 = SB2 ---------------------- >

close session

• Above, B authenticates A but not vice versa (ie, attacker can replay B msgs).
• Easy to fix so that A authenticates B also.

What is lost by reusing DH parameters?

3/27/2013 shankar authentication slide 80

 Plausible deniability

• Principal A has plausible deniability in a session if nobody can prove that A
participated in the session (even though A and B may have authenticated each
other in the session).

• Plausible deniability comes for free with secret key (any one participant can
cook up the entire session)

• Not possible with public key unless key is escrowed (eg, use encryption public
key rather than signature public key).

__

Negotiating crypto parameters

• In A-B session initiation, A sends crypto options and B responds with crypto
accepted.

• Having crypto parameters negotiated allows same protocol to upgrade to
better crypto algorithms when they become available.

• Because crypto options are negotiated before authentication, need to
reconfirm after authentication (by reiterating the negotiation messages).

