
5/7/2009 shankar authentication slide 1

Computer and Network Security
CMSC 414

STANDARDS

Udaya Shankar
shankar@cs.umd.edu

5/7/2009 shankar authentication slide 2

Kerberos 4 (NS chapter 13)

Authentication in network (Realm)
• Realm has KDC and principals (users)
• Users are humans and (distributed) applications (NFS, rsh, etc)
• Human users log in to workstations, use applications (apps)
• Apps can interact with other apps (eg, ftp with NFS)
• KDC authenticates login sessions and apps
• Based on Needham-Schroeder authentication protocol.
• Assumes attacker can eavesdrop and modify messages in transit.
• Assumes DES and IPv4
• Uses timestamps, so nodes need to maintain synchronized clocks.

KDC has
• master key for each principal
• Human user’s master key obtained from password
• Apps have (high-quality) key

• Secret key KKDC (not shared with any other principal)

• for encrypting master keys in local database
• for encrypting TGTs

• Read-only database (except when principal changes master key)

5/7/2009 shankar authentication slide 3

When human user logs in
• KDC authenticates user based on user’s master key.
• KDC provides user credentials (encrypted with master key) consisting of

• Session key for that login session (user master key is not used after login)
• Ticket Granting Ticket (TGT) used to obtain further tickets from KDC
TGT is encrypted by KKDC

When human user wants to access an application
• user’s workstation presents KDC with [request, TGT, timestamp]
(encrypted with session key)

• KDC returns credentials (encrypted with session key) consisting of
• session key (to talk to application)
• ticket for application (encrypted with application’s master key)

• user’s workstation presents application with [request, ticket]

5/7/2009 shankar authentication slide 4

Login handshake

 user A (has pw) A’s workstation KDC (has A: KA)

1 start login
send [A,passwd]

 2

3

 send [A,KDC, AS_REQ]
AS_REQ: “A needs TGT”

 receive msg
retrieve KA
generate session key SA
tgtA � KKDC{A, SA}
crdA � KA{SA, tgtA}
send [KDC, A, AS_REP, crdA]

4

 receive msg
construct KA from passwd
extract SA, tgtA from crdA
forget passwd;
 shell uses SA henceforth

 finish login

5/7/2009 shankar authentication slide 5

Accessing remote principal

 (LATER IN THE SESSION)
 A A’s workstation

1 rlogin B
2 send [A,KDC,TGS_REQ,

“A to talk to B”, tgtA, SA(ts)]
▪ SA(ts): authenticator

3

receive msg
generate session key KAB
get SA from tgtA
get ts and verify
find B’s master key KB

tktB ← KB{A, KAB}
crdB = SA{B,KAB,tktB}
 // credential
send [TGS_REP, crdB] to A

4
 receive msg from KDC

send [A,B, AP_REQ, tktB, KAB{ts}] B

5 send [B,A, AP_REP, KAB{ts+1}]

6 receive msg
 end

5/7/2009 shankar authentication slide 6

Replicated KDCs to improve performance

• One master KDC and several secondary KDCs
• Each secondary KDC has read-only copy of KDC database
• Additions/deletions/changes to master keys always done at master KDC
• Secondary KDCs can generate session keys, TGTs, etc.
• Master disseminates KDC databases to secondary KDCs with integrity

protection only (but master keys are encrypted with KKDC)

5/7/2009 shankar authentication slide 7

Authentication across multiple realms

• Possible if their KDCs share a key.
• Principal name = [name, instance, realm], each string of 40 chars max

A in realm X KDCX KDCY B in realm Y

send [A, KDCX, TGS_REQ, A.X, D.Y]

receive msg
send [KDCX, A, TGS_REP, cred to KDCY]

receive msg
send [A, KDCY, TGS_REQ, A.X, B.Y, cred]

receive msg
send [KDCY, A, TGS_REP, cred to B]

receive msg
send [A, B, AP_REQ, cred, …]

 receive msg

5/7/2009 shankar authentication slide 8

Key version number

If A has a ticket to B and B changes its password, then ticket no longer valid.
To handle this case (without A having to ask KDC for a new ticket):
• Applications remember old master keys (up to expiry time (approx 21 hrs)
• In tickets, the key is sent along with version number
• Human users need not remember old passwords

Network layer address in tickets

• Every ticket has the IPv4 address of the principal given the ticket
• Received ticket is not accepted if ticket sender’s IP address does not match
• So if B is to impersonate A, it must also spoof the IP address of A (easy to do)
• Prevents delegation

• A cannot ask B at another IP address to do work on behalf of A
(unless B spoofs IP address of A!)

5/7/2009 shankar authentication slide 9

Encryption of application data

• After authentication, data exchange can be in clear or encrypted or integrity-
protected or encrypted and integrity-protected

• Choice is up to the application (performance vs security).
• Kerberos V4 uses some adhoc encryption techniques (not so safe).

Encryption and Integrity-protection

Recall that standard approach uses two keys and two crypto passes (expensive).
Kerberos uses a modified CBC called Plaintext CBC (PCBC)

• In CBC: cn+1 = EK{mn+1 ⊕⊕⊕⊕ cn }
• Modifying any ci causes only mi and mi+1 to be garbled.

