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Introduction to Cryptology (NS chapter 2) 

 

Encryption:  plaintext + key   →    ciphertext 

Decryption:  plaintext            ←    ciphertext + same/related key 

 

� Key is secret.  Encryption/decryption algorithms not secret. 

� Given plaintext and cyphertext, computationally hard to get key. 

� Attacks depend on what is available 
▪ Ciphertext available: search key/plaintext space, replay, … 
▪ Plaintext-ciphertext pairs available: … 
▪ Chosen plaintext-ciphertext pairs available: … 

� Types of cryptographic functions: 
▪ Secret key (symmetric key):  DES, AES, … 
▪ Public key (asymmetric): RSA, DH (Diffie-Helman), …  
▪ Hash functions (of cryptographic kind): MD5, SHA-1, … 
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Secret-key (symmetric) crypto 

• Single key: used in encryption and in decryption.  

• Ciphertext about the same length as plaintext. 

• Provides confidentiality over insecure channel/storage. 
o A and B share secret key K 
o A sends K(plaintext).  
o B receives and decrypts using K. 

• Provides authentication over insecure channel: 
o A and B share secret key K 

o A sends random number rA to B, and expects K(rA) back 

o B sends random number rB to A, and expects K(rB) back 
o This particular one is flawed. 

• Provides integrity over insecure channel: 

o A and B share secret key K 
o A sends plaintext and fixed-length part of K(plaintext) to B,eg, last 128 bits 
o Called MAC (msg authentication code) or MIC (msg integrity code)) 
o B receives plaintext, computes its MAC and checks against received MAC 
o This particular protocol provides attacker with plaintext-ciphertext pairs 
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Hashing (of cryptographic kind) 

• Hash function H(.) transforms plaintext msg of arbitrary length  
to fixed-length hash H(msg) 
o Easy to compute H(msg) from msg 
o Not easy to find msg1 and msg2 such that H(msg1) = H(msg2) 

• Keyed hash: Hash msg along with a shared secret S, e.g., H(msg|S) 

• Keyed hashing provides all the capabilites of secret-key crypto. 

• Integrity: 
o Send msg and H(msg|S) as MAC. 

• Confidentiality: 

o Generate sequence C0, C1, C2, …, where C0 is random and Ci+1 = H(Ci|S); 
to encrypt an arbitrary-length message, XOR it with the sequence. 

o So to send message = [M0, M1, M2, …], send [C0, M1⊕C1, M2⊕C2, …] 



2/6/2009 shankar       crypto slide 5   

 

Public key (asymmetric) crypto 

• Each principal has two related keys: 
o private key (not shared) 
o public key (shared with world).  
o Plaintext encrypted with one can only be decrypted with the other. 

• Confidentiality: 
o B transmits pubkeyA(plaintext). A decrypts using privkeyA. 

• Integrity and digital signature (non-repudiation) 
o A transmits privkeyA(plaintext) 
o Anyone with pubkeyA can decrypt it  

and be assured that it could only have been sent by A. 

• But public-key crypto is orders slower than secret-key crypto/hashing, 
so it is used in conjunction with the latter. 

• To sign a message: sign the hash of the message. 

• To encrypt or integrity-protect a message: 
o First use public-key crypto to establish a per-sesssion secret; 

eg, B creates per-session key K and sends pubkeyA(K) to A 
o Then use secret-key crypto or keyed-hashing. 
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Secret Key Crypto (NS chapter 3) 

• Consider fixed-length message of k bits here.  
o Variable-length message addressed later. 

• Fixed-length message and Fixed-length key →  message-length output 
o DES: 64-bit message, 56-bit key 

• If key length j is too small, insecure.  If j is too large, expensive.  

• Want function S mapping k-bit msg to k-bit output such that: 
o For decryption, S must be 1-1 mapping from 2K to 2K. 
o For security, S must be “random”:  

• even if msg1 and msg2 differ in just one bit,  

• S(msg1) and S(msg2) differ in many bits (approx k/2 bits).  
o So S cannot be a “simple” function; so following are no good: 

� S(msg) = msg ⊕ key 
� S(msg) = msg bits in reverse order 
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Secret Key Crypto (contd.) 

• Conceptually simple secret-key algorithm S 
o “Substitution” table: random permutation of all N-bit strings. 
o S(i) is ith row of table 
o Table obtained with physical-world randomness (eg, coin toss). 
o Pro: S is perfectly random 
o Con: need to store table of size k.2k. Impractical for k=64 

• Goal: Deterministic algorithm that produces “random looking” output. 
   Want each output bit to be “influenced” by all input bits. 

• Basic approach: mix permutations and substitutions  
o Divide k-bit block into p-bit blocks for reasonably small p (eg, p=8). 
o Use p x p substitution tables “garble” p-bit output blocks.  
o Concatenate the p-bit output blocks to get a k-bit block  
o and permute to get garbled k-bit output block.  
o Repeat 1, 2, 3 for n rounds, where n is large enough to get good scrambling. 

• Decryption, ie, reversing, is no more expensive. 

Often can be done with the same algorithm/hardware.  
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DES 

 

Final permutation is inverse of initial permutation. 

Not of security value (why?, what does this mean?) 

  

initial permutation 
  

  generate 16  
48-bit keys 

K1, K2, ..., K16 
  

round i, i = 0, 1, ..., 15, uses 

Ki and output of previous round 
  

   
swap left and right halves 

  

  

64-bit input 

64-bit intermediate 

56-bit key 

64-bit intermediate 

64-bit output 

64-bit output 

final permutation (inverse of initial) 
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DES: Generation of K1, K2, ..., K16 

 

• 

56-bit key 

C0 D0 

rotate each left by 
   1 bit in rounds 1,2,9,16 
   2 bits in other rounds 

C1 D1 

permute 56-bit key, 
split to form two 28-bit parts 

48-bit key K1 

Each part: permute, drop some 
bits to form 24-bit chunk. 
Join to form one 48-bit key K1 

repeat 16 times 
get Ci, Di, Ki 

 

i = 1, …, 16 
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DES encryption round 

• DES decryption round: given R(n+1)| L(n+1) →  R(n)|L(n) 

same as encryption with arrows reversed except for mangler function 

64-bit input 

L(n) R(n) 

L(n+1) R(n+1) 

64-bit outpu t 

key  
Kn Mang ler function  

XOR 

key 

K(n+1) 
n = 0, …, 15 
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DES: decryption  = encryption with Ki’s in reverse order  

 

