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Introduction to Cryptology (NS chapter 2)

Encryption: plaintext + key — ciphertext

Decryption: plaintext < ciphertext + same/related key

= Key is secret. Encryption/decryption algorithms not secret.
= Given plaintext and cyphertext, computationally hard to get key.

= Attacks depend on what is available
= Ciphertext available: search key/plaintext space, replay, ...
= Plaintext-ciphertext pairs available: ...
= Chosen plaintext-ciphertext pairs available: ...

= Types of cryptographic functions:
= Secret key (symmetric key): DES, AES, ...
= Public key (asymmetric): RSA, DH (Diffie-Helman), ...
= Hash functions (of cryptographic kind): MD5, SHA-1, ...
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Secret-key (symmetric) crypto

¢ Single key: used in encryption and in decryption.
¢ Ciphertext about the same length as plaintext.
¢ Provides confidentiality over insecure channel/storage.

(¢]
(¢]
(0]

A and B share secret key K
A sends K(plaintext).
B receives and decrypts using K.

e Provides authentication over insecure channel:

(¢]
o
(0]
(0]

A and B share secret key K

A sends random number ry to B, and expects K(ra) back
B sends random number rg to A, and expects K(rg) back
This particular one is flawed.

¢ Provides integrity over insecure channel:

o

O O O O
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A and B share secret key K

A sends plaintext and fixed-length part of K(plaintext) to B,eg, last 128 bits
Called MAC (msg authentication code) or MIC (msg integrity code))

B receives plaintext, computes its MAC and checks against received MAC
This particular protocol provides attacker with plaintext-ciphertext pairs
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Hashing (of cryptographic kind)

Hash function H(.) transforms plaintext msg of arbitrary length
to fixed-length hash H(msg)

o Easy to compute H(msg) from msg

o Not easy to find msg1 and msg2 such that H(msg1) = H(msg2)

Keyed hash: Hash msg along with a shared secret S, e.g., H(msg|S)
Keyed hashing provides all the capabilites of secret-key crypto.

e Integrity:
o Send msg and H(msg|S) as MAC.
Confidentiality:
o Generate sequence Cgy, Cq, Cy, ..., where Cq is random and C;.q = H(C;|S);
to encrypt an arbitrary-length message, XOR it with the sequence.
o So to send message = [Mg, M1, My, ...], send [Co, M\i®Cq, My®Cy, ...]
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Public key (asymmetric) crypto

Each principal has two related keys:

o private key (not shared)

o public key (shared with world).

o Plaintext encrypted with one can only be decrypted with the other.

Confidentiality:
o B transmits pubkey,(plaintext). A decrypts using privkey,.

Integrity and digital signature (non-repudiation)
o A transmits privkey,(plaintext)
o Anyone with pubkey, can decrypt it
and be assured that it could only have been sent by A.

But public-key crypto is orders slower than secret-key crypto/hashing,
so it is used in conjunction with the latter.

e To sign a message: sign the hash of the message.

e To encrypt or integrity-protect a message:
o First use public-key crypto to establish a per-sesssion secret;
eg, B creates per-session key K and sends pubkey,(K) to A
o Then use secret-key crypto or keyed-hashing.
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Secret Key Crypto (NS chapter 3)

¢ Consider fixed-length message of k bits here.
o Variable-length message addressed later.

¢ Fixed-length message and Fixed-length key — message-length output
o DES: 64-bit message, 56-bit key

o If key length j is too small, insecure. If j is too large, expensive.

e Want function S mapping k-bit msg to k-bit output such that:
o For decryption, S must be 1-1 mapping from 2* to 2%
o For security, S must be “random”:
e even if msg1 and msg2 differ in just one bit,
e S(msg1) and S(msg2) differ in many bits (approx k/2 bits).
o So S cannot be a “simple” function; so following are no good:
= S(msg) = msg @ key
= S(msg) = msg bits in reverse order
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Secret Key Crypto (contd.)

¢ Conceptually simple secret-key algorithm S
o “Substitution” table: random permutation of all N-bit strings.
o S(i) is ith row of table
o Table obtained with physical-world randomness (eg, coin toss).
o Pro: S is perfectly random
o Con: need to store table of size k.2. Impractical for k=64
¢ Goal: Deterministic algorithm that produces “random looking” output.
Want each output bit to be “influenced” by all input bits.

¢ Basic approach: mix permutations and substitutions

Divide k-bit block into p-bit blocks for reasonably small p (eg, p=8).
Use p x p substitution tables “garble” p-bit output blocks.
Concatenate the p-bit output blocks to get a k-bit block

and permute to get garbled k-bit output block.

o O 0O o0 O

e Decryption, ie, reversing, is no more expensive.
Often can be done with the same algorithm/hardware.
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Repeat 1, 2, 3 for n rounds, where n is large enough to get good scrambling.

DES

\ 64-bit input ‘ \ 56-bit key

initial permutation

generate 16
48-bit keys
K1, K2, ..., K16

64-bit intermediate ‘

roundi,i=0,1, ..., 15, uses
Ki and output of previous round

64-bit intermediate ‘

swap left and right halves
64-bit output

v final permutation (inverse of initial)

‘ 64-bit output ‘

Final permutation is inverse of initial permutation.
Not of security value (why?, what does this mean?)
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DES: Generation of K1, K2, ..., K16

| 56-bit key |
L L permute 56-bit key,
split to form two 28-bit parts
lco | |po |
. rotate each left by
fopeat 15 thres 1 bitin rounds 1,2,9,16
9 e 2 bits in other rounds
i=1,..,16
| Ct | | D1 |Fach part: permute, drop some
l bits to form 24-bit chunk.
oin to form one 48-bit key K1
| 48-bit key K1
[ ]
2/6/2009 shankar crypto slide 9