• In PCBC: cn+1 = EK{mn+1 ⊕⊕⊕⊕ cn ⊕⊕⊕⊕ mn }
• Modifying any ci causes all mj for j ≥ i to be garbled.

� Kerberos puts recognizable last block, so tampering detected.
• However, swapping ci and ci+1 makes PCBC get back in synch from mi+2

Encryption for Integrity only

Computes checksum on [session key, msg]
Probably not cryptographically strong
• May allow attacker to modify msg and pass integrity test
• May allow attacker to obtain session key

5/7/2009 shankar authentication slide 10

Kerberos 5 (NS chapter 14)

More general than V4
• Message formats

• Defined using ASN.1 and BER (Basic Encoding Rules)
• Automatically allows for addresses of different formats, etc.
• Occupies more octets

• Names: [NAME, REALM]

• Arbitrary strings of arbitrary length (allows “.”, “@”, “name@org", etc)
• Allows X.500 names (Country/Org/OrgUnit/LName/PName/…)
• Kerberos 4 names have size/character limitations

• Cryptographic algorithms

• Allows choice of crypto algorithms (but DES is the only deployed version)
• Uses proper integrity protection (rather than pseudo-Juneman checksum)

5/7/2009 shankar authentication slide 11

Kerberos 5

Delegation of rights
• A can ask KDC for a TGT with

• network addresses different from A’s network address
(to be used by principals at other IP addresses on behalf of A)

• no network address (can be used by any principal at any network address)
• Policy decision whether KDC/network issues/accepts such tgts
• Having tgts with explicit addresses:

• KDC tracks delegation trail
• A has to interact with KDC for each delegation

A can give a TGT/tickets to B with specific constraints
• specific resources that can be accessed.
• TGT/tkt has AUTHORIZATION-DATA field that is application specific.
KDC copies this field from TGT into any derived ticket (used in OSF, Windows).

• A’s TGT can be forwardable:
• Allows A to use TGT to get a TGT (for B) with different network address.
• A also says whether derived TGT is itself forwardable.

• A’s TGT can be proxiable:
• Allows A to use TGT to get tickets (for B) with different network address.

• Ticket lifetime

5/7/2009 shankar authentication slide 12

Kerberos 5

TGT/tkt lifetime

• Fields:

• start-time: when ticket becomes valid
• end-time: when ticket expires (but can be renewed (see renew-till)
• authtime: when A first logged in (copied from initial login TGT)
• renew-till: latest time for ticket to be renewed.

• Allows unlimited duration (upto Dec 31, 9999) subject to renewing (e.g., daily)
• exchange tgt/tkt at KDC for a new (renewed) tgt/tkt
• tgt/tkt has to be renewed before expiry (o/w KDC will not renew)

• Allows postdated tickets (e.g, for batch jobs).

5/7/2009 shankar authentication slide 13

Kerberos 5
Keys
KDC remembers old master keys of human users (in addition to applications)
• Needed because tgts/tickets are now renewable and can be postdated.
• For each principal, KDC database stores [key, p_kvno, k_kvno]

• key: principal’s master key encryped with KKDC (current or past version).
• p_kvno: version number of principal’s master key.
• k_kvno: version number of KKDC used to encrypt
• ……………………..
• max_life: max lifetime for tickets issued to this principal
• max_renewable_life: max total lifetime for tickets issued to this principal
• expiration: when this entry expires
• mod_date: when entry last modified
• mod_name: principal that last modified this entry
• flags: preauthentication?, forwardable?, proxiable?, etc.
• password_expiration:
• last_pwd_change:
• last_succes: time of last successful login

Human user master key derived from password and realm name.
• So even if A uses the same password in several realms, compromising A’s
master key (but not password) in one realm does not compromise it in another
realm.

5/7/2009 shankar authentication slide 14

Kerberos 5
Hierachy of realms

Allows KDC chains of authentication (unlike V4)
• Suppose KDCs A, B, C, where A, B share key, B,C share key, but A,C do not.
Allows C to accept a ticket sent by A and generated by B.

• Each ticket inclues all the intermediate KDCs
• receiving KDC can reject ticket if ticket has a suspect intermediary

Evading off-line password guessing
• V4 allows off-line password guessing:

• KDC does not authenticate TGT_REQ before issuing TGT
• So B can spoof A, get a TGT for A, do off-line dictionary attack on TGT

• In V5

• Req for TGT for A must contain KA{timestamp}; so above attack not possible.
• KDC also does not honor requests for tickets to human users by others.
• Prevents logged-in B to ask KDC for a ticket (to delegate) for A,
on which it can do off-line password guessing.

5/7/2009 shankar authentication slide 15

Kerberos 5

Key inside authenticator
• Suppose A and B share a session key KAB generated by KDC.
• A and B can have another (simultaneous) session using a different key.
• This can be done without involving the KDC:

• A makes up a key for this second session and gives that to B encryped by KAB

Double TGT authentication
• Allows A to access server B that has session key, say SB, but not master key KB
• Needed for X windows: human user runs remote app that can display locally.

