Introduction to Cryptology (NS chapter 2)
 Encryption: plaintext + key → ciphertext Decryption: plaintext ← ciphertext + same/related key Key is secret. Encryption/decryption algorithms not secret. Given plaintext and cyphertext, computationally hard to get key. Attacks depend on what is available Ciphertext available: search key/plaintext space, replay, Plaintext-ciphertext pairs available: Chosen plaintext-ciphertext pairs available: Types of cryptographic functions: Secret key (symmetric key): DES, AES, Public key (asymmetric): RSA, DH (Diffie-Helman), Hash functions (of cryptographic kind): MD5, SHA-1,
2/6/2009 shankar crypto slide 2
 Hashing (of cryptographic kind) Hash function H(.) transforms plaintext msg of arbitrary length to fixed-length hash H(msg) Easy to compute H(msg) from msg Not easy to find msg1 and msg2 such that H(msg1) = H(msg2) Keyed hash: Hash msg along with a shared secret S, e.g., H(msg S) Keyed hashing provides all the capabilites of secret-key crypto. Integrity: Send msg and H(msg S) as MAC. Confidentiality: Generate sequence C₀, C₁, C₂,, where C₀ is random and C_{i+1} = H(C_i S); to encrypt an arbitrary-length message, XOR it with the sequence. So to send message = [M₀, M₁, M₂,], send [C₀, M₁⊕C₁, M₂⊕C₂,]

 Public key (asymmetric) crypto Each principal has two related keys: private key (not shared) public key (shared with world). Plaintext encrypted with one can only be decrypted with the other. Confidentiality: B transmits pubkey_A(plaintext). A decrypts using privkey_A. Integrity and digital signature (non-repudiation) A transmits privkey_A(plaintext) Anyone with pubkey_A can decrypt it and be assured that it could only have been sent by A. But public-key crypto is <u>orders</u> slower than secret-key crypto/hashing, so it is used in conjunction with the latter. 	 Secret Key Crypto (NS chapter 3) Consider fixed-length message of k bits here. Variable-length message addressed later. Fixed-length message and Fixed-length key → message-length output DES: 64-bit message, 56-bit key If key length j is too small, insecure. If j is too large, expensive. Want function S mapping k-bit msg to k-bit output such that: For decryption, S must be 1-1 mapping from 2^K to 2^K. For security, S must be "random": even if msg1 and msg2 differ in just one bit, S(msg1) and S(msg2) differ in many bits (approx k/2 bits). So S cannot be a "simple" function; so following are no good: S(msg) = msg ⊕ key S(msg) = msg bits in reverse order 	
 To sign a message: sign the hash of the message. To encrypt or integrity-protect a message: First use public-key crypto to establish a per-sesssion secret; eg, B creates per-session key K and sends pubkey_A(K) to A Then use secret-key crypto or keyed-hashing. 2/6/2009 shankar crypto slide 5 	 S(msg) = msg bits in reverse order 2/6/2009 shankar crypto slide 6 	
 Secret Key Crypto (contd.) Conceptually simple secret-key algorithm S "Substitution" table: random permutation of all N-bit strings. S(i) is ith row of table Table obtained with physical-world randomness (eg, coin toss). Pro: S is perfectly random Con: need to store table of size k.2^k. Impractical for k=64 Goal: Deterministic algorithm that produces "random looking" output. Want each output bit to be "influenced" by all input bits. Basic approach: mix permutations and substitutions Divide k-bit block into p-bit blocks for reasonably small p (eg, p=8). Use p x p substitution tables "garble" p-bit output blocks. Concatenate the p-bit output blocks to get a k-bit block and permute to get garbled k-bit output block. Repeat 1, 2, 3 for n rounds, where n is large enough to get good scrambling. Decryption, ie, reversing, is no more expensive. Often can be done with the same algorithm/hardware. 	DES 64-bit input 56-bit key initial permutation generate 16 48-bit keys Ki and output of previous round 64-bit intermediate swap left and right halves 64-bit output final permutation (inverse of initial) 64-bit output	

Not of security value (why?, what does this mean?)