DES_encryption { 

a1: L0|R0  ← iperm(dblk);  

a2: for n= 0, …, 15 do  

a3: Ln+1 ← Rn ; 

a4: Rn+1 ← Manglern(Rn,Kn+1)⊕Ln;  

   //Yields L16|R16 

 

 

a5: L17|R17  ← R16|L16 ; 

a6: crblk ← ipermInv( R16|L16 ); 

} 

 

// key order: K1, ..., K16 

 

DES_decryption { 

b1: R16|L16 ← iperm(cblk);    //a6  bkw 

b2: for n = 15, ⋅⋅⋅, 0 do          //a2  bkw 

b3:   Rn ← Ln+1;                 // a3  bkw 

b4:   Ln ← Mnglrn(Rn,Kn)⊕Rn+1; //a4 bkw 

// sets Ln to X such that 

//  Rn+1 ← Manglern (Rn, Kn)⊕ X 
 // Yields R0|L0 

b5: L0|R0 ← swap(R0|L0 );     // a5 bkw 

b6: dblk ← ipermInv(L0|R0 );   // a1  bkw 

} 

 

// key order K16, …, K1 
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DES: Mangler function 

 

32-bit R  + 48-bit K   →→→→  32-bit output 

• 32-bit R is split up into 8 6-bit chunks (duplicating some bits) 

• 48-bit K split up into 8 6-bit chunks  

• chunk i of R  ⊕  chunk i of K 

• Put 6-bit result in S box i (different for each round) 

• Output of S box is 4-bit chunk 

  

• All chunks concatenated and permuted to get 32-bit output 
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DES: Weak and semi-weak keys  

• 4 weak keys: generate C0=D0=all ones or all zeros 

• 12 semi-weak keys: generate C0 and D0 of alternating 0 and 1 

 

A weak key x is its own inverse, i.e., for any block b: Ex(b) = Dx(b)  

 

Proof 

A weak DES key has each of C0 and D0 to be all ones or all zeroes. 

Since each Ci is a permutation of C0, each Ci is the same as C0. 

Since each Di is a permutation of D0, each Di is the same as D0. 

Each per-round key Ki depends only on Ci and Di.  

So the per-round keys K1, ..., K16 are all equal to each other. 

So the key sequence K1, ..., K16 (used in encryption) is the same as  

the key sequence K16, ..., K1  (used in decryption).  

So encryption and decryption are the same, i.e., Ex(b) = Dx(b).  

So Ex(Ex(b)) = b. 
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DES: Weak and semi-weak keys 

 

A semi-weak key x is the inverse of another semi-weak key y,  

i.e., for any block b: Ex(block) = Dy(block) 

 

Proof 

Let  <K1(x), ..., K16(x)>  be the per-round keys obtained from x. 

Show that there is another semi-weak key y such that y 

<K1(x), ..., K16(x)>  = <K16(y), ..., K1(y)>.  

Hence for any block b: Ex(block) = Dy(block) 
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Multiple Encryption DES (EDE or 3DES) 

• Makes DES more secure 

o Encryption: encrypt key1 → decrypt key2 → encrypt key1 

o Decryption: decrypt key1 → encrypt key2 → decrypt key1  

• EE (encrypting twice) with same key is not effective.  
Just equivalent to using another single key. 

• EE with key1 and key 2 is not so good.  

• Given <m1, c1>, <m2, c2>, ..., there is an attack that requires 2
56 storage. 

o Table A with 256 entries <key Ki, E(Ki, m1)>, sorted by column 2. 
o Table B with 256 entries <key Ki, D(Ki, c1)>, sorted by column 2. 
o Do join of Table A and Table B.  
o Each match provides candidate <KA, KB> for <key1, key2>.  
o Use <m2,c2>, etc. to weed out false candidates.  

 

Current standard encryption algorithm: AES 
o different sizes of keys (64, 128, …) 
o different data block sizes (…, 64, 128, …) 
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RC4 encryption algorithm 

• Stream cipher (one time pad), can use variable length key.  

• Key stream independent of plaintext 

• 8x8 S-box. each entry is a key-permutation of 0..255 

 byte S[0..255]  ←  0..255;   // S[i]=i 

 byte i := 0;   j ← 0;              // counters 

 byte K[0..255] ← key | … |key;  
 for i = 0 to 255 do  

     j ← ( j + S[i] + K[i] ) mod 256;  

    swap S[i] and S[j] 

S-box 

initialization 

 i ← (i+1) mod 256;  

 j ← (j+S[i]) mod 256;  
 swap S[i] and S[j];  
 return S[ (S[i] + S[j] ) mod 256 ] ; 

 

Generate  
random byte 

⊕ with pt/ct for 

encrypt/decrypt 
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Encrypting Large Messages (NS chapter 4) 

 

Encrypting large msg given method to encrypt a k-bit block 

• Pad message to multiple number of blocks:    msg = (M1, M2, …, ) 

• Use block encryption repeatedly to get ciphertext = (C1,  C2, …, )  

o Same Mi’s get encrypted to different Ci’s 

o Repeated encryptions of same msg result in  different ciphertexts. 

o Ciphertext cannot be changed to cause predictable change to decrypted 
plaintext. 

• Various methods: ECB, CBC, CFB, OFB, CTR, others 

_________________________________________________________ 

Electronic Code Book (ECB) 

• Obvious approach: encrypt/decrypt each block independently 

• Encryption:  Ci = EK(Mi) 

• Decryption:  Mi = DK(Ci) 

• not good: repeated blocks get same cipherblock  
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Cipher Block Chaining (CBC) 

o Ci = EK(Mi ⊕ Ci-1),  where C0 is a random IV (initialization vector) 

o Transmit IV and C1, ..., Cn 

• Decryption: reverse arrows; change EK to DK 

o Mi = DK(Ci ⊕ Ci-1),  where C0 is IV 

• Attack 1: Modify Cn: garbles Mn unpredictably and Mi+1 predictably   
    other Mi’s unchanged.  Can use a CRC to overcome this. 

• Attack 2: Exchanging cipherblocks can counteract CRC to some extent 

⊕⊕⊕⊕ 

 EK 

C1 

M1 

⊕⊕⊕⊕ 

 EK 

C2 

M2 

IV • • • 

 

• • 

 

• Encryption:  

⊕ Mi with random Ri 

obtained from Ci-1 
⊕⊕⊕⊕ 

 EK 

Cn 

Mn 

Cn-1 
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Output Feedback Mode (OFB)  

64-bit OFB 

• Generate stream cipher B0, B1, ..., where B0 is IV and Bi =EK(Bi-1) 

• Then Ci = Bi ⊕ Mi  

• So a one-time pad that can be generated in advance.  