DES encryption round

| 64-bit input |
A A
(Lo | [Rey |
3 key
n=0 15 | Mangler function 4—K(n+1)
| L(n+1)| | R(n+1) |

| 64-bit output |

e DES decryption round: given R(n+1)| L(n+1) — R(n)|L(n)
same as encryption with arrows reversed except for mangler function
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DES: decryption = encryption with Ki’s in reverse order

DES_encryption { DES_decryption {

ai: Lo|Ry « iperm(dblk); bi: RiglLis < iperm(cblk); //as bkw
a: forn=0, ..., 15do b,: forn=15, -, 0do //a; bkw
as: L <Ry bs: R, < Li.; // a3 bkw

as: Ry« Mangler,(Ry,Kni)®Ly; bs: L, < Mnglry(Ry,Kn)®R.1; / /a4 bkw
//Yields Lig | Rig // sets L, to X such that

/1 Rps < Mangler, (R, K,)® X
// Yields Ro|Lg

as: Li7|Ry7 « R16||—16 ; b5: Lol Ro «— swap(RolLo ), // ds bkw
ag: crblk « ipermlnv( R16|L16 )’ b(,: dblk « 1perm|nv(L0|R0 ), // aq bkw

/1 key order: Ky, ..., Kig /1 key order Kig, ..., Ki
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DES: Mangler function

32-bit R + 48-bit K — 32-bit output

e 32-bit R is split up into 8 6-bit chunks (duplicating some bits)
¢ 48-bit K split up into 8 6-bit chunks

e chunkiof R & chunki of K

e Put 6-bit result in S box i (different for each round)

e Qutput of S box is 4-bit chunk

e All chunks concatenated and permuted to get 32-bit output
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DES: Weak and semi-weak keys

* 4 weak keys: generate Cy=Dy=all ones or all zeros
¢ 12 semi-weak keys: generate Cq and D, of alternating 0 and 1

A weak key x is its own inverse, i.e., for any block b: E,(b) = Dy(b)

Proof

A weak DES key has each of Cy and Dy to be all ones or all zeroes.
Since each C; is a permutation of Cy, each C; is the same as Co.
Since each D; is a permutation of Dy, each D; is the same as Dy.
Each per-round key K; depends only on C; and D;.

So the per-round keys Kj, ..., Kis are all equal to each other.
So the key sequence Kj, ..., Ki¢ (used in encryption) is the same as
the key sequence Ky, ..., K; (used in decryption).

So encryption and decryption are the same, i.e., E,(b) = Dy(b).
So Ey(Ex(b)) = b.
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DES: Weak and semi-weak keys

A semi-weak key x is the inverse of another semi-weak key vy,
i.e., for any block b: E,(block) = Dy(block)

Proof

Let <Ki(x), ..., Kis(X)> be the per-round keys obtained from x.
Show that there is another semi-weak key y such that y

<Ki(X), ..., Kio(X)> = <Kis(y), ..., Ki(y)>.

Hence for any block b: E.(block) = Dy(block)

2/6/2009 :

Multiple Encryption DES (EDE or 3DES)

¢ Makes DES more secure
o Encryption: encrypt key1 — decrypt key2 — encrypt key1
o Decryption: decrypt key1 — encrypt key2 — decrypt key1

e EE (encrypting twice) with same key is not effective.
Just equivalent to using another single key.

e EE with key1 and key 2 is not so good.

e Given <my, ¢;>, <my, C;>, ..., there is an attack that requires 2°¢ storage.

o Table A with 2°® entries <key K;, E(K;, m,)>, sorted by column 2.
Table B with 2% entries <key K;, D(K;, c;)>, sorted by column 2.
Do join of Table A and Table B.

Each match provides candidate <K,, Kg> for <key1, key2>.

Use <m,,c,>, etc. to weed out false candidates.

O O O O

Current standard encryption algorithm: AES
o different sizes of keys (64, 128, ...)
o different data block sizes (..., 64, 128, ...)
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RC4 encryption algorithm

e Stream cipher (one time pad), can use variable length key.
¢ Key stream independent of plaintext
¢ 8x8 S-box. each entry is a key-permutation of 0..255

byte S[0..255] « 0..255; // S[i]=i
S-box . :
e e . bytei:=0; j« 0; // counters
initialization
byte K[0..255] < key | ... |key;
fori=0to 255 do
j < (j + S[i] + K[i] ) mod 256;
swap S[i] and S[j]
Generate i « (i+1) mod 256;
random byte j « (§*S[i]) mod 256;
@ with pt/ct for swap S[i] and S[jl;
encrypt/decrypt | return S[ (S[i] + S[j] ) mod 256 ] ;
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Encrypting Large Messages (NS chapter 4)

Encrypting large msg given method to encrypt a k-bit block
¢ Pad message to multiple number of blocks: msg = (M1, M2, ..., )
e Use block encryption repeatedly to get ciphertext = (C1, C2,...,)
o Same Mi’s get encrypted to different Ci’s
o Repeated encryptions of same msg result in different ciphertexts.

o Ciphertext cannot be changed to cause predictable change to decrypted
plaintext.