2/6/2009 shankar

DES encryption round

DES: Weak and semi-weak keys	DES: Weak and semi-weak keys
 4 weak keys: generate C₀=D₀=all ones or all zeros 12 semi-weak keys: generate C₀ and D₀ of alternating 0 and 1 	A semi-weak key x is the inverse of another semi-weak key y, i.e., for any block b: E _x (block) = D _y (block)
A weak key x is its own inverse, i.e., for any block b: $E_x(b) = D_x(b)$ Proof A weak DES key has each of C_0 and D_0 to be all ones or all zeroes. Since each C_i is a permutation of C_0 , each C_i is the same as C_0 . Since each D_i is a permutation of D_0 , each D_i is the same as D_0 . Each per-round key K_i depends only on C_i and D_i . So the per-round keys $K_1,, K_{16}$ are all equal to each other. So the key sequence $K_1,, K_{16}$ (used in encryption) is the same as the key sequence $K_{16},, K_1$ (used in decryption). So encryption and decryption are the same, i.e., $E_x(b) = D_x(b)$. So $E_x(E_x(b)) = b$.	Proof Let $\langle K_1(x),, K_{16}(x) \rangle$ be the per-round keys obtained from x. Show that there is another semi-weak key y such that y $\langle K_1(x),, K_{16}(x) \rangle = \langle K_{16}(y),, K_1(y) \rangle$. Hence for any block b: $E_x(block) = D_y(block)$
2/6/2009 shankar crypto slide 13	2/6/2009 :
$\label{eq:matrix} \begin{split} \text{Multiple Encryption DES (EDE or 3DES)} \\ \bullet \text{ Makes DES more secure} \\ & \text{Encryption: encrypt key1} \rightarrow \text{decrypt key2} \rightarrow \text{encrypt key1} \\ & \text{Decryption: decrypt key1} \rightarrow \text{encrypt key2} \rightarrow \text{decrypt key1} \\ \bullet \text{ Decrypting twice}) \text{ with same key is not effective.} \\ & \text{Just equivalent to using another single key.} \\ \bullet \text{ EE with key1 and key 2 is not so good.} \\ \bullet \text{ Given } , , \ldots, \text{ there is an attack that requires 2}^{56} \text{ storage.} \\ & \text{ Table A with 2}^{56} \text{ entries } <\text{key K}_i, E(K_i, m_1) >, \text{ sorted by column 2.} \\ & \text{ Table B with 2}^{56} \text{ entries } <\text{key K}_i, D(K_i, c_1) >, \text{ sorted by column 2.} \\ & \text{ Do join of Table A and Table B.} \\ & \text{ Each match provides candidate } \text{ for } <\text{key1, key2} >. \\ & \text{ Use } , \text{ etc. to weed out false candidates.} \\ \\ \hline \text{ Current standard encryption algorithm: AES} \\ & \text{ different sizes of keys } (64, 128,) \\ & \text{ o different data block sizes } (, 64, 128,) \\ \end{array}$	$\label{eq:response} \begin{array}{l} \text{RC4 encryption algorithm} \\ \text{Stream cipher (one time pad), can use variable length key.} \\ \text{Key stream independent of plaintext} \\ \text{8x8 S-box. each entry is a key-permutation of 0255} \\ \hline \\ \textbf{S-box initialization} \\ \hline \\ \begin{array}{l} \text{byte } S[0255] \leftarrow 0255; \ // \ S[i]=i \\ \text{byte } i := 0; \ j \leftarrow 0; \ // \ \text{counters} \\ \text{byte } i := 0; \ j \leftarrow 0; \ // \ \text{counters} \\ \text{byte } K[0255] \leftarrow \text{key} \mid \mid \text{key;} \\ \text{for } i = 0 \ to \ 255 \ do \\ j \leftarrow (j + S[i] + K[i]) \ \text{mod } 256; \\ \text{swap } S[i] \ \text{and } S[j] \\ \hline \\ \hline \\ \begin{array}{l} \textbf{Generate \\ \textbf{random byte} \\ \oplus \ \text{with } pt/ct \ for \\ \text{encrypt/decrypt} \end{array} \end{array} \begin{array}{l} \textbf{i} \leftarrow (i+1) \ \text{mod } 256; \\ \text{swap } S[i] \ \text{and } S[j]; \\ \text{return } S[\ (S[i] + S[j]) \ \text{mod } 256 \]; \\ \end{array} $

Encrypting large msg given method to encrypt a k-bit block • Pad message to multiple number of blocks: msg = (M1, M2,,) • Use block encryption repeatedly to get ciphertext = (C1, C2,,) • Same Mi's get encrypted to different Ci's • Repeated encryptions of same msg result in different ciphertexts. • C ₁ C ₂ C _{n-1} C _n	Encrypting Large Messages (NS Chapter 4)
 Ciphertext cannot be changed to cause predictable change to decrypted plaintext. Various methods: ECB, CBC, CFB, OFB, CTR, others C_i = E_K(M_i ⊕ C_i.1), where C₀ is a random IV (initialization vector) Transmit IV and C₁,, C_n 	 Encrypting large msg given method to encrypt a k-bit block Pad message to multiple number of blocks: msg = (M1, M2,,) Use block encryption repeatedly to get ciphertext = (C1, C2,,) Same Mi's get encrypted to different Ci's Repeated encryptions of same msg result in different ciphertexts. Ciphertext cannot be changed to cause predictable change to decrypted plaintext. Various methods: ECB, CBC, CFB, OFB, CTR, others
 Electronic Code Book (ECB) Obvious approach: encrypt/decrypt each block independently Encryption: C_i = E_K(M_i) Decryption: M_i = D_K(C_i) Attack 1: Modify C_n: garbles M_n unpredictably and M_{i+1} predictably other M_i's unchanged. Can use a CRC to overcome this. Attack 2: Exchanging cipherblocks can counteract CRC to some extent 	 Electronic Code Book (ECB) Obvious approach: encrypt/decrypt each block independently Encryption: C_i = E_K(M_i) Decryption: M_i = D_K(C_i) not good: repeated blocks get same cipherblock
2/6/2009 shankar crypto slide 17 2/6/2009 shankar crypto slide 18	2/6/2009 shankar crypto slide
Output Feedback Mode (OFB)Cipher Feedback Mode (CFB)64-bit OFB• Generate stream cipher $B_0, B_1,,$ where B_0 is IV and $B_i = E_K(B_{i:1})$ • Then $C_i = B_i \oplus M_i$ • So a one-time pad that can be generated in advance.• One-time pad: • Attacker with <plaintext, ciphertext=""> can obtain B_i's • and so generate ciphertext for any plaintext• Let X_i = E_K(B_{i:1}), where B_0 is 64-bit IV• Let X_i = E_K(B_{i:1}), where B_0 is 64-bit IV• Let Y_i be k leftmost bits of X_i • $C_i = Y_i \oplus M_i$• B_i is rightmost 64 bits of $B_{i:1} Y_i$</plaintext,>	Output Feedback Mode (OFB) 64-bit OFB • Generate stream cipher $B_0, B_1,,$ where B_0 is IV and $B_i = E_K(B_{i-1})$ • Then $C_i = B_i \oplus M_i$ • So a one-time pad that can be generated in advance. • One-time pad: • Attacker with <plaintext, ciphertext=""> can obtain B_i's • and so generate ciphertext for any plaintext k-bit OFB (k < 64) • Generate stream cipher in k-bit chunks, rather than 64-bit chunks. • Let $X_i = E_K(B_{i-1})$, where B_0 is 64-bit IV • Let Y_i be k leftmost bits of X_i • $C_i = Y_i \oplus M_i$ • B_i is rightmost 64 bits of $B_{i-1} Y_i$</plaintext,>