• One-time pad: 

o Attacker with <plaintext, ciphertext> can obtain Bi’s  

• and so generate ciphertext for any plaintext   

  

k-bit OFB  (k < 64)  

• Generate stream cipher in k-bit chunks, rather than 64-bit chunks. 

• Let  Xi =EK(Bi-1), where B0 is 64-bit IV  

• Let Yi be k leftmost bits of Xi  

• Ci = Yi ⊕ Mi  

• Bi is rightmost 64 bits of  Bi-1 | Yi  
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Cipher Feedback Mode (CFB) 

64-bit CFB 

• Like OFB except that output Ci-1 is used instead of Bi  

• Ci = Mi ⊕ EK(Ci-1) where C0 is IV 

• Cannot generate one-time pad in advance.  

 

k-bit CFB  (k < 64)  

• Generate ciphers in k-bit chunks, rather than 64-bit chunks. 

• Let Xi =EK(Bi-1), where B0 is 64-bit IV (pad with zeros on left if needed). 

• Let Yi be k leftmost bits of Xi  

• Ci = Yi ⊕ Mi 

• Bi is rightmost 64 bits of  Bi-1| Ci  
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___________________________________________________ 

Counter Mode (CTR) 

• See text 

 

___________________________________________________ 

3DES on Large Messages 

3DES is used with CBC on the “outside” not “inside” 

Using with CBC on inside eliminates self-synchronization of received ciphertext 
(ie, if some ciphertext is garbled, everything is lost) 

 ___________________________________________________ 
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MACs from encryption/decryption (NS chapter 4) 

 

Ensuring integrity (but not confidentiality):  

• CBC, CFB, OFB, … do not protect against “undetectable” modifications by 
attacker knowing the plaintext 

• Of course, a human may find something fishy. 
So can a computer that checks for structure in plaintext. 

• Need a cryptographic checksum. 

• Standard way: send CBC residue (last block in CBC encryption)  
along with the plaintext message and IV.
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Ensuring confidentiality and integrity of a large messsage 

• Not ok: Send CBC encrypted message and CBC residue.  
o Just repeats the last cipherblock 

• Not ok: CBC_Encrypt[ plaintext, CBC_residue[ plaintext ] ] 

o Last block is encryption of zero ( ⊕ of last cipherblock with itself) 

• Not ok: Encrypt[ plaintext, noncryptographic checksum (eg, CRC)] 
o Almost works. Subtle attacks are known.  

• Ok: Encrypt_Key2[ plaintext, CBC_residue_Key1[ plaintext] ]  
o But twice the work.  

• Key2 can be related to Key2 (eg, key1 = key2 ⊕ C), but still same work. 

• Probably ok: CBC_encrypt[plaintext, weak cryptographic checksum (plaintext]] 

• Probably ok: CBC_encrypt[ plaintext, hash[ plaintext] ] 

  

• Offset Codebook Mode (OCB) 
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Hashes and Message Digests (NS chapter 5) 

  

• msg  →  fixed-length hash  H(msg) 

• Not 1-1 since msg space is much larger than hash space 

• secure one-way function:  
computationally hard to find two msgs m1 and m2 s.t. h(m1)=h(m2) 

Assuming hash is random, how long should it be?   

• Consider hash space of K (ie, hash of (log K) bits) 

• Consider N randomly chosen messages, m1, m2 , …, mN 

• Pr[ there is a pair of distinct msgs < mi, mj > : H(mi) = H(mj) ] 

•  =  Pr[ H(m1)=H(m2) or H(m1)=H(m3) or … or H(mN-1)=H(mN) ] 

•  ≈  Sum {over distinct < mi, mj > pairs} (1/K) 

•  =  [N(N-1)/2] [1/K] 

• So if N= K then Pr is 1/2  

• K should be large enough so that searching through K  is hard. 

• So K = 2128 is ok (assuming search through 264 is hard) 
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Keyed Hash: Hash with secret key 

 

Keyed hash  equivalent to secret-key encryption  

• confidentiality 

• authentication 

• integrity 

 

Authentication with keyed hash 

• A and B share secret key KAB 

• A sends random number rA to B. 

• B computes H(KAB|rA) and sends it back.  

• A computes H(KAB|rA) (cannot invert it) and check if received value equals it.  
Match authenticates B to A. 

• Similarly, B sends random number rB to A and expects H(KAB|rB) back. 
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MAC (message integrity checksum) with keyed hash 

  

 Obtaining MAC for msg = (m1, m2 , …,mn)  given shared secret key KAB  

• Obvious approach:  MAC = H( KAB | msg ) 

• Not ok because H(m1, m2 , …, mn) is usually H(H(m1, m2 , …, mn-1) mn) 

• So attacker can add any mn+1 and get its MAC as H(old MAC, mn+1). 

 

• Possible fixes:  

o MAC = H(msg | KAB) 

o MAC = half the bits of H(KAB | msg ) 

o MAC = H(KAB | msg | KAB) 

 

• HMAC (de facto standard):  MAC = H(KAB | H(KAB|msg))  (almost) 
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Encryption / encryption + integrity with keyed hash 

 

Encryption of msg = (m1, m2, …, mn) 

• Generate (can be precomputed) one-time pad:  

• bi = H(KAB|bi-1)  where b0 is IV 

• ci = bi ⊕ mi  

• transmit IV and c1, c2, ..., cn 

• Decryption identical 

 

Encryption and integrity of msg = (m1, m2, …, mn) 

• Encryption with plaintext mixed into one-time pad 

• bi =H(KAB|ci-1)  where c0 is IV 

• ci = bi ⊕ mi  

• Decryption straightforward (homework) 
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Hash from secret-key encryption/decryption 

Hashing a block with secret key encryption 

• Hash(block) = Encrypt constant (eg, 0) using block as the key 

Unix (original) uses a variation to store passwords 

• When user sets password 

o Concatenate 7-bit ASCII of first eight chars to get 56-bit secret key 
o Generate 12-bit random number (called salt) 
o Encrypt the number 0 using the key and a salt-modified DES 

� defends against DES-cracking hardware 
� salt indicates duplicated bits in 32-bit R � 48-bit mangler input 

o Store salt and ciphertext 
 

• When user enters password,  

o compare stored ciphertext with that computed from password 
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Hashing large messages with secret-key encryption (key size k) 

• Obvious extension of above approach: 

o Divide large message into k-bit chunks m1, m2, ... 
o Ci = encryption of Ci-1 with mi as key, where C0 is a constant 
o Let the last Ci be the hash of message 