¢ Various methods: ECB, CBC, CFB, OFB, CTR, others

Electronic Code Book (ECB)

¢ Obvious approach: encrypt/decrypt each block independently
e Encryption: C; = Ex(My)

e Decryption: M; = D(C))

¢ not good: repeated blocks get same cipherblock
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Cipher Block Chaining (CBC)

) M M, M,
¢ Encryption:
@ M; with random R; v —»éD A-D PP A-D oo
obtained from C;4
VYAV
C, C Ch-1 Ch

o G = Ex(M @ Ciq), where Cyis a random IV (initialization vector)
o Transmit IVand Cy, ..., C,

¢ Decryption: reverse arrows; change Ex to Dy
(e} Mi = DK(Ci ® Ci.1), where Co is IV

e Attack 1: Modify C,: garbles M,, unpredictably and M., predictably
other My’s unchanged. Can use a CRC to overcome this.

e Attack 2: Exchanging cipherblocks can counteract CRC to some extent
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Output Feedback Mode (OFB)

64-bit OFB
e Generate stream cipher By, B4, ..., where By is IV and B; =Ex(B;.1)
e Then C; = B; ® M;
¢ S0 a one-time pad that can be generated in advance.
¢ One-time pad:

o Attacker with <plaintext, ciphertext> can obtain B;’s

¢ and so generate ciphertext for any plaintext

k-bit OFB (k < 64)

¢ Generate stream cipher in k-bit chunks, rather than 64-bit chunks.
e Let X; =Ex(Bi.1), where By is 64-bit IV

e Let Y; be k leftmost bits of X;

e Ci=Y,®M

e B; is rightmost 64 bits of B | Y;
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Cipher Feedback Mode (CFB)
64-bit CFB
e Like OFB except that output C;.; is used instead of B;
e Ci =M @ Ex(C;.q) where Cyis IV
e Cannot generate one-time pad in advance.

k-bit CFB (k < 64)

e Generate ciphers in k-bit chunks, rather than 64-bit chunks.

e Let X; =Ex(Bi.1), where By is 64-bit IV (pad with zeros on left if needed).
e Let Y; be k leftmost bits of X;

e Ci=Y, oM

e B; is rightmost 64 bits of Bi.(| C;
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Counter Mode (CTR)
® See text

3DES on Large Messages
3DES is used with CBC on the “outside” not “inside”

Using with CBC on inside eliminates self-synchronization of received ciphertext
(ie, if some ciphertext is garbled, everything is lost)
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MACs from encryption/decryption (NS chapter 4)

Ensuring integrity (but not confidentiality):

e CBC, CFB, OFB, ... do not protect against “undetectable” modifications by
attacker knowing the plaintext

e Of course, a human may find something fishy.
So can a computer that checks for structure in plaintext.

® Need a cryptographic checksum.

e Standard way: send CBC residue (last block in CBC encryption)
along with the plaintext message and IV.
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Ensuring confidentiality and integrity of a large messsage

Not ok: Send CBC encrypted message and CBC residue.
o Just repeats the last cipherblock

Not ok: CBC_Encrypt[ plaintext, CBC_residue[ plaintext ] ]
o Last block is encryption of zero ( @ of last cipherblock with itself)

Not ok: Encrypt[ plaintext, noncryptographic checksum (eg, CRC)]
o Almost works. Subtle attacks are known.

Ok: Encrypt_Key2[ plaintext, CBC_residue_Key1[ plaintext] ]
o But twice the work.

Key2 can be related to Key2 (eg, key1 = key2 @ C), but still same work.

Probably ok: CBC_encrypt[plaintext, weak cryptographic checksum (plaintext]]
e Probably ok: CBC_encrypt[ plaintext, hash[ plaintext] ]

¢ Offset Codebook Mode (OCB)
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Hashes and Message Digests (NS chapter 5)

e msg — fixed-length hash H(msg)

e Not 1-1 since msg space is much larger than hash space
e secure one-way function:
computationally hard to find two msgs m; and m; s.t. h(mq)=h(m;)

Assuming hash is random, how long should it be?

¢ Consider hash space of K (ie, hash of (log K) bits)

¢ Consider N randomly chosen messages, m{, m, , ..., my

e Pr[ there is a pair of distinct msgs < m;, m; > : H(m;) = H(m;) ]
e = Pr[ H(m;)=H(my) or H(m;)=H(ms) or ... or H(my.)=H(my) ]

Sum {over distinct < m;, m; > pairs} (1/K)

[N(N-1)/2] [1/K]

* Soif N= VK then Pris 1/2

¢ K should be large enough so that searching through \/E is hard.
e So K = 2" is ok (assuming search through 2% is hard)

I
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Keyed Hash: Hash with secret key

Keyed hash equivalent to secret-key encryption
e confidentiality

¢ authentication

¢ integrity

Authentication with keyed hash

¢ A and B share secret key Ky

¢ A sends random number r, to B.

¢ B computes H(Kaz|ra) and sends it back.

e A computes H(Kaz | ra) (cannot invert it) and check if received value equals it.
Match authenticates B to A.

e Similarly, B sends random number rg to A and expects H(Kxs| ) back.
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MAC (message integrity checksum) with keyed hash

Obtaining MAC for msg = (m4, m,, ...,m,) given shared secret key K,p

e Obvious approach: MAC = H( Kss | msg )
¢ Not ok because H(m4, m; , ..., m,) is usually H(H(m¢, m2, ..., myy) M)
¢ So attacker can add any m,.; and get its MAC as H(old MAC, m,.+).

¢ Possible fixes:
o MAC = H(msg | Kag)
o MAC = half the bits of H(Kxs | msg )
o MAC = H(Kyg | msg | Kgp)

e HMAC (de facto standard): MAC = H(Kap | H(Kss I msg)) (almost)
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Encryption / encryption + integrity with keyed hash

Encryption of msg = (m4, my, ..., m,)

¢ Generate (can be precomputed) one-time pad:
o b; = H(Kag | bi.1) where bg is IV

eci=h®m

e transmit IV and ¢4, Cy, ..., C,

¢ Decryption identical

Encryption and integrity of msg = (m;, m, ..., my)
¢ Encryption with plaintext mixed into one-time pad
e b; =H(Kas|Ci.1) where ¢qis IV

e Ci=b,®my

¢ Decryption straightforward (homework)

2/6/2009 shankar crypto slide 27

Hash from secret-key encryption/decryption

Hashing a block with secret key encryption
e Hash(block) = Encrypt constant (eg, 0) using block as the key