	MACs from encryption/decryption (NS chapter 4)	
Counter Mode (CTR)	Ensuring integrity (but not confidentiality):	
• See text	 CBC, CFB, OFB, do not protect against "undetectable" modifications by attacker knowing the plaintext 	
3DES on Large Messages 3DES is used with CBC on the "outside" not "inside" Using with CBC on inside eliminates self-synchronization of received ciphertext (ie, if some ciphertext is garbled, everything is lost)	 Of course, a human may find something fishy. So can a computer that checks for structure in plaintext. Need a cryptographic checksum. Standard way: send CBC residue (last block in CBC encryption) along with the plaintext message and IV. 	
2/6/2009 shankar crypto slide 21	2/6/2009 shankar crypto slide 22	
 Ensuring confidentiality and integrity of a large messsage Not ok: Send CBC encrypted message and CBC residue. Just repeats the last cipherblock Not ok: CBC_Encrypt[plaintext, CBC_residue[plaintext]] Last block is encryption of zero (Hashes and Message Digests (NS chapter 5) • msg → fixed-length hash H(msg) • Not 1-1 since msg space is much larger than hash space • secure one-way function: computationally hard to find two msgs m ₁ and m ₂ s.t. h(m ₁)=h(m ₂) Assuming hash is random, how long should it be? • Consider hash space of K (ie, hash of (log K) bits) • Consider N randomly chosen messages, m ₁ , m ₂ ,, m _N • Pr[there is a pair of distinct msgs < m _i , m _j > : H(m _i) = H(m _j)] • = Pr[H(m ₁)=H(m ₂) or H(m ₁)=H(m ₃) or or H(m _{N-1})=H(m _N)] • ≈ Sum {over distinct < m _i , m _j > pairs} (1/K) • = [N(N-1)/2] [1/K] • So if N= \sqrt{K} then Pr is 1/2 • K should be large enough so that searching through \sqrt{K} is hard. • So K = 2 ¹²⁸ is ok (assuming search through 2 ⁶⁴ is hard)	

Keyed Hash: Hash with secret key	MAC (message integrity checksum) with keyed hash	
 Keyed hash equivalent to secret-key encryption confidentiality authentication integrity Authentication with keyed hash A and B share secret key K_{AB} A sends random number r_A to B. B computes H(K_{AB} r_A) and sends it back. A computes H(K_{AB} r_A) (cannot invert it) and check if received value equals it. Match authenticates B to A. Similarly, B sends random number r_B to A and expects H(K_{AB} r_B) back. 	Obtaining MAC (message integrity checksum) with keyed hashObtaining MAC for msg = $(m_1, m_2,, m_n)$ given shared secret key K _{AB} • Obvious approach: MAC = H(K _{AB} msg)• Not ok because H($m_1, m_2,, m_n$) is usually H(H($m_1, m_2,, m_{n-1}$) m_n)• So attacker can add any m_{n+1} and get its MAC as H(old MAC, m_{n+1}).• Possible fixes:• MAC = H(msg K _{AB})• MAC = half the bits of H(K _{AB} msg)• MAC = H(K _{AB} msg K _{AB})• HMAC (de facto standard): MAC = H(K _{AB} H(K _{AB} msg)) (almost)	
2/6/2009 shankar crypto slide 25	2/6/2009 shankar crypto slide 26	
Encryption / encryption + integrity with keyed hash	Hash from secret-key encryption/decryption	
Encryption of msg = $(m_1, m_2,, m_n)$ • Generate (can be precomputed) one-time pad: • $b_i = H(K_{AB} b_{i-1})$ where b_0 is IV • $c_i = b_i \oplus m_i$ • transmit IV and $c_1, c_2,, c_n$ • Decryption identical Encryption and integrity of msg = $(m_1, m_2,, m_n)$ • Encryption with plaintext mixed into one-time pad • $b_i = H(K_{AB} c_{i-1})$ where c_0 is IV • $c_i = b_i \oplus m_i$ • Decryption straightforward (homework)	 Hashing a block with secret key encryption Hash(block) = Encrypt constant (eg, 0) using block as the key Unix (original) uses a variation to store passwords When user sets password Concatenate 7-bit ASCII of first eight chars to get 56-bit secret key Generate 12-bit random number (called salt) Encrypt the number 0 using the key and a salt-modified DES defends against DES-cracking hardware salt indicates duplicated bits in 32-bit R → 48-bit mangler input Store salt and ciphertext When user enters password, compare stored ciphertext with that computed from password 	