• Not ok if Ci is usually too small to be a good hash (eg, 64 bits in DES) 

• Sufficient fix is to ⊕ each stage’s input with previous stage’s output: 

o C1 = encryption of a constant C0_ with M1 as key 

o For i > 1: Ci = encryption of Ci-2 ⊕ Ci-1 with Mi as key 
o Let the last Ci be the hash of message 

• One way to generate 128 bits of hash with DES: 

o Generate 64-bit hash as above. 
o Generate another 64-bit hash with message blocks in reverse order 
o This approach has a flaw (homework) 

• Better way to generate 128 bits of hash with DES: 

o Generate two 64-bit hashes as above but with different constants. 
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MD4: 32-bit-word-oriented hash function 

• message of arbitrary number of bits →→→→  128-bit hash 

• Step 1: Pad msg to multiple of 512 bits  

pmsg  ←  msg | one 1 |  p 0’s |  (64-bit encoding of p);  
where  [msgsize+1+p+64]  is a multiple of 512 (note: p in 1..512) 

• Step 2:  Process pmsg in 512-bit chunks to obtain 128-bit hash md 

 128-bit md               treated as     4 words: d0, d1, d2, d3; 

 512-bit pmsg chunk  treated as   16 words: m0, m1, …, m15;  

Initialize <d0…d3> to <01|23|...|89|ab|cd|ef|fe|dc|...10>;  

For each 512-bit chunk c of msg:  

e0…e3  ← d0…d3;     // store current md for use later 
// Pass 1: mangle d0…d3 using m0…m15, mangler H1, permutation J 

For i = 0, ..., 15:    dJ(i) ← H1(i, d0, d1, d2, d3, mi);  
// Pass 2: mangle d0…d3 using m0…m15, mangler H2, permutation J 

For i = 0, ..., 15:    dJ(i) ← H2(i, d0, d1, d2, d3, mi);  

// Pass 3: mangle d0…d3 using m0…m15, mangler H3, permutation J 

For i = 0, ..., 15:    dJ(i) ← H3(i, d0, d1, d2, d3, mi);  

d0…d3  ←  d0…d3  ⊕  e0…e3;   

   md  ←  d0…d3;  
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More Hash Functions 

• MD2: octet-oriented  

o Message of arbitrary number of octets  � 128-bit digest 
o Like MD4 except  

� Step 1: pad to multiple of 16 octets 
� Step 2: append 16-octet checksum (not cryptographic) 
� Step 3: do 18 passes over msg in 16-octet chunks  

• MD5: 32-bit word oriented 

o Message of arbitrary number of bits  � 128-bit digest 
o Like MD4 except four passes and different mangler functions 

• SHA-1: 32-bit word oriented 

o Message of arbitrary number of bits upto 264 bits  � 160-bit digest 

o Like MD5 except five passes, different mangler functions, and  

at start of each stage, 512-bit msg chunk �  5 x 512-bit chunk 
using rotated versions of the msg chunk 
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HMAC: defacto MAC standard 

 

• Can use any hash function H (eg, MD2, MD4, SHA-1) 

• Variable-sized message and variable-length key  

�  fixed-size MAC of same size as output of H  

 

• paddedKey  pad key with 0’s to 512 bits  

 If key is larger than 512 bits, first hash key and then pad 

• h1 H( msg,  paddedKey ⊕ [string of 3616 octets] ) 

• result  H(  h1,  paddedKey ⊕ [string of 5C16 octets] ) 
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A Bit of Number Theory (NS chapter 7) 

 

Need some number theory to understand public key cryptology 

• Modular addition, multiplication, exponentiation over Zn = { 0, 1, ..., n−1} 

• Euclid’s algorithm: gcd and multiplicative inverse 

• Chinese remainder theorem:  (x mod pq)  <=> (x mod p) and (x mod q) 

• Zn* = { j : j > 0 and relatively prime to n} 

• Euler’s totient function φ(n) = | Zn*| 

• Euler’s theorem 

 

• Conventions 

• All variables are integers (positive, zero, negative)  

• unless otherwise stated 

• n is positive integer 
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Numbers modulo-n  

• For any x: (x mod n) equals y in Zn  s.t.  x = y+k⋅n  for some integer k. 

• Nonnegative remainder of  x/n: 
� 3 mod 10 = 3    (3 = 3 + 0·10) 
� 23 mod 10 = 3  (23 = 3 + 2·10) 
� −27 mod 10 = 3   (−27 = 3 + (−3)·10)  (unlike in most prog lang) 

• Integers u and v are said to be equal mod-n if (u mod n) = (v mod n) 

o Math books say “equivalent mod-n”, denoted u mod n ≡ v mod n 
_________________________________________________________ 

Modulo-n addition and additive inverse 

• Mod-n addition is ordinary addition followed by mod-n operation 
o (3+7) mod 10 = 10 mod 10 = 0 
o (3−7) mod 10 = −4 mod 10 = 6 

• Note: (u+v) mod n  = (u mod n)+(v mod n)) mod n 

• Additive inverse mod-n of x is y st (x+y) mod n = 0    
o denoted −x mod n 
o exists for any x and n 
o easy to compute: eg, for x in Zn, additive inverse is n−x 
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Modulo-n multiplication and multiplicative inverse 

• Mod-n multiplication is ordinary multiplication followed by mod-n operation 

o (3·7) mod 10 = 21 mod 10 = 1 

o (8)·(−7) mod 10 = −56 mod 10 = 4 

• Note: (u·v) mod n = (u mod n)·(v mod n)) mod n 

• Multiplicative inverse mod-n of integer x is y s.t. (x⋅y) mod n = 1 

o denoted x-1 mod n 

o 3-1 mod-10  is  7  (3⋅7 = 21 = 1 mod 10). 

o x-1 exists and is unique iff x and n are relatively prime 

� ie, gcd(x,n) = 1 

• Euclid’s algorithm: efficiently computes gcd(x,n) and x-1 (if it exists)  

2/6/2009 shankar       crypto slide 36   

Modulo-n exponentiation and exponentiative inverse 

• Modulo-n exponentiation is ordinary exponentiation followed by mod-n 
o 32 mod 10  =  9 
o 33 mod 10  =  27 mod 10  =  7 
o (−3)3 mod 10  =  −27 mod 10  =  3 

• Note: (uv) mod n  ≠  (uv mod n) mod n 

• Exponentiative inverse mod-n of integer x is y s.t. (xy mod n) = 1 
o 34 = 81 = 1 mod 10, so 4 is the exponentiative inverse mod-10 of 3 
o Exists and is unique iff x and n are relatively prime 
o Easy to compute if n has certain structure. 