Unix (original) uses a variation to store passwords
e When user sets password
o Concatenate 7-bit ASCII of first eight chars to get 56-bit secret key
o Generate 12-bit random number (called salt)
o Encrypt the number 0 using the key and a salt-modified DES
= defends against DES-cracking hardware
= salt indicates duplicated bits in 32-bit R > 48-bit mangler input
o Store salt and ciphertext

¢ When user enters password,
o compare stored ciphertext with that computed from password
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Hashing large messages with secret-key encryption (key size k)

e Obvious extension of above approach:

o Divide large message into k-bit chunks my, m,, ...
o C; = encryption of C;i.; with m; as key, where C, is a constant
o Let the last C; be the hash of message

¢ Not ok if C;is usually too small to be a good hash (eg, 64 bits in DES)

o Sufficient fix is to @ each stage’s input with previous stage’s output:

o C4 = encryption of a constant CO_ with M; as key
o Fori>1:C; =encryption of C;.; @ Ci.; with M; as key
o Let the last C; be the hash of message

¢ One way to generate 128 bits of hash with DES:

o Generate 64-bit hash as above.
o Generate another 64-bit hash with message blocks in reverse order
o This approach has a flaw (homework)
¢ Better way to generate 128 bits of hash with DES:
o Generate two 64-bit hashes as above but with different constants.
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MD4: 32-bit-word-oriented hash function
¢ message of arbitrary number of bits — 128-bit hash

e Step 1: Pad msg to multiple of 512 bits
pmsg < msg | one1 | pO0’s| (64-bit encoding of p);
where [msgsize+1+p+64] is a multiple of 512 (note: p in 1..512)

e Step 2: Process pmsg in 512-bit chunks to obtain 128-bit hash md

128-bit md treated as 4 words: do, dy, dy, ds;

512-bit pmsg chunk treated as 16 words: mg, my, ..., Mys;

Initialize <d,...d;> to <01]23]...189]|ab|cd|ef|fe|dc]...10>;

For each 512-bit chunk c of msg:
€q...63 < do...ds;  // store current md for use later
// Pass 1: mangle do...d; using my...my5, mangler H1, permutation J
Fori = 0, veey 15: dJ(i) — H1('|, do, d1, dz, d3, m1),
// Pass 2: mangle do...ds using mg...m4s, mangler H2, permutation J
Fori = 0, veey 15: dJ(i) — HZ('I, do, d1, dz, d3, m1),
// Pass 3: mangle do...ds using mq...m4s, mangler H3, permutation J
Fori = 0, ceey 15: dJ(i) — H3(1, do, d1, dz, d3, mi);
do...d3 «— do...d3 ® eg...e3;

md « d0d3,
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More Hash Functions
* MD2: octet-oriented

o Message of arbitrary number of octets > 128-bit digest

o Like MD4 except
= Step 1: pad to multiple of 16 octets
= Step 2: append 16-octet checksum (not cryptographic)
= Step 3: do 18 passes over msg in 16-octet chunks

e MD5: 32-bit word oriented

o Message of arbitrary number of bits > 128-bit digest
o Like MD4 except four passes and different mangler functions

¢ SHA-1: 32-bit word oriented
o Message of arbitrary number of bits upto 2% bits > 160-bit digest
o Like MD5 except five passes, different mangler functions, and

at start of each stage, 512-bit msg chunk - 5 x 512-bit chunk
using rotated versions of the msg chunk
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HMAC: defacto MAC standard

¢ Can use any hash function H (eg, MD2, MD4, SHA-1)
¢ Variable-sized message and variable-length key
- fixed-size MAC of same size as output of H

e paddedKey < pad key with 0’s to 512 bits

If key is larger than 512 bits, first hash key and then pad
e h1 €H( msg, paddedKey @ [string of 364, octets] )
e result € H( h1, paddedKey @ [string of 5C;, octets] )
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A Bit of Number Theory (NS chapter 7)

Need some number theory to understand public key cryptology

e Modular addition, multiplication, exponentiation over Z, = {0, 1, ..., n-1}
e Euclid’s algorithm: gcd and multiplicative inverse

e Chinese remainder theorem: (x mod pq) <=> (x mod p) and (x mod q)

e Z.*={j:j>0andrelatively prime to n}

¢ Euler’s totient function ¢(n) = | Z,*|

e Euler’s theorem

e Conventions

e All variables are integers (positive, zero, negative)
¢ unless otherwise stated

e n is positive integer
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Numbers modulo-n
e For any x: (x mod n) equals y in Z,, s.t. x =y+k-n for some integer k.

¢ Nonnegative remainder of x/n:
*=3mod10=3 (3=3+0-10)
= 23mod 10=3 (23=3+2-10)
= -27mod10=3 (-27 =3 + (-3)-10) (unlike in most prog lang)

¢ Integers u and v are said to be equal mod-n if (u mod n) = (v mod n)
o Math books say “equivalent mod-n”, denoted u mod n=v mod n

Modulo-n addition and additive inverse

¢ Mod-n addition is ordinary addition followed by mod-n operation
o (3+7) mod 10 =10 mod 10 =0
o (3-7)mod 10 =-4mod 10 = 6

e Note: (u+v) mod n = (u mod n)+(v mod n)) mod n

e Additive inverse mod-n of x is y st (x+y) mod n =0
o denoted -x mod n
o exists for any x and n
o easy to compute: eg, for x in Z,, additive inverse is n-x
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Modulo-n multiplication and multiplicative inverse
¢ Mod-n multiplication is ordinary multiplication followed by mod-n operation
o (3-7) mod 10 = 21 mod 10 = 1
o (8)-(-7) mod 10 = -56 mod 10 = 4
e Note: (u-v) mod n = (u mod n)-(v mod n)) mod n
e Multiplicative inverse mod-n of integer x isy s.t. (xy) modn =1
o denoted x" mod n
03" mod-10 is 7 (3-7=21=1 mod 10).
o x exists and is unique iff x and n are relatively prime
= ie, gcd(x,n) = 1

e Euclid’s algorithm: efficiently computes gcd(x,n) and x™' (if it exists)
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Modulo-n exponentiation and exponentiative inverse