Hashing large messages with secret-key encryption (key size k)	MD4: 32-bit-word-oriented hash function	
 Obvious extension of above approach: 	• message of arbitrary number of bits \rightarrow 128-bit hash	
 Divide large message into k-bit chunks m₁, m₂, 	• Step 1: Pad <i>msg</i> to multiple of 512 bits	
• C_i = encryption of C_{i-1} with m_i as key, where C_0 is a constant	$pmsg \leftarrow msg$ one 1 p 0's (64-bit encoding of p);	
• Let the tast C _i be the hash of message	where $[msgsize+1+p+64]$ is a multiple of 512 (note: p in 1512)	
 Not ok if C_i is usually too small to be a good hash (eg, 64 bits in DES) 	• Step 2: Process <i>pmsg</i> in 512-bit chunks to obtain 128-bit hash <i>md</i>	
• Sufficient fix is to \oplus each stage's input with previous stage's output:	128-bit md treated as 4 words: d_0 , d_1 , d_2 , d_3 ;	
\circ C ₁ = encryption of a constant C0 with M ₁ as key	512-bit <i>pmsg</i> chunk treated as 16 words: m_0 , m_1 ,, m_{15} ;	
• For i > 1: C_i = encryption of $C_{i-2} \oplus C_{i-1}$ with M_i as key	Initialize $ to <01 23 89 ab cd ef fe dc 10>;$	
$_{\odot}~$ Let the last C $_{i}$ be the hash of message	For each 512-bit chunk c of msg:	
 One way to generate 128 bits of hash with DES: 	// Pass 1: mangle d_0d_3 using m_0m_{15} , mangler H1, permutation J	
• Generate 64-bit hash as above.	For i = 0,, 15: $d_{J(i)} \leftarrow H1(i, d_0, d_1, d_2, d_3, m_i);$	
 Generate another 64-bit hash with message blocks in reverse order This approach has a flaw (homework) 	// Pass 2: mangle d_0d_3 using m_0m_{15} , mangler H2, permutation J	
Dettermine to recent to 120 bits of back with DEC:	For i = 0,, 15: $d_{J(i)} \leftarrow H2(i, d_0, d_1, d_2, d_3, m_i);$	
Better way to generate 128 bits of nash with DES:	For $i = 0$ 15: $d_{10} \leftarrow H3(i d_2 d_2 d_3 m_3)$:	
• Generate two 64-bit hasnes as above but with different constants.	$d_{0}d_{3} \leftarrow d_{0}d_{3} \oplus e_{0}e_{3};$	
	$md \leftarrow d_0d_3;$	
2/6/2009 shankar crypto slide 29	2/6/2009 shankar crypto slide 30	
More Hash Functions	HMAC: defacte MAC standard	
• MD2: octet-oriented	HMAC: defacto MAC standard	
• Moz. occer-onenced	• Can use any bash function H (eq. MD2, MD4, SHA-1)	
 Like MD4 except 	• Variable-sized message and variable-length key	
 Step 1: pad to multiple of 16 octets 	\rightarrow fixed-size MAC of same size as output of H	
 Step 2: append 16-octet checksum (not cryptographic) Step 2: do 18 passes over msg in 16 estat chunks 	7 Tixed size nice of same size as output of Th	
- Step S. do To passes over misg in To-Octet chunks	• naddedKey \leftarrow pad key with 0's to 512 bits	
• MD5: 32-bit word oriented	If key is larger than 512 bits, first hash key and then had	
\circ Message of arbitrary number of bits \rightarrow 128-bit digest	• $h1 \leftarrow H(msg = naddedKev \oplus [string of 36], octets])$	
O Like MD4 except four passes and unterent mangler functions	• result \leftarrow H(h1 naddedKey \oplus [string of 50% octets])	
• SHA-1: 32-bit word oriented		
$_{\odot}$ Message of arbitrary number of bits upto 2 ⁶⁴ bits $ ightarrow$ 160-bit digest		
$_{\odot}$ Like MD5 except five passes, different mangler functions, and		
at start of each stage, 512-bit msg chunk \rightarrow 5 x 512-bit chunk		
using rotated versions of the msg chunk		
using rotated versions of the msg chunk		
using rotated versions of the msg chunk		
using rotated versions of the msg chunk		

A Bit of Number Theory (NS chapter 7) Need some number theory to understand public key cryptology • Modular addition, multiplication, exponentiation over $Z_n = \{0, 1,, n-1\}$ • Euclid's algorithm: gcd and multiplicative inverse • Chinese remainder theorem: (x mod pq) <=> (x mod p) and (x mod q) • $Z_n^* = \{j : j > 0 \text{ and relatively prime to n}\}$ • Euler's totient function $\phi(n) = Z_n^* $ • Euler's theorem • Conventions • All variables are integers (positive, zero, negative) • unless otherwise stated • n is positive integer	 Numbers modulo-n For any x: (x mod n) equals y in Z_n s.t. x = y+k·n for some integer k. <u>Nonnegative</u> remainder of x/n: 3 mod 10 = 3 (3 = 3 + 0·10) 23 mod 10 = 3 (23 = 3 + 2·10) -27 mod 10 = 3 (-27 = 3 + (-3)·10) (unlike in most prog lang) Integers u and v are said to be equal mod-n if (u mod n) = (v mod n) Math books say "equivalent mod-n", denoted u mod n = v mod n Modulo-n addition and additive inverse Mod-n addition is ordinary addition followed by mod-n operation (3+7) mod 10 = 10 mod 10 = 0 (3-7) mod 10 = -4 mod 10 = 6 Note: (u+v) mod n = (u mod n)+(v mod n)) mod n Additive inverse mod-n of x is y st (x+y) mod n = 0 denoted -x mod n exists for any x and n easy to compute: eg, for x in Z_n, additive inverse is n-x
2/6/2009 shankar crypto slide 33	2/6/2009 shankar crypto slide 34
 Modulo-n multiplication and multiplicative inverse Mod-n multiplication is ordinary multiplication followed by <i>mod-n</i> operation (3·7) mod 10 = 21 mod 10 = 1 (8)·(-7) mod 10 = -56 mod 10 = 4 Note: (u·v) mod n = (u mod n)·(v mod n)) mod n Multiplicative inverse mod-n of integer x is y s.t. (x·y) mod n = 1 denoted x⁻¹ mod n 3⁻¹ mod-10 is 7 (3·7 = 21 = 1 mod 10). x⁻¹ exists and is unique iff x and n are relatively prime ie, gcd(x,n) = 1 Euclid's algorithm: efficiently computes gcd(x,n) and x⁻¹ (if it exists) 	Modulo-n exponentiation and exponentiative inverse• Modulo-n exponentiation is ordinary exponentiation followed by mod-n $3^2 \mod 10 = 9$ $3^3 \mod 10 = 27 \mod 10 = 7$ $\circ (-3)^3 \mod 10 = -27 \mod 10 = 3$ • Note: $(u^{\vee}) \mod n \neq (u^{\vee \mod n}) \mod n$ • Exponentiative inverse mod-n of integer x is y s.t. $(x^{\vee} \mod n) = 1$ $3^4 = 81 = 1 \mod 10$, so 4 is the exponentiative inverse mod-10 of 3• Exists and is unique iff x and n are relatively prime• Easy to compute if n has certain structure.Primes• Positive integer p is prime iff it is exactly divisible only by itself and 1• Infinitely many primes, but they thin out as numbers get larger $\circ 25$ primes less than 100 $\circ Pr[$ random 10-digit number is a prime] = 1/23 $\circ Pr[$ random k-digit number is a prime] = 1/230 $\circ Pr[$ random k-digit number is a prime] = 1/210