_____________________________________________________________ 

Primes   

• Positive integer p is prime iff it is exactly divisible only by itself and 1 

• Infinitely many primes, but they thin out as numbers get larger 
o 25 primes less than 100 
o Pr[ random 10-digit number is a prime ] = 1/23 
o Pr[ random 100-digit number is a prime ] = 1/230 
o Pr[ random k-digit number is a prime ] = /(10·ln k) 
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Euclid’s algorithm for gcd(x, y) 

• [x, y] has same divisors/gcd as [x−y, y],   as [x−k⋅y, y],   as [x mod-y, y],  
            as [y, x mod-y],   as  [y, remainder(x/y)] 

• repeat   [x, y] � [y, remainder(x/y)]   until first entry is 0; 

   second entry is gcd 

• store intermediate remainders in array r 
   r = [r-2   r-1     r0            r1            r2      ... ] 
     x     y    remainder(x/y)    remainder(y/r0)   remainder(r0/r1)  ... ] 
 
Euclid (x,y) with intermediate remainders 
 array r = [r-2  r-1  r0  r1  r2  ...]  
 r-2 x;  r-1  y; 
 integer n  0;  

 while rn-1 ≠ 0 do   
  rn  remainder(rn-2/rn-1);  
  n  n+1;  
return rn-2;  // gcd(x,y) 

• To get multiplicative inverse, need to keep track of quotients, differences 
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Euclid_Augmented (x,y)  
    arrays r, q, u, v;  
    r-2  x;  r-1  y; 
    u-2  1; v-2 0;    
    u-1  0; v-1  1; 
    integer n := 0;  

    while rn-1 ≠ 0 do     // invariant  rn = un⋅x + vn⋅y 
           rn  remainder (rn-2/rn-1);  
           qn  quotient ( rn-2/rn-1 );  
           un  un-2 − qn·un-1; 
           vn  vn-2 − qn·vn-1; 
           n  n+1;  

// Termination: gcd(x,y)  =  rn-2  =  un-2·x + vn-2·y 

return  rn-2 , un-2 , vn-2 ; 
 

• If gcd(x,y)= 1 then multiplicative inverse mod-y of x  =   un-2 

   multiplicative inverse mod-x of y  =   vn-2 

   else multiplicative inverses do not exist  

r = [r-2   r-1     r0    r1    r2   ...] (remainders) 
q = [      q0   q1   q2   ...]  (quotients) 
u = [u-2   u-1   u0   u1    u2   ...]  (differences) 

v = [v-2   v-1    v0   v1    v2   ...]  (differences) 
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Chinese remainder theorem  

• For k=2,  (x mod z1⋅z2) = [x2⋅a⋅z1 + x1⋅b⋅z2] mod z1⋅z2, where 1 = a⋅z1+b⋅z2  

• z1=3, z2=4  (relatively prime) 

Z3⋅4  0 1 2 3 4 5 6 7 8 9 10 11 

Z3×Z4  〈0,0〉 〈1,1〉 〈2,2〉 〈0,3〉 〈1,0〉 〈2,1〉 〈0,2〉 〈1,3〉 〈2,0〉 〈0,1〉 〈1,2〉 〈2,3〉 

• z1=2, z2=4  (not relatively prime) 

Z2⋅4  0 1 2 3 4 5 6 7 

Z2 ×Z4 〈0,0〉 〈1,1〉 〈0,2〉 〈1,3〉 〈0,0〉  〈1,1〉 〈0,2〉 〈1,3〉 

• If z1, z2 relatively prime, no number in [1 .. z1⋅z2] is multiple of z1 and z2 

Let z1,z2,..., zk be relatively prime. 

Then the mapping   Zz1,z2, ..., zk   �   Zz1× Zz2 ×... × Zzk   where 

 x  �  <x mod z1, x mod z2, ..., x mod zk > is 1−1 onto (so invertible). 
So for <x1, x2, ..., xk>: exactly one x in  Zz1,z2, ..., zk  s.t. (x mod zi) = xi 

 

2/6/2009 shankar       crypto slide 40   

Proof of Chinese remainder theorem for k = 2  

• Note Zz1·z2 and Zz1×Zz2 have the same number of elements (namely z1⋅z2) 

• Will show mapping is 1-1 and obtain inverse.  

• For any integer x, let  

o (x mod z1) = x1  and  
o (x mod z2) = x2  

• By Euclid: there exist a and b such that  1 = a⋅z1 + b⋅z2  

• Multiplying both sides by x and taking mod z1⋅z2 

(x mod z1⋅z2)   =  [ x⋅a⋅z1 + x⋅b⋅z2 ] mod z1⋅z2 

           =  [ (x2 + k.z2)⋅a⋅z1 + (x1 + j.z1)⋅b⋅z2) ] mod z1⋅z2 

           =  [ x2⋅a⋅z1 + x1⋅b⋅z2 ] mod z1⋅z2 
   LHS depends only on x1, x2, a, b. 
   So for any  <x1, x2>, exactly one x s.t. (x mod z1) = x1 and (x mod z1) = x2 

• So x and y are the same mod z1⋅z2 

Proof of for k > 2 is by induction 

• If z1, z2, ..., zk, zk+1 rel. prime, then (z1⋅z2⋅⋅⋅zk) and zk+1 are rel. prime 
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Zn* 

Zn* =  { x :  x is mod-n integer relatively prime to n } 

• Z10*  =  { 1, 3, 7, 9 }    whereas   Z10  =  { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } 

• 0 is not an element of Zn* because gcd(0,n) = n for any n 

 
Proof 
Let a and b be in Zn*. By definition gcd(a,n) = gcd(b,n) = 1.  

So there exist ua,va,ub,vb  s.t.  ua⋅a + va⋅n = 1 and  ub⋅b + vb⋅n  = 1. 
Multiply the two equations:  

ua⋅ub⋅(a⋅b) + n⋅( ua⋅vb⋅a + vb⋅ub⋅b + ua⋅vb⋅n) = 1 

Hence, by Euclid alg,  a⋅b  is relatively prime to n, and so a⋅b is in Zn*. 
 
To show x·Zn* is a permutation of Zn*,  show that mapping is 1-1. 
(Work out the details) 

Theorem: 

Zn* closed under multiplication mod-n:  for x,y in Zn*, x⋅y mod-n  in  Zn*. 

Also, multiplying elements of Zn* with any x is a permutation of Zn*. 
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Euler’s Totient Function  

Proof 

For n prime:  φ(n) = n − 1.   Obvious.  