¢ Modulo-n exponentiation is ordinary exponentiation followed by mod-n
03*mod10 = 9
03*mod10 = 27mod 10 = 7
o (-3))mod 10 = -27 mod 10 = 3

e Note: (uY)modn = (u'™“") mod n

e Exponentiative inverse mod-n of integer x is y s.t. (xY mod n) = 1
0 3*=81=1mod 10, so 4 is the exponentiative inverse mod-10 of 3
o Exists and is unique iff x and n are relatively prime
o Easy to compute if n has certain structure.

Primes
e Positive integer p is prime iff it is exactly divisible only by itself and 1

¢ Infinitely many primes, but they thin out as numbers get larger
o 25 primes less than 100
o Pr[ random 10-digit number is a prime ] = 1/23
o Pr[ random 100-digit number is a prime ] = 1/230
o Pr[ random k-digit number is a prime ] = /(10-ln k)
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Euclid’s algorithm for ged(x, y)

® [x, y] has same divisors/gcd as [x-y, y], as [x-kvy, y], as[x mod-y, y],
as [y, x mod-y], as [y, remainder(x/y)]

e repeat [Xx, y] 2 [y, remainder(x/y)] until first entry is O;
second entry is gcd

¢ store intermediate remainders in array r
r=[ry rq ro r r
X 'y remainder(x/y) remainder(y/ro) remainder(ro/ry) ... ]

Euclid (x,y) with intermediate remainders
arrayr=1[ry rqroryr;...]
r, € x; rq€y;
integer n < 0;
while r,.; # 0 do
r, € remainder(r,.,/rn.1);
n €< n+1;
return r,.;; /7 ged(x,y)

¢ To get multiplicative inverse, need to keep track of quotients, differences
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Euclid_Augmented (x,y)

arrays r, q, u, v; r=1[r, rq ro r rp ...] (remainders)
ra €x rq€y; q=[ do 91 G2 ...] (quotients)
u; € 1; v, €0; u=Ju, Uy Uy U; U ...] (differences)
u; €0;v,y €1; v=1[vy v Vo Vi Vv, ...] (differences)
integer n := 0;
while r,y#0do //invariant r, = UyX + v,y
r, € remainder (rn2/rn.1);
gn € quotient ( ry.2/rn.1 );
Un < Un-2 = Qn°Un-1;
Va € Vn2 = Qn*Vat;
n < n+1;
// Termination: gcd(X,y) = 2 = Up2'X + Vpo'y
return ry,;, Us2, Va2 ;
e If gcd(x,y)=1 then  multiplicative inverse mod-y of X = Uy
multiplicative inverse mod-x of y = v,

else multiplicative inverses do not exist
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Chinese remainder theorem

Let zy,2,..., Zx be relatively prime.

Then the mapping Zn ., ...« 2 ZaxXZpX...XZyx Where
X = <xmod z;, x mod z,, ..., x mod z > is 1-1 onto (so invertible).
So for <Xq, Xg, ..., X¢>: exactly one x in Z, 5, ... « S.t. (x mod z;) = X

e For k=2, (x mod z;-z;) = [Xp-a-Z1 + X1-b-Z;] mod z4-z,, where 1 = a-z4+b-z,

e 7,=3, z,=4 (relatively prime)
Z34 0 1 2 3 4 5 6 7 8 9 10 1

Z3xZ4 (0,0) (1,1)(2,2) (0,3) (1,0) (2,1) (0,2) (1,3) (2,0) (0,1) (1,2) 2,3)

z1=2, Z,=4 (not relatively prime)
224 0 1 2 3 4 5 6 7

Z,x24 (0,00 (1,1) 0,2y (1,3) (0,00 (1,1) (0,2) (1,3)

e If 2, z, relatively prime, no number in [1 .. z;-z,] is multiple of z; and z,
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Proof of Chinese remainder theorem for k = 2
* Note Z,1.,» and Z,;xZ,, have the same number of elements (namely z;-z;)
¢ Will show mapping is 1-1 and obtain inverse.
¢ For any integer x, let

o (x mod zy) = x; and

o (xmod z;) = x;
¢ By Euclid: there exist a and b such that 1 =a-z; + b-z,
e Multiplying both sides by x and taking mod z;-z,

(x mod zy:z;) = [ xaz;+xbz,] mod ziz,

[ (x2 + k.zg)-a-z1 + (X1 + j.z1)-b-z2) ] mod z;-2,
[ xp-a-zy + X4-b-zz ] mod z4-z;
LHS depends only on x4, X;, @, b.
So for any <xq, X>, exactly one x s.t. (x mod z;) = x; and (x mod z;) = X,

¢ So x and y are the same mod z;-z,

Proof of for k > 2 is by induction
o If 24, Z,, ..., Zx, Zk+1 rel. prime, then (zy-z;---z¢) and zy.; are rel. prime
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.

Z,* = {x: xis mod-n integer relatively prime to n }
e 7w = {1,3,7,9} whereas Z, = {0,1,2,3,4,5,6,7,8,9}
¢ 0 is not an element of Z,* because gcd(0,n) = n for any n

Theorem:
Z,* closed under multiplication mod-n: for x,y in Z,*, x-y mod-n in Z,*.
Also, multiplying elements of Z,* with any x is a permutation of Z,*.