Euclid's algorithm for gcd(x, y) • $[x, y]$ has same divisors/gcd as $[x-y, y]$, as $[x-k\cdot y, y]$, as $[x \mod -y, y]$, as $[y, x \mod -y]$, as $[y, remainder(x/y)]$ • repeat $[x, y] \rightarrow [y, remainder(x/y)]$ until first entry is 0; second entry is gcd • store intermediate remainders in array r $r = [r_{-2} r_{-1} r_{0} r_{1} r_{2}]$ $x \ y \ remainder(x/y) \ remainder(y/r_{0}) \ remainder(r_{0}/r_{1})]$ Euclid (x,y) with intermediate remainders array $r = [r_{-2} r_{-1} r_{0} r_{1} r_{2}]$ $r_{-2} \leftarrow x; r_{-1} \leftarrow y;$ integer $n \leftarrow 0$; while $r_{n-1} \neq 0$ do $r_{n} \leftarrow remainder(r_{n-2}/r_{n-1});$ $n \leftarrow n+1;$ return $r_{n-2}; \ // gcd(x,y)$ • To get multiplicative inverse, need to keep track of quotients, differences	Euclid_Augmented (x,y) arrays r, q, u, v; $r_{.2} \\left x; r_{.1} \\left y;$ $u_{.2} \\left 1; v_{.2} \\left 0; v_{.1} \\left 1;$ $u_{.1} \\left 0; v_{.1} \\left 1;$ $v_{.1} \\left v_{.2} \\left v_{.1} \\left v_{.2} \\left v_{.2} \\left v_{.1} \\left v_{.2} \\left$
2/6/2009 shankar crypto slide 37	2/6/2009 shankar crypto slide 38
Chinese remainder theorem	Proof of Chinese remainder theorem for $k = 2$
Let $z_1, z_2,, z_k$ be relatively prime. Then the mapping $Z_{z_1, z_2,, z_k} \rightarrow Z_{z_1} \times Z_{z_2} \times \times Z_{z_k}$ where $x \rightarrow \langle x \mod z_1, x \mod z_2,, x \mod z_k \rangle$ is 1–1 onto (so invertible). So for $\langle x_1, x_2,, x_k \rangle$: exactly one x in $Z_{z_1, z_2,, z_k}$ s.t. (x mod z_i) = x_i • For k=2, (x mod $z_1 \cdot z_2$) = [$x_2 \cdot a \cdot z_1 + x_1 \cdot b \cdot z_2$] mod $z_1 \cdot z_2$, where 1 = $a \cdot z_1 + b \cdot z_2$ • $z_1=3, z_2=4$ (relatively prime)	 Note Z_{21-Z2} and Z₂₁×Z₂₂ have the same number of elements (namely Z₁·Z₂) Will show mapping is 1-1 and obtain inverse. For any integer x, let (x mod z₁) = x₁ and (x mod z₂) = x₂ By Euclid: there exist a and b such that 1 = a·z₁ + b·z₂ Multiplying both sides by x and taking mod z₁·z₂ (x mod z₁·z₂) = [x·a·z₁ + x·b·z₂] mod z₁·z₂
Z _{3.4} 0 1 2 3 4 5 6 7 8 9 10 11	$= [(x_2 + k.z_2) \cdot a \cdot z_1 + (x_1 + j.z_1) \cdot b \cdot z_2)] \mod z_1 \cdot z_2$
$\begin{bmatrix} z_3 \times Z_4 & \langle 0, 0 \rangle & \langle 1, 1 \rangle & \langle 2, 2 \rangle & \langle 0, 3 \rangle & \langle 1, 0 \rangle & \langle 2, 1 \rangle & \langle 0, 2 \rangle & \langle 1, 3 \rangle & \langle 2, 0 \rangle & \langle 0, 1 \rangle & \langle 1, 2 \rangle & \langle 2, 3 \rangle \end{bmatrix}$ • $z_1 = 2, z_2 = 4$ (not relatively prime) $\begin{bmatrix} z_{2,4} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline z_2 \times Z_4 & \langle 0, 0 \rangle & \langle 1, 1 \rangle & \langle 0, 2 \rangle & \langle 1, 3 \rangle & \langle 0, 0 \rangle & \langle 1, 1 \rangle & \langle 0, 2 \rangle & \langle 1, 3 \rangle \end{bmatrix}$ • If z_1, z_2 relatively prime, no number in $[1 \dots z_1 \cdot z_2]$ is multiple of z_1 and z_2	$= [x_2 \cdot a \cdot z_1 + x_1 \cdot b \cdot z_2] \mod z_1 \cdot z_2$ LHS depends only on x ₁ , x ₂ , a, b. So for any <x<sub>1, x₂>, exactly one x s.t. (x mod z₁) = x₁ and (x mod z₁) = x₂ • So x and y are the same mod z₁ · z₂ Proof of for k > 2 is by induction • If z₁, z₂,, z_k, z_{k+1} rel. prime, then (z₁ · z₂ ··· z_k) and z_{k+1} are rel. prime</x<sub>