• X server manages display on workstation screen
• X clients (eg, xterm, browser) run on local or remote workstations
• X client (A) needs tkt to X server (B) to display on screen.

• No good for A to get from KDC a (regular) tkt encrypted with B’s master key
• Instead

• A gets TGTB from B, sends [“A to talk to B”, TGTA, TGTB] to KDC
• KDC

• extracts SB from TGTB (encrypted with KKDC)
• creates session key KAB,
• generates tktB encrypted with SB [ie, SB{‘A’, KAB}] and sends to A

5/7/2009 shankar authentication slide 16

X windows

B (human user) B’s workstation C (may be B’s workstation)

 X server
• login to X server
[B, passwd]

• request TGTB from KDC
• obtain [SB, TGTB] from KDC
• forget B’s passwd
• start serving B (eg, keybd, mouse)

• request X client at C
(eg, xterm)

• X client starts
• has info to display at B’s screen
• get TGTB from X server
• ask KDC for tkt encrypted by SB
• present tkt to X server
and info to display

 • X server displays client’s info

5/7/2009 shankar authentication slide 17

PKI: Public-Key Infrastructure (NS Chapter 15)

PKI: infrastructure for obtaining public keys of principals
• examples: S/MIME, PGP, SSL, Lotus Notes, …

Consists of
• Principal name space

• usually hierarchical: usr@cs.umd.edu; www.cs.umd.edu/usr;

• Certification authorities (CAs): subset of the principals

• Repository for certificates and CRLs: (e.g., DNS, directory server)
• searched by principals
• updated by CAs

• Method for searching repository for a chain of certificates given
• starting CA: trust anchor of the chain
• ending subject: target of the chain

5/7/2009 shankar authentication slide 18

Recall certificates, CRLs, certificate chains
• Certificate:

• issuer C; // name of CA (principal) issuing the certificate
• subject X; // name of principal whose public key is being certified
• subject public key J; // certified public key of X
• expiry time T; // date/time when this certificate expires
• serial number; // used in CRL
• principals that subject can certify; // optional
• signature; // C’s signature on all the above

• CRL:
• issuer C; // name of CA issuring the CRL
• list of serial numbers of revoked certificates;
• issue time T; // date/time when this CRL was issued
• signature; // C’s signature on all the above

• Certificate chain: // below, ‘cft’ is short for ‘certificate’
• sequence <(cft1, crl1), …, (cftn, crln)> such that cfti subject = cfti+1 issuer
• cft1 issuer: trust anchor of the chain
• cftn subject: target of the chain
• chain is valid (my terminology) if for every i in 1, ..., n:

� cfti is unexpired
� crli is recent enough and does not include cfti

5/7/2009 shankar authentication slide 19

Updates in PKI

Introduction of public key J of principal X:
• request every CA that can certify X to issue a certificate for [X, J]
(online/offline?)

• each such CA checks the request (online/offline?)
• if the request passes the CA’s checks
then generate a certificate for [X, J] and add to the repository

• if X is also a trust anchor to a set of principals
• inform every principal in the set of [X, J] (online/offline?)
• Is this necessary?

Revocation of public key J of principal X:
• request every CA that has certified [X, J] to revoke it in the CA’s next CRL

• if request passes the CA’s checks, it includes [X, J] in its next CRL
• if X is also a trust anchor to a set of principals

• inform every principal in the set that [X, J] is not to be used
• Is this necessary?

Updates in PKI should preserve the following desired property:
• For every valid certificate chain CC in the repository
if X is the subject and J the public key of a cft in CC
then J is X’s public key at issue time of earliest CRL in CC prefix upto cft.

5/7/2009 shankar authentication slide 20

Revocation
• Online revocation service (OLRS)
• Delta CRLs
• First valid certificate
• Good-lists vs bad-lists
• Boring…

PKIX and X.509
X.509 certificates used in Internet PKIs

5/7/2009 shankar authentication slide 21

PKI trust model

Defines where a user gets the trust anchors and what chain paths are legal

Monopoly:
• One CA, say R, trusted by all organizations and countries.
• Public key of R is the single trust anchor embedded in all software/hardware.

• every certificate is signed by R
• Advantages:

• simplicity: verification involves checking one certificate
• Disadvantages:

• infeasible to change R’s public key if it gets compromised
• R can charge whatever it wants
• Security of entire world rests on R
• Bottleneck in obtaining certificates
• Bottleneck in issuing CRLs

5/7/2009 shankar authentication slide 22

PKI trust model (cont)

Monopoly + Registration Authorities (RAs)
• Like monopoly except

• CA chooses other organizations (RAs) to interact with world
• CA interacts only with RAs

• Has all the disadvantages of monopoly except CA is not a bottleneck.
• May be less secure because RAs may not be as careful as CA.

Monopoly + Delegated CAs
• Tree of CAs with one root CA
• Users can obtain certificates from a delegated CA rather than root CA.
• Verification invovles chain of certificates with root CA as trust anchor

5/7/2009 shankar authentication