Proof
Let a and b be in Z,*. By definition gcd(a,n) = gcd(b,n) = 1.
So there exist u,,Va,Up,Vp S.t. Uga+Vvan=1and uyb +vy,n =1.
Multiply the two equations:

Ua-Up-(a-b) + n-(uz-vp-a + vp-up-b s Usvp-n) = 1
Hence, by Euclid alg, a-b is relatively prime to n, and so a-b is in Z,*.
To show x-Z,* is a permutation of Z,*, show that mapping is 1-1.
(Work out the details)
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Euler’s Totient Function

o(n): number of elements in Z,*
e For n prime: ¢(n)=n-1
e For n=p® where pis prime and a >0: ¢(n) = (p-1)- p*
e Forn = p-q where p and q are relatively prime: ¢(n) = o(p)-d(q)
e Forn=p-p*?- - - - p* where py, ..., px are prime:
0(n) = o(P1)™ - 0(P2)™ - - - - ¢ (PY™
Proof
For n prime: ¢(n) =n—1. Obvious.

a-1

For n = p® where p is prime and a > 0: ¢(n) = (p-1)- p
Zo =100, 1,2, ey Py veey 2P vy 3Py vy wery ooy (PP =1)P, wor, (P?) — 1.
Only the multiples of p can divide n. There are (p*" - 1) of them.
Removing them from the set {1, 2, ..., n-1} yields Z,*

So ¢(n) = (n-1) = (p*"' = 1) = (p*=1)— (p*' = 1) =p*- p*"' = (p-1)- p*"
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For n = p-q where p and q are relatively prime: ¢(n) = o(p)-9(q)

Let mp =m mod p and mq=m mod q. Abbr “relatively prime to” to rpt.

First show that m rpt p-q iff my rpt p and mqrpt q.

e Assume m rpt p-q. Then there exist u and v such that um +v-p-q=1.
Substituting m = my+k-p, we get u-m, + p-(u-k + v.q) = 1, so myrpt p.
Similarly, mqrpt q.

e Assume m,rpt p and mqrpt q. Then there exist up, vp, Ug, Vq, such that
UpMp+Vp-p =1 and ugmg+veq = 1.

So uy(m—-kp) +vpp=1 for somek, or u,m+ (v,— Uy,-k)-p =1
Similarly, for some j, Ugm + (Vq— Uqj)-q=1
Multiplying the two, we get
[upuqm + up(vq - qu)'q + uq(Vp - Upk)‘p]'m + (Vp_upk)‘(vq_qu)‘p‘q =1
Som rpt n.
e So there is a 1-1 correspondence between numbers in Z, ;* and Z,* x Z,*. So ¢(n)

= 0(p)-0(q)-

For n =p,*'. p;
(homework)

22.... p* where py, ..., px are prime.

End of proof
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Euler’s Theorem

For all ain Z,;*: a®™ =1 mod-n

Proof:

Let x be the product of all the elements of Z,*.

Because Z,* is closed under multiplication, x is in Z,* and x'exists.
Let by, by, -+, by be the elements of Z,* listed in some order.

Let y = (a-by)-(a-by)-(a-bym)- S0 y = a®*™-x mod-n.

But a-by, a:by, -, a-by(n) is also Z,* permuted. So y = x mod-n.

Thus a’™.x = x mod-n. Multiplying sides by x' yields a*™ = 1 mod-n.

Euler’s Theorem Variant:

For all a in Z,* and any non-negative integer k: a*¢™*!

=a mod-n

Proof: a*®™* = gkt .3 = gtk 3 = [a®M*.a=1*a=a

Question: Does a’™ = 1 mod-n hold for all a in Z, (not just Z,*) ?

2/6/2009 shankar crypto slide 44




Generalization of Euler’s Theorem (for a in Z, and n=p-q)

If n=p-q, where p and q are distinct primes then

a*®™*'= 3 mod-n for all a in Z, and any non-negative integer k.

Proof: Assume a not in Z,* (o/w follows from Euler’s Theorem Variant).
Also assume a is not 0 (otherwise result holds trivially).
So a is a multiple of p or q but not both. Suppose a is a multiple of q.
Decompose (a“*™*" mod-n) into mod-p and mod-q, and use CRT.
a“*™" mod-p = a**™.a mod-p

= P .3 mod-p(because ¢(n) = d(p)-9(q))

= gtPrke@ 5 mod-p

= 1%°@.3 mod-p (arptp, soa®” =1 mod-p by Euler’s theorem)
a mod-p
Similarly a“*™'mod-q = a mod-q
So by CRT a**™*" mod-n = a mod-n

Further generalization:
Above is true for any n that is a product of distinct primes.
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Public Key Algorithms (NS chapter 6)
¢ Public key algorithm: prinicpal has public key and private key
e Examples:

o RSA and ECC: encryption and digital signatures.
o ElGamal and DSS: digital signatures.

o Diffie-Hellman: establishment of a shared secret
o Zero knowledge proof systems: authentication

* Most public key algorithms are based on modulo-n arithmetic.
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Recall some modulo-n arithmetic

¢ Modulo-n addition: (a+b) mod-n

o Any x has a unique additive inverse mod-n.
o Easily computed.