Z_n* **Euler's Totient Function** $Z_n^* = \{x : x \text{ is mod-n integer relatively prime to } n\}$ $\phi(n)$: number of elements in Z_n^* • $Z_{10}^* = \{1, 3, 7, 9\}$ whereas $Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ • For n prime: $\phi(n) = n - 1$ • 0 is not an element of Z_n^* because gcd(0,n) = n for any n • For $n = p^a$ where p is prime and a >0: $\phi(n) = (p-1) \cdot p^{a-1}$ Theorem: • For $n = p \cdot q$ where p and q are relatively prime: $\phi(n) = \phi(p) \cdot \phi(q)$ • For $n = p_1^{a_1} \cdot p_2^{a_2} \cdot \cdots \cdot p_k^{a_k}$ where p_1, \ldots, p_k are prime: Z_n^* closed under multiplication mod-n: for x,y in Z_n^* , x,y mod-n in Z_n^* . $\phi(\mathbf{n}) = \phi(\mathbf{p}_1)^{a1} \cdot \phi(\mathbf{p}_2)^{a2} \cdots \phi(\mathbf{p}_k)^{ak}$ Also, multiplying elements of Z_n^* with any x is a permutation of Z_n^* . Proof Proof **For n prime:** $\phi(n) = n - 1$. Obvious. Let a and b be in Z_n^* . By definition gcd(a,n) = gcd(b,n) = 1. For n = p^a where p is prime and a > 0: $\phi(n) = (p-1) \cdot p^{a-1}$ So there exist u_a, v_a, u_b, v_b s.t. $u_a \cdot a + v_a \cdot n = 1$ and $u_b \cdot b + v_b \cdot n = 1$. $Z_n = \{0, 1, 2, ..., p, ..., 2 \cdot p, ..., 3 \cdot p, ..., ..., (p^{a \cdot 1} - 1) \cdot p, ..., (p^a) - 1\}.$ Multiply the two equations: $u_a \cdot u_b \cdot (a \cdot b) + n \cdot (u_a \cdot v_b \cdot a + v_b \cdot u_b \cdot b + u_a \cdot v_b \cdot n) = 1$ Only the multiples of p can divide n. There are $(p^{a-1} - 1)$ of them. Hence, by Euclid alg, $a \cdot b$ is relatively prime to n, and so $a \cdot b$ is in Z_n^* . Removing them from the set $\{1, 2, ..., n-1\}$ yields Z_n^* So $\phi(n) = (n-1) - (p^{a-1} - 1) = (p^a - 1) - (p^{a-1} - 1) = p^a - p^{a-1} = (p-1) \cdot p^{a-1}$ To show $x \cdot Z_n^*$ is a permutation of Z_n^* , show that mapping is 1-1. (Work out the details) 2/6/2009 shankar 2/6/2009 shankar crypto slide 41 crypto slide 42 For n = p·q where p and q are relatively prime: $\phi(n) = \phi(p) \cdot \phi(q)$ Euler's Theorem Let $m_p = m \mod p$ and $m_q = m \mod q$. Abbr "relatively prime to" to rpt. For all a in Z_n^* : $a^{\phi(n)} = 1 \mod n$ First show that m rpt $p \cdot q$ iff m_p rpt p and m_q rpt q. • Assume m rpt p·q. Then there exist u and v such that $u \cdot m + v \cdot p \cdot q = 1$. Proof: Substituting $m = m_p + k \cdot p$, we get $u \cdot m_p + p \cdot (u \cdot k + v \cdot q) = 1$, so $m_p \cdot p \cdot p$. Let x be the product of all the elements of Z_n^* . Similarly, m_g rpt g. Because Z_n^* is closed under multiplication, x is in Z_n^* and x^{-1} exists. Let $b_1, b_2, \dots, b_{\phi(n)}$ be the elements of Z_n^* listed in some order. • Assume m_p rpt p and m_q rpt q. Then there exist u_p , v_p , u_q , v_q , such that Let $y = (a \cdot b_1) \cdot (a \cdot b_2) \cdots (a \cdot b_{\phi(n)})$. So $y = a^{\phi(n)} \cdot x \mod n$. $u_p \cdot m_p + v_p \cdot p = 1$ and $u_q \cdot m_q + v_q \cdot q = 1$. But $a \cdot b_1$, $a \cdot b_2$, ..., $a \cdot b_{\phi(n)}$ is also Z_n^* permuted. So $y = x \mod n$. So $u_p \cdot (m - k \cdot p) + v_p \cdot p = 1$ for some k, or $u_p \cdot m + (v_p - u_p \cdot k) \cdot p = 1$ Thus $a^{\phi(n)} x = x \mod n$. Multiplying sides by x^{-1} yields $a^{\phi(n)} = 1 \mod n$. Similarly, for some j, $u_{q} \cdot m + (v_{q} - u_{q} \cdot j) \cdot q = 1$ Multiplying the two, we get $[u_pu_qm + u_p(v_q - u_qj)\cdot q + u_q(v_p - u_pk)\cdot p]\cdot m + (v_p - u_pk)\cdot (v_q - u_qj)\cdot p\cdot q = 1$ Euler's Theorem Variant: For all a in Z_n^* and any non-negative integer k: $a^{k \cdot \phi(n)+1} = a \mod n$ So m rpt n. • So there is a 1-1 correspondence between numbers in $Z_{p,q}^*$ and $Z_p^* \times Z_p^*$. So $\phi(n)$ $= \phi(p) \cdot \phi(q).$ Proof: $a^{k \cdot \phi(n)+1} = a^{k \cdot \phi(n)} \cdot a = a^{\phi(n)k \cdot} \cdot a = [a^{\phi(n)}]^{k \cdot} \cdot a = 1^k \cdot a = a$ For $n = p_1^{a_1} \cdot p_2^{a_2} \cdot \cdots \cdot p_k^{a_k}$ where p_1, \dots, p_k are prime. (homework) **Ouestion:** Does $a^{\phi(n)} = 1 \mod n$ hold for all a in Z_n (not just Z_n^*)? End of proof

2/6/2009 shankar

crypto slide 44

$ \begin{array}{l} \mbox{Generalization of Euler's Theorem (for a in Z_n and n=p·q)} \\ \\ \mbox{If n=p·q, where p and q are distinct primes then a $^{kq(n)+1}$ = a mod-n for all a in Z_n and any non-negative integer k. \\ \\ \mbox{Proof: Assume a not in Z_n* (o/w follows from Euler's Theorem Variant).} \\ \\ \mbox{Also assume a is not 0 (otherwise result holds trivially).} \\ \\ \mbox{So a is a multiple of p or q but not both. Suppose a is a multiple of q.} \\ \\ \mbox{Decompose } (a^{k\phi(n)+1} mod-n) into mod-p and mod-q, and use CRT. a $^{k\phi(n)+1} mod-p = a^{k\phi(n)} \cdot a mod-p $$ mod-p $$ a mod-p $$ (a rpt p, so $a^{\phi(p)} = 1$ mod-p by Euler's theorem) $$ a mod-p $$ a mod-p $$ (a rpt p, so $a^{\phi(p)} = 1$ mod-p by Euler's theorem) $$ a mod-p $$ So by CRT $a^{k\phi(n)+1}$ mod-n = a mod-n $$ Hore is true for any n that is a product of distinct primes. \\ \end{array}$	 Public Key Algorithms (NS chapter 6) Public key algorithm: prinicpal has public key and private key Examples: RSA and ECC: encryption and digital signatures. ElGamal and DSS: digital signatures. Diffie-Hellman: establishment of a shared secret Zero knowledge proof systems: authentication Most public key algorithms are based on modulo-n arithmetic. 	
2/6/2009 shankar crypto slide 45	2/6/2009 shankar crypto slide 46	
 Recall some modulo-n arithmetic Modulo-n addition: (a+b) mod-n Any x has a unique additive inverse mod-n. Easily computed. Modulo-n muliplication: (a-b) mod-n Any x has a unique multiplicative inverse mod-n iff gcd(x,n)=1 Existence and value easily computed (Euclid's alg) Z_n = {0, 1,, n-1} Z_n* = {numbers in Z_n that are relatively prime to n} \$\phi(n)\$ = number of elements in Z_n*; easy to get given prime factorization Modulo-n exponentiation: (a^b) mod-n Any x has a unique exponentiative inverse mod-n iff gcd(x,n)=1. Easy to compute? For all x in Z_n*: x^{\$\phi(n)} = 1 mod-n. (Euler's Theorem) For all x in Z_n and non-negative k: x^{\$\kuple(n)+1} = x mod-n. (Variant) For all x in Z_n and non-negative integer k: x^{\$\kuple(n)+1} = x mod-n. 	RSA (Rivest, Shamir, Adleman) • Key size variable (longer for better security, usually 512 bits, 100 digits). • Plaintext block size variable but smaller than key length. • Ciphertext block of key length. • RSA is much slower to compute than secret key algorithms (e.g., DES) • So not used for data encryption	