For n = pa where p is prime and a > 0:  φ(n) = (p−1)⋅ pa−1  

Zn = {0, 1, 2, …, p, …, 2⋅p, …, 3⋅p, …, …, …, (pa-1 − 1)⋅p, …, (pa) − 1}. 

Only the multiples of p can divide n. There are (pa-1 − 1) of them.  

Removing them from the set {1, 2, ..., n-1} yields Zn* 

So φ(n) = (n−1) − (pa−1 − 1)  =  (pa − 1) − (pa−1 − 1) = pa − pa−1 = (p−1)⋅ pa−1  

φ(n): number of elements in Zn* 

• For  n  prime:  φ(n) = n − 1 

• For  n = pa   where p is prime and a >0:  φ(n) = (p−1)⋅ pa−1  

• For n = p·q   where p and q are relatively prime: φ(n) = φ(p)⋅φ(q) 

• For n = p1
a1 ⋅ p2

a2 ⋅ ⋅ ⋅ ⋅ pk
ak where p1, ..., pk are prime:   

φ(n) = φ(p1)
a1 ⋅ φ(p2)

a2 ⋅ ⋅ ⋅ ⋅ φ (pk)
ak 
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For n = p⋅⋅⋅⋅q  where p and q are relatively prime:  φ(n) = φ(p)⋅φ(q) 

Let mp = m mod p  and  mq = m mod q.  Abbr “relatively prime to” to rpt. 

First show that  m rpt p⋅q  iff  mp rpt p  and  mq rpt q. 

• Assume m rpt p⋅q. Then there exist u and v such that u⋅m  + v⋅p⋅q = 1. 

Substituting m = mp+k⋅p, we get  u⋅mp + p⋅(u⋅k + v⋅q) = 1, so  mp rpt p. 
Similarly, mq rpt q. 

• Assume  mp rpt p and mq rpt q. Then there exist up, vp, uq, vq, such that 

up⋅mp+vp⋅p = 1  and  uq⋅mq+vq⋅q = 1. 

So  up⋅(m − k⋅p) + vp⋅p = 1  for some k, or up⋅m + (vp − up⋅k)⋅p = 1 

Similarly, for some j,       uq⋅m + (vq − uq⋅j)⋅q = 1 
Multiplying the two, we get  

[upuqm  +  up(vq − uq j)⋅q  + uq(vp − upk)⋅p]⋅m  + (vp−upk)⋅(vq−uqj)⋅p⋅q = 1 
So m rpt n. 

• So there is a 1-1 correspondence between numbers in Zp.q* and Zp* ×××× Zp*. So φ(n) 

= φ(p)⋅φ(q). 

For n = p1
a1 ⋅⋅⋅⋅ p2

a2 ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ pk
ak where p1, ..., pk are prime. 

(homework) 

End of proof 
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Euler’s Theorem 

Proof:  
Let x be the product of all the elements of Zn*. 

Because Zn* is closed under multiplication, x is in Zn* and x
−1exists. 

Let b1, b2, ⋅⋅⋅, bφ(n) be the elements of Zn* listed in some order.  

Let y = (a⋅b1)⋅(a⋅b2)⋅⋅⋅⋅(a⋅bφ(n))⋅ So y = a
φ(n)⋅x  mod-n. 

But a⋅b1, a⋅b2, ⋅⋅⋅, a⋅bφ(n) is also Zn* permuted. So y = x mod-n. 

Thus  aφ(n)⋅x = x mod-n.  Multiplying sides by x−1 yields  aφ(n) = 1 mod-n. 

 

Proof:  ak⋅φ(n)+1  =  ak⋅φ(n) ⋅a  =  aφ(n)k⋅ ⋅a = [aφ(n)]k⋅ ⋅a = 1k ⋅a = a 

For all a in Zn*:  a
φ(n) = 1 mod-n 

Euler’s Theorem Variant:  

For all a in Zn* and any non-negative integer k:  a
 k⋅φ(n)+1 = a mod-n 

Question:  Does aφ(n) = 1 mod-n   hold for all a in Zn (not just Zn*) ? 
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Generalization of Euler’s Theorem (for a in Zn and n=p⋅⋅⋅⋅q) 

Proof:  Assume a not in Zn* (o/w follows from Euler’s Theorem Variant). 
Also assume a is not 0 (otherwise result holds trivially). 
So a is a multiple of p or q but not both. Suppose a is a multiple of q.  

Decompose (ak⋅φ(n)+1 mod-n) into mod-p and mod-q, and use CRT. 

ak⋅φ(n)+1 mod-p =  akφ(n) ⋅a  mod-p 

  =  akφ(p)⋅φ(q) ⋅a  mod-p (because φ(n) = φ(p)⋅φ(q)) 

  =  aφ(p)⋅k⋅φ(q) ⋅a  mod-p 

  =  1k⋅φ(q) ⋅a  mod-p    (a rpt p, so aφ(p) = 1 mod-p by Euler’s theorem) 
  =  a  mod-p  

Similarly  ak⋅φ(n)+1mod-q =  a  mod-q 

So by CRT  ak⋅φ(n)+1 mod-n = a mod-n 

 

Further generalization:  

Above is true for any n that is a product of distinct primes. 

If n=p⋅q, where p and q are distinct primes then  

a k⋅φ(n)+1= a mod-n for all a in Zn and any non-negative integer k. 
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Public Key Algorithms (NS chapter 6) 

• Public key algorithm: prinicpal has public key and private key  

• Examples: 

o RSA and ECC: encryption and digital signatures. 
o ElGamal and DSS: digital signatures.  
o Diffie-Hellman: establishment of a shared secret 
o Zero knowledge proof systems: authentication 

 

• Most public key algorithms are based on modulo-n arithmetic. 
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Recall some modulo-n arithmetic 

• Modulo-n addition: (a+b) mod-n 

o Any x has a unique additive inverse mod-n. 
o Easily computed. 

• Modulo-n muliplication: (a⋅b) mod-n  

o Any x has a unique multiplicative inverse mod-n iff gcd(x,n)=1 
o Existence and value easily computed (Euclid’s alg) 

• Zn =  {0, 1, ..., n-1} 

• Zn* =  {numbers in Zn that are relatively prime to n} 

• φ(n) = number of elements in Zn* ;  easy to get given prime factorization 

• Modulo-n exponentiation: (ab) mod-n  

o Any x has a unique exponentiative inverse mod-n iff gcd(x,n)=1. 
o Easy to compute? 

o For all x in Zn*:  x
φ(n) = 1 mod-n.     (Euler’s Theorem) 

o For all x in Zn* and non-negative k:  x
 kφ(n)+1 = x mod-n. (Variant) 

o For all x in Zn and non-negative integer k:  x
 kφ(n)+1 = x mod-n 

• if n=p⋅q where p and q are distinct primes.  (Generalization) 
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RSA (Rivest, Shamir, Adleman) 

• Key size variable (longer for better security, usually 512 bits, 100 digits). 