¢ Modulo-n muliplication: (a-b) mod-n

o Any x has a unique multiplicative inverse mod-n iff gcd(x,n)=1
o Existence and value easily computed (Euclid’s alg)

«Z,=1{0,1, ..., n1}

e 7.* = {numbers in Z, that are relatively prime to n}
¢ 0(n) = number of elements in Z,* ; easy to get given prime factorization

 Modulo-n exponentiation: (a°) mod-n

o Any x has a unique exponentiative inverse mod-n iff gcd(x,n)=1.
Easy to compute?
For all xin Z,*: x* =1 mod-n.  (Euler’s Theorem)
For all x in Z,* and non-negative k: x"*™*' = x mod-n. (Variant)
For all x in Z, and non-negative integer k: x**™*' = x mod-n
¢ if n=p-q where p and q are distinct primes. (Generalization)

o O O O
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RSA (Rivest, Shamir, Adleman)
¢ Key size variable (longer for better security, usually 512 bits, 100 digits).
¢ Plaintext block size variable but smaller than key length.
¢ Ciphertext block of key length.
e RSA is much slower to compute than secret key algorithms (e.g., DES)
o So not used for data encryption
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RSA Algorithm

¢ Generation of public key and corresponding private key

o Choose two large primes, p and q (p and g remain secret).
Let n =p-q.
Choose a number e relatively prime to ¢(n) (= (p—1)-(q—1))
Public key = <e, n>
Find multiplicative inverse d of e mod-¢(n) [i.e., e-d = 1 mod-¢(n)]
o Private key = <d, n>

O O O O

¢ Encryption/decryption

o To encrypt message m using public key:
= ciphertext ¢ = m® mod-n

o To decrypt ciphertext c using private key:
= plaintext m = ¢ mod-n

¢ Signing/Verifying signature

o To sign a message m using private key:
* signature s = m? mod-n

o To verify signature c using public key:
= plaintext m = s mod-n
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Why does the decryption operation work, ie, why is m*? = m
me? = m' ™M [ pecause e-d = 1 mod-¢(n) ]
= m ' %™ [ definition of mod ]
m [Euler’s theorem generalization, applicable because
-min Z, (in RSA)
- n is product of distinct primes p and q ]

Why is RSA secure

e Only known way to obtain m from m® is by m®® where d = e mod-¢(n)
¢ Only known way to obtain ¢(n) is with p and q

¢ Factoring a large number is hard, so hard to obtain p and q given n
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Efficient modulo exponentation

Need to get m® mod-n, for 512-bit (100-digit) numbers m, e, n

Consider a small example: 123 mod 678
¢ Naive way: Multiply m with itself e times and then take mod-n.

o e multiplications of increasingly larger numbers (m?, m?,...).
Too expensive.

o 123> is approx 100 digits (54-log123)

Better way: Multiply m with itself and take mod-n; repeat e times.
o e multiplications of large (100-digit) numbers, and e divisions.
o Still expensive.

2x

e Much better: Exploit m*=m*m* and m®*'=m*m.

e Log e multiplications.
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ModuloExponentiation( m, e, n)

(X0, X1, -+, Xk) € € in binary; /] %o =1

initially y € m; j € 0; /1y=m®

while j < k do // loop invariant: y = m*®*) mod-n
y € y-y mod-n; /1y = m&® 99 mod-n
if Xj1=1 theny €« y-m mod-n; /1y =mt% 3 mod-n
jEj+1; /1y = m®X) mod-n

// 'y =m® mod-n

e Example: 123°* mod 678. 54 = (1101110),
123" mod-678 = 123

(@]

o 12319 mod-678 = 123-123 mod-678 = 15129 mod-678 = 213
o 123 mod-678 = 213-123 mod-678 = 26199 mod-678 = 435
o 12319 mod-678 = 435-435 mod-678 = 1889225 mod-678 = 63
o 123 M%) mped-678 = 6363 mod-678 = 3969 mod-678 = 579

o 12319 mod-678 = 579-123 mod-678 = 71217 mod-678 = 27
o 12390 mod-678 = 27-27 mod-678 = 729 mod-678 = 51

o 12319 mod-678 = 51-123 mod-678 = 6273 mod-678 = 171
o 123019110 10d-678 = 171-171 mod-678 = 29241 mod-678 = 87
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Generating RSA Keys consists of two parts:

e find big primes p and q

¢ finding e relatively prime to ¢(n) (= (p—1)-(q-1) )
o d=e" mod-¢(n)

Finding big primes p and q (100-digit numbers)

¢ Choose random n and test for prime. If not prime, retry.
(recall that Pr(100-digit number is prime) = 1/230)

e Testing n for prime:

o No practical deterministic way (eg, dividing n by every j < \/H )
o Practical probabilistic ways (ie, n is prime with high prob)
¢ Probabilistic test 1:
Generate random n and a in 1..n;
Treat n as prime if a"" = 1 mod-n;
= Probl[test fails] is low ( -107"* for 100-digit n).
Note: converse holds from Euler’s theorem
= Can make the test stronger by trying several different a.
= But Carmichael numbers: 561, 1105, 1729, 2465, 2821, 6601, ...

¢ Probabilistic test 2 (Miller-Rabin): works even for Carmichael numbers.
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Finding e (approach 1):
¢ Choose p and q as described above
e Choose e at random until it is relatively prime to ¢(n)
Finding e (approach 2):
¢ Fix e such that m® easy to compute (i.e., few 1’s in binary)
¢ Choose primes p and g such that e relatively prime to (p—1)-(q-1)
* One choice: e=3 = (11); [so m® needs 2 multiplications]
o Need to pad small m.
* If m <n'"? then m® mod-n = m?, so attacker can get m by (m®)
o Need to use different pads if m is sent to 3 principals with public keys (3,n;),
(3)n2)’ (3)n3)'
= Attacker has m® mod-n;, m* mod-n,, m® mod-n;
= CRT yields m* mod-n;-ny-n;
= Because m<n, m<n,, M<ns,
attacker has m* < ny-n,-n; and so (m*® mod-ny-n,-n3)"’? yields m.
e Another choice: e = 2'°+1 = 65537 [so m® requires 17 multiplications]

o No need for pad since unlikely that m®*¥ < n.

o No need for random pad when m sent more than once since unlikely that m
would be sent to 65537 different recipients.