Т

RSA Algorithm • Generation of public key and corresponding private key Choose two large primes, p and q (p and q remain secret). Let n = p.q. Choose a number e relatively prime to \u03c6(n) (= (p-1)·(q-1)) Public key = <e, n=""></e,> Find multiplicative inverse d of e mod-\u03c6(n) [i.e., e.d = 1 mod-\u03c6(n)] Private key = <d, n=""></d,> • Encryption/decryption To encrypt message m using public key: ciphertext c = m^e mod-n To decrypt ciphertext c using private key: plaintext m = c^d mod-n Signing/Verifying signature To sign a message m using public key: signature s = m^d mod-n To verify signature c using public key: plaintext m = s^e mod-n 	Why does the decryption operation work, ie, why is m ^{e-d} = m m ^{e-d} = m ^{1 mod-φ(n)} [because e-d = 1 mod-φ(n)] = m ^{1+kφ(n)} [definition of mod] = m [Euler's theorem generalization, applicable because - m in Z _n (in RSA) - n is product of distinct primes p and q] Why is RSA secure • Only known way to obtain m from m ^e is by m ^{e-d} where d = e ⁻¹ mod-φ(n) • Only known way to obtain φ(n) is with p and q • Factoring a large number is hard, so hard to obtain p and q given n
2/6/2009 shankar crypto slide 49	2/6/2009 shankar crypto slide 50
 Efficient modulo exponentation Need to get m^e mod-n, for 512-bit (100-digit) numbers m, e, n Consider a small example: 123⁵⁴ mod 678 Naive way: Multiply m with itself e times and then take mod-n. e multiplications of increasingly larger numbers (m², m³,). Too expensive. 123⁵⁴ is approx 100 digits (54·log₁₀123) Better way: Multiply m with itself and take mod-n; repeat e times. e multiplications of large (100-digit) numbers, and e divisions. Still expensive. Much better: Exploit m^{2x}=m^x·m^x and m^{2x+1}=m^{2x}·m. Log e multiplications. 	<pre>ModuloExponentiation(m, e, n) (x₀, x₁,, x_k) ← e in binary; // x₀ = 1 initially y ← m; j ← 0; // y = m^{x0} while j < k do // loop invariant: y = m^(x0,,xj,0) mod-n</pre>

Generating RSA Keys consists of two parts: • find big primes p and q • finding e relatively prime to $\phi(n) (= (p-1) \cdot (q-1))$ • $d = e^{-1} \mod \phi(n)$ Finding big primes p and q (100-digit numbers) • Choose random n and test for prime. If not prime, retry. (recall that Pr(100-digit number is prime) = 1/230) • Testing n for prime: • No practical deterministic way (eg, dividing n by every $j < \sqrt{n}$) • Practical probabilistic ways (ie, n is prime with high prob) • Probabilistic test 1: Generate random n and a in 1n; Treat n as prime if $a^{n-1} = 1 \mod -n$; • Prob[test fails] is low (-10^{-13} for 100-digit n). Note: converse holds from Euler's theorem • Can make the test stronger by trying several different a. • But <i>Carmichael numbers</i> : 561, 1105, 1729, 2465, 2821, 6601,		Finding e (approach 1):• Choose p and q as described above• Choose e at random until it is relatively prime to $\phi(n)$ Finding e (approach 2):• Fix e such that m ^e easy to compute (i.e., few 1's in binary)• Choose primes p and q such that e relatively prime to $(p-1) \cdot (q-1)$ • One choice: $e=3 = (11)_2$ [so m ^e needs 2 multiplications]• Need to pad small m.• If m < n ^{1/3} then m ^e mod-n = m ³ , so attacker can get m by $(m^e)^{1/3}$ • Need to use different pads if m is sent to 3 principals with public keys $(3,n_1)$ (3,n_2), $(3,n_3)$.• Attacker has m ³ mod-n ₁ , m ³ mod-n ₂ , m ³ mod-n ₃ • CRT yields m ³ mod-n ₁ · n ₂ · n ₃ • Because m <n<sub>1, m<n<sub>2, m<n<sub>3, attacker has m³ < n₁ · n₂ · n₃ and so $(m^3 \mod -n_1 \cdot n_2 \cdot n_3)^{1/3}$ yields m.• Another choice: $e = 2^{16}+1 = 65537$ [so m^e requires 17 multiplications]• No need for pad since unlikely that m⁶⁵⁵³⁷ < n.• No need for random pad when m sent more than once since unlikely that m would be sent to 65537 different recipients.</n<sub></n<sub></n<sub>	
2/6/2009 shankar	crypto slide 53	2/6/2009 shankar	crypto slide 54
Public Key Cryptography Standard (PKCS) • Standard encoding of information to be signed/encrypted in RSA • Takes care of • encrypting guessable messages • signing smooth numbers • multiple encryptions of same message with e=3 • Encryption (fields are octets) • msb 0 2 • Note that the data is usually small (DES/3DES/AES key, hash, etc) Signing (fields are octets)		 Diffie-Helman Allows any two principals that do not have a to establish a shared secret over an open ch Initially A and B share: (large) prime p and g A chooses random 512-bit number S_A, sends B chooses random 512-bit number S_B, sends A computes T_B^{SA} mod-p [= g^{SB-SA} mod-p = g^{SA} B computes T_A^{SB} mod-p [= equals g^{SA-SB} mod A and B now share g^{SA-SB} mod-p, which can g Attacker knowing T_A and T_B and p and g car logarithm modulo-n is hard. Does not provide authentication: A does not know whether it is talking to B o A sends [sender id A, g^{SA} mod-p] 	(Basic) already have a shared secret nannel. g < p (publicly known). $s T_A = g^{SA} \mod p$ to B. $s T_B = g^{SB} \mod p$ to A. A ^{-SB} mod-p]. d-p]. serve as a key. nnot obtain $g^{SA-SB} \mod p$, because or C.
• msb 0 1 at least eight octets 0 ASN.1 encoded by a different of $9FF_{16}$ 0 ASN.1 encoded by a different different different different difference between the difference between th	ed digest lsb est	A sends [sender ld A, g filod-p] C se A and C share secret g ^{SA-SC} mod-p, b	ends [sender id B, g ^{sc} mod-p] out A thinks it is talking to B