• Plaintext block size variable but smaller than key length.  

• Ciphertext block of key length. 

• RSA is much slower to compute than secret key algorithms (e.g., DES) 

o So not used for data encryption 
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RSA Algorithm 

• Generation of public key and corresponding private key 

o Choose two large primes, p and q  (p and q remain secret). 

o Let n = p⋅q. 

o Choose a number e relatively prime to φ(n) (= (p−1)⋅(q−1)) 
o Public key = <e, n> 

o Find multiplicative inverse d of e mod-φ(n)  [i.e., e⋅d = 1 mod-φ(n)] 
o Private key = <d, n> 

• Encryption/decryption  

o To encrypt message m using public key:  
� ciphertext c = me mod-n 

o To decrypt ciphertext c using private key: 
� plaintext m = cd mod-n 

• Signing/Verifying signature 

o To sign a message m using private key:  
� signature s = md mod-n 

o To verify signature c using public key: 
� plaintext m = se mod-n 
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Why does the decryption operation work, ie, why is me⋅⋅⋅⋅d = m 

   me⋅d  =  m1 mod-φ(n) [ because e⋅d = 1 mod-φ(n) ] 

=  m 1 + k⋅φ(n) [ definition of mod ] 

=  m   [Euler’s theorem generalization, applicable because 

          - m in Zn (in RSA)   

          - n is product of distinct primes p and q ] 

 

Why is RSA secure  

• Only known way to obtain m from me is by me⋅d   where d = e−1 mod-φ(n) 

• Only known way to obtain φ(n) is with p and q  

• Factoring a large number is hard, so hard to obtain p and q given n 
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Efficient modulo exponentation 

 

• Need to get me mod-n, for 512-bit (100-digit) numbers m, e, n 

• Consider a small example:  12354 mod 678 

• Naive way: Multiply m with itself e times and then take mod-n.  

o e multiplications of  increasingly larger numbers (m2, m3,…). 
Too expensive. 

o 12354  is approx 100 digits  (54·log10123) 

 

• Better way: Multiply m with itself and take mod-n; repeat e times. 

o e multiplications of large (100-digit) numbers, and e divisions.  

o Still expensive. 

 

• Much better:  Exploit m2x=mx⋅mx  and  m2x+1=m2x⋅m.  

• Log e multiplications. 
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ModuloExponentiation( m, e, n ) 

(x0, x1, ⋅⋅⋅⋅, xk)  e in binary;    // x0 = 1 
initially   y  m;  j  0;    // y = mx0 

while j < k do       // loop invariant:  y = m(x0,⋅⋅⋅,xj) mod-n 

y  y·y  mod-n;       // y = m(x0,⋅⋅⋅,xj,0) mod-n 

if  xj+1 = 1 then y  y·m mod-n;  // y = m(x0,⋅⋅⋅,xj,1) mod-n 

j  j + 1;       //  y = m(x0,⋅⋅⋅,xj) mod-n 
// y = me mod-n  

• Example: 12354 mod 678.    54 = (1101110)2  

o 123 (1) mod-678  =  123 
o 123 (10) mod-678  =  123·123 mod-678  =  15129 mod-678  =  213 
o 123 (11) mod-678  =  213·123 mod-678  =  26199 mod-678  =  435 
o 123 (110)  mod-678  =  435·435 mod-678  =  1889225 mod-678  =  63 
o 123 (1100)  mod-678  =  63·63 mod-678  =  3969 mod-678  =  579 
o 123 (1101)  mod-678  =  579·123 mod-678  =  71217 mod-678  =  27 
o 123 (11010)  mod-678  =  27·27 mod-678  =  729 mod-678  =  51 
o 123 (11011)  mod-678  =  51·123 mod-678  =  6273 mod-678  =  171  
o 123 (110110)  mod-678  =  171·171 mod-678  =  29241 mod-678  =  87 
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Generating RSA Keys consists of two parts: 

• find big primes p and q  

• finding e relatively prime to φ(n) (= (p−1)·(q−1) ) 

o d = e-1 mod-φ(n) 

 

Finding big primes p and q  (100-digit numbers) 

• Choose random n and test for prime. If not prime, retry. 
(recall that Pr(100-digit number is prime) = 1/230) 

• Testing n for prime:  

o No practical deterministic way (eg, dividing n by every j < n ) 
o Practical probabilistic ways (ie, n is prime with high prob)  

• Probabilistic test 1: 
   Generate random n and a in 1..n; 
   Treat n as prime if an−1 = 1 mod-n; 

� Prob[test fails] is low ( −10−13 for 100-digit n). 
Note: converse holds from Euler’s theorem 

� Can make the test stronger by trying several different a.  
� But Carmichael numbers: 561, 1105, 1729, 2465, 2821, 6601, ...  

• Probabilistic test 2 (Miller-Rabin): works even for Carmichael numbers. 
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Finding e (approach 1): 

• Choose p and q as described above 

• Choose e at random until it is relatively prime to φ(n) 

Finding e (approach 2): 

• Fix e such that me easy to compute (i.e., few 1’s in binary) 

• Choose primes p and q such that e relatively prime to (p−1)·(q−1) 

• One choice: e=3  = (11)2    [so m
e needs 2 multiplications] 

o Need to pad small m. 
� If m < n1/3 then me mod-n = m3, so attacker can get m by (me)1/3 

o Need to use different pads if m is sent to 3 principals with public keys (3,n1), 
(3,n2), (3,n3). 
� Attacker has m3 mod-n1, m

3 mod-n2, m
3 mod-n3 

� CRT yields m3 mod-n1⋅n2⋅n3 
� Because m<n1, m<n2, m<n3,  

attacker has m3 < n1·n2·n3 and so (m
3 mod-n1⋅n2⋅n3)

1/3 yields m. 