1/3

)1/3
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Public Key Cryptography Standard (PKCS)
¢ Standard encoding of information to be signed/encrypted in RSA
¢ Takes care of

encrypting guessable messages
signing smooth numbers
multiple encryptions of same message with e=3

O

O O O

Encryption (fields are octets)
* msbh 0 2 |at least eight random non-zero octets 0|data|lsb

¢ Note that the data is usually small (DES/3DES/AES key, hash, etc)

Signing (fields are octets)

* msb 0 1 at least eight octets |0 |ASN.1 encoded digest lsb
of 9FF, type and digest

2/6/2009 shankar crypto slide 55

Diffie-Helman (Basic)

¢ Allows any two principals that do not have already have a shared secret
to establish a shared secret over an open channel.

¢ |nitially A and B share: (large) prime p and g < p (publicly known).
A chooses random 512-bit number S, sends T, = g** mod-p to B.
B chooses random 512-bit number Sg, sends Tg = gSB mod-p to A.
A computes Tg** mod-p [ = g°®** mod-p = g***® mod-p ].
B computes T, mod-p [ = equals g***® mod-p ].

A8 mod-p, which can serve as a key.

Attacker knowing T, and Tg and p and g cannot obtain g****
logarithm modulo-n is hard.

A and B now share g
mod-p, because

¢ Does not provide authentication:
A does not know whether it is talking to B or C.

A sends [sender id A, g** mod-p]

C sends [sender id B, g°° mod-p]
A and C share secret g mod-p, but A thinks it is talking to B
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Diffie-Helman with Published Numbers
¢ Assume PKI (public key infrastructure) that publishes
for every principal X: (X, g, p, g*° mod-p)
e Then A can encrypt info with (g°**® mod-p) and only B can decrypt it.
¢ Note that initial handshake is not needed either.
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Authenticated Diffie-Helman

¢ If A and B know a secret (eg, shared secret key, public key),
there are various ways for A and B to authenticate each other:

o Encrypt Diffie-Helman exchange with pre-shared secret.
o Encrypt Diffie-Helman exchange with other’s public key.
o Sign Diffie-Helman value with your private key.
o

Following Diffie-Helman exchange, transmit hash of shared Diffie-Helman
value, sender name, and pre-shared secret.

o Following Diffie-Helman exchange, transmit hash of initially transmitted
Diffie-Helman value and pre-shared secret.

¢ But if A and B have pre-shared secret, why resort to Diffie-Helman?
o Perfect-forward secrecy
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Man-in-the-middle attack possible even if A and B share passwords
Let pwyg be A’s password to B, and pwga be B’s password to A
(below g* mod-p abbreviated to g*)

A C B

send [A, g**] to B
alter msg to [A, g°]

send [B, g*®] to A
alter msg to [B, g°]

<--- A and C share g*“** ---> <--- C and B share g*“® --->
send [g°“** { pwas }]
decrypt with g°“*A, alter to
[2°“* { pwas 3]
decrypt using g°*®
A authenticated (error)
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Zero-knowledge proof systems
¢ Allows you to prove that you know a secret without revealing it.
o RSA is an example (secret is private key)

Classic example is based on graph isomorphism
e “Key” generation

A chooses a large graph (eg, 500 vertices) Ga;.

A renames the vertices to produce an isomorphic graph Gy,.
Graphs G,y and Gy, are A’s “public key”.

The vertex renaming transforming Gu to Gy, is A’s “private key”.

@]
@]
@]
O
e A authenticates to B as follows:
@]
@]
(@]

A sends B a new set of graphs {Gy, -+, Gx}, each isomorphic to G,;.
B randomly divides the graphs into subset 1 and subset 2.
B challenges A to provide vertex-renamings establishing that
= every graph in subset 1 is isomorphic to G
= every graph in subset 2 is isomorphic to Gy,
A supplies the vertex-renamings, thereby authenticating itself.

o
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¢ Why does it work?

o Graph isomorphism is a hard problem:
knowing a renaming to G,; does not help obtain a renaming to Gy,.

o So renamings could only have been generated by A originally.

o Unlikely that they were generated by C (having eavesdropped on many
previous authentications of A), because the choice of the subsets 1 and 2 is
random.
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Fiat-Shamir variant
e Key generation

o A’s private key: a large random number s
o A’s public key: (n,v),
= nis product of two large primes (as in RSA)
= viss’mod-n (so only A knows square root mod-n of v)
e Authentication

o A chooses k random numbers, rq, -, I,

o Asends r mod-n, -, .2 mod-n, toB
o B randomly splits these into subset 1 and subset 2, and informs A
o Asends

» sr;mod-n for each r mod-n in subset 1
= r; mod-n for each ri mod-n in subset 2
o B checks whether
= for each entry in subset 1: (reply;)? = v-r¥ mod-n
= for each entry in subset 2: (replyi)> = r> mod-n
= If so, A is authenticated
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¢ Why does it work?

o Finding square root mod-n is at least as hard as factoring.
e Knowing s-r; mod-n does not help obtain r; mod-n, and vice versa.

o So replies could only have been generated by A originally.

o Unlikely that they were generated by C (having eavesdropped on many
previous authentications of A), because the choice of the subsets 1 and 2 is
random.
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Zero-knowledge signatures

¢ A zero-knowledge system can be transformed to a public key sighature, but
performance is poor.

¢ Note that authentication is interactive but signature is not.

¢ Trick: use a hash to provide a “random” choice of subset 1 and subset 2.
o Suppose hash function chosen provides k-bit hash (e.g., k=128).
o A chooses k random numbers, rq, -, 1
o A forms msg [data to be signed | ;> mod-n, --, > mod-n]

o A obtains hash of msg, and provides a reply vector in which the 1’s in the
hash correspond to subset 1 and the 0’s correspond to subset 2:

= if hash bit i is 1 then the reply vector has s-r; mod-n in position i
= if hash bit i is 0 then the reply vector has r;* mod-n in position i
o Why does it work?

= Forging a signature on a message requires having both possible replies
for all the ry’s.
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