Diffie-Helman with Published Numbers			Authenticated Diffie-Helman	
 Assume PKI (public key infrastructure) that publishes for every principal X: (X, g, p, g^{SX} mod-p) Then A can encrypt info with (g^{SA-SB} mod-p) and only B can decrypt it. Note that initial handshake is not needed either. 			 If A and B know a secret (eg, shared secret key, public key), there are various ways for A and B to authenticate each other: Encrypt Diffie-Helman exchange with pre-shared secret. Encrypt Diffie-Helman exchange with other's public key. Sign Diffie-Helman value with your private key. Following Diffie-Helman exchange, transmit hash of shared Diffie-Helman value, sender name, and pre-shared secret. Following Diffie-Helman exchange, transmit hash of initially transmitted Diffie-Helman value and pre-shared secret. But if A and B have pre-shared secret, why resort to Diffie-Helman? Perfect-forward secrecy 	
2/6/2009 shankar		crypto slide 57	2/6/2009 shankar	crypto slide 58
Man-in-the-middle attac Let pw _{AB} be A's password (below g ^X mod-p abbrev A send [A, g ^{SA}] to B < A and C share send [g ^{SC-SA} { pw _{AB} }]	ck possible even if A and B s d to B, and pwBA be B's passwer viated to g ^X) C alter msg to [A, g ^{SC}] alter msg to [B, g ^{SC}] e g ^{SC-SA} > decrypt with g ^{SC-SA} , alter to [g ^{SC-SB} { pwAB }]	hare passwords ord to A B send [B, g ^{SB}] to A and B share g ^{SC-SB} > decrypt using g ^{SC-SB} A authenticated (error)	Zero-knowledge pro • Allows you to prove that you know a secret w • RSA is an example (secret is private key) Classic example is based on graph isomorphism • "Key" generation • A chooses a large graph (eg, 500 vertices • A renames the vertices to produce an iso • Graphs G _{A1} and G _{A2} are A's "public key". • The vertex renaming transforming G _{A1} to • A authenticates to B as follows: • A sends B a new set of graphs {G ₁ ,, G _k } • B randomly divides the graphs into subset • B challenges A to provide vertex-renamin • every graph in subset 1 is isomorphic • every graph in subset 2 is isomorphic	of systems without revealing it. n) G _{A1} . morphic graph G _{A2} . G _{A2} is A's "private key". , each isomorphic to G _{A1} . t 1 and subset 2. gs establishing that to G _{A1} to G _{A2} authenticating itself.

 Why does it work? Graph isomorphism is a hard problem: knowing a renaming to G_{A1} does not help obtain a renaming to G_{A2}. So renamings could only have been generated by A originally. Unlikely that they were generated by C (having eavesdropped on many previous authentications of A), because the choice of the subsets 1 and 2 is random. 	 Fiat-Shamir variant Key generation A's private key: a large random number s A's public key: (n,v), n is product of two large primes (as in RSA) v is s² mod-n (so only A knows square root mod-n of v) Authentication A chooses k random numbers, r₁,, r_k A sends r₁² mod-n,, r_k² mod-n, to B B randomly splits these into subset 1 and subset 2, and informs A A sends s·r_i mod-n for each r_i² mod-n in subset 1 r_i mod-n for each r_i² mod-n in subset 2 B checks whether for each entry in subset 1: (reply_i)² = v·r_i² mod-n for each entry in subset 2: (replyi)² = r_i² mod-n If so, A is authenticated
2/6/2009 shankar crypto slide 61	2/6/2009 shankar crypto slide 62
 Why does it work? Finding square root mod-n is at least as hard as factoring. Knowing sri mod-n does not help obtain ri mod-n, and vice versa. So replies could only have been generated by A originally. Unlikely that they were generated by C (having eavesdropped on many previous authentications of A), because the choice of the subsets 1 and 2 is random. 	 Zero-knowledge signatures A zero-knowledge system can be transformed to a public key signature, but performance is poor. Note that authentication is interactive but signature is not. Trick: use a hash to provide a "random" choice of subset 1 and subset 2. Suppose hash function chosen provides k-bit hash (e.g., k=128). A chooses k random numbers, r₁,, r_k A forms msg [data to be signed r₁² mod-n,, r_k² mod-n] A obtains hash of msg, and provides a reply vector in which the 1's in the hash correspond to subset 1 and the 0's correspond to subset 2: if hash bit i is 1 then the reply vector has s-r_i mod-n in position i if hash bit i is 0 then the reply vector has r_i² mod-n in position i Why does it work? Forging a signature on a message requires having both possible replies for all the r_i's.

crypto slide 63

2/6/2009 shankar

2/6/2009 shankar

crypto slide 64