• Another choice: e = 216+1 =  65537   [so me requires 17 multiplications] 

o No need for pad since unlikely that m65537 < n. 
o No need for random pad when m sent more than once since unlikely that m 

would be sent to 65537 different recipients.  
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Public Key Cryptography Standard (PKCS) 

• Standard encoding of information to be signed/encrypted in RSA 

• Takes care of  

o encrypting guessable messages 
o signing smooth numbers 
o multiple encryptions of same message with e=3 
o … 

 

Encryption (fields are octets) 

• msb 0 2 at least eight random non-zero octets 0 data lsb 

• Note that the data is usually small (DES/3DES/AES key, hash, etc)  

 

Signing (fields are octets) 

• msb 0 1 at least eight octets 
of 9FF16 

0 ASN.1 encoded digest 
type and digest 

lsb 
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Diffie-Helman (Basic) 

• Allows any two principals that do not have already have a shared secret  
to establish a shared secret over an open channel. 

• Initially A and B share: (large) prime p and g < p  (publicly known). 

A chooses random 512-bit number SA, sends TA = g
SA mod-p  to B. 

B chooses random 512-bit number SB, sends TB = g
SB mod-p  to A. 

A computes TB
SA mod-p [ = gSB·SA mod-p = gSA·SB mod-p ]. 

B computes TA
SB mod-p [ = equals  gSA·SB mod-p ]. 

A and B now share gSA·SB mod-p, which can serve as a key. 

Attacker knowing TA and TB and p and g cannot obtain g
SA·SB mod-p, because 

logarithm modulo-n is hard. 

• Does not provide authentication:  
A does not know whether it is talking to B or C. 

A sends  [sender id A, gSA mod-p]  

 C sends  [sender id B, gSC mod-p] 

A and C share secret gSA·SC mod-p, but A thinks it is talking to B 
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Diffie-Helman with Published Numbers 

• Assume PKI (public key infrastructure) that publishes  
for every principal X:  (X, g, p, gSX mod-p)  

• Then A can encrypt info with (gSA·SB mod-p)  and only B can decrypt it. 

• Note that initial handshake is not needed either. 
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Authenticated Diffie-Helman 

• If A and B know a secret (eg, shared secret key, public key),  
there are various ways for A and B to authenticate each other: 

o Encrypt Diffie-Helman exchange with pre-shared secret. 

o Encrypt Diffie-Helman exchange with other’s public key.  

o Sign Diffie-Helman value with your private key.  

o Following Diffie-Helman exchange, transmit hash of shared Diffie-Helman 
value, sender name, and pre-shared secret. 

o Following Diffie-Helman exchange, transmit hash of initially transmitted 
Diffie-Helman value and pre-shared secret.  

• But if A and B have pre-shared secret, why resort to Diffie-Helman? 

o Perfect-forward secrecy  
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Man-in-the-middle attack possible even if A and B share passwords 

Let pwAB be A’s password to B, and pwBA be B’s password to A 

(below  gX mod-p  abbreviated to  gX ) 

 

A C B 

send [A, gSA] to B 
alter msg to [A, gSC] 

 

 

alter msg to [B, gSC] 

send [B, gSB] to A 

<--- A and C share gSC⋅SA ---> <---  C and B share gSC⋅SB ---> 

send [gSC⋅SA { pwAB }] 
decrypt with gSC⋅SA, alter to 

[gSC⋅SB { pwAB }] 

 

 decrypt using gSC⋅SB 

A authenticated (error)  
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Zero-knowledge proof systems 

• Allows you to prove that you know a secret without revealing it. 

o RSA is an example (secret is private key) 

Classic example is based on graph isomorphism 

• “Key” generation 

o A chooses a large graph (eg, 500 vertices) GA1. 
o A renames the vertices to produce an isomorphic graph GA2. 
o Graphs GA1 and GA2 are A’s “public key”. 
o The vertex renaming transforming GA1 to GA2 is A’s “private key”. 

• A authenticates to B as follows: 

o A sends B a new set of graphs {G1, ⋅⋅⋅, Gk}, each isomorphic to GA1. 
o B randomly divides the graphs into subset 1 and subset 2. 
o B challenges A to provide vertex-renamings establishing that 

� every graph in subset 1 is isomorphic to GA1 
� every graph in subset 2 is isomorphic to GA2 

o A supplies the vertex-renamings, thereby authenticating itself. 
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• Why does it work? 

o Graph isomorphism is a hard problem:  
knowing a renaming to GA1 does not help obtain a renaming to GA2. 

o So renamings could only have been generated by A originally. 

o Unlikely that they were generated by C (having eavesdropped on many 
previous authentications of A), because the choice of the subsets 1 and 2 is 
random. 
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Fiat-Shamir variant 

• Key generation 

o A’s private key: a large random number s 
o A’s public key: (n,v),  

� n is product of two large primes (as in RSA) 
� v is s2 mod-n   (so only A knows square root mod-n of v) 

• Authentication 

o A chooses k random numbers, r1, ⋅⋅⋅, rk 

o A sends  r1
2 mod-n, ⋅⋅⋅, rk

2 mod-n,  to B 
o B randomly splits these into subset 1 and subset 2, and informs A 
o A sends  

� s⋅ri mod-n    for each  ri
2 mod-n  in subset 1 

� ri mod-n      for each  ri
2 mod-n  in subset 2 

o B checks whether 

� for each entry in subset 1:  (replyi)
2  =  v⋅ri

2   mod-n 
� for each entry in subset 2:  (replyi)2  =  ri

2   mod-n 
� If so, A is authenticated 

2/6/2009 shankar       crypto slide 63   

 

• Why does it work? 

o Finding square root mod-n is at least as hard as factoring. 

• Knowing s⋅ri mod-n does not help obtain ri mod-n, and vice versa. 

o So replies could only have been generated by A originally. 

o Unlikely that they were generated by C (having eavesdropped on many 
previous authentications of A), because the choice of the subsets 1 and 2 is 
random. 
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Zero-knowledge signatures 

 

• A zero-knowledge system can be transformed to a public key signature, but 
performance is poor.  

• Note that authentication is interactive but signature is not. 

• Trick: use a hash to provide a “random” choice of subset 1 and subset 2. 

o Suppose hash function chosen provides k-bit hash (e.g., k=128). 

o A chooses k random numbers, r1, ⋅⋅⋅, rk 

o A forms msg [data to be signed | r1
2 mod-n, ⋅⋅⋅, rk

2 mod-n] 

o A obtains hash of msg, and provides a reply vector in which the 1’s in the 
hash correspond to subset 1 and the 0’s correspond to subset 2: 

� if hash bit i is 1 then the reply vector has s⋅ri mod-n in position i 

� if hash bit i is 0 then the reply vector has ri
2 mod-n in position i 

o Why does it work? 

� Forging a signature on a message requires having both possible replies 
for all the ri’s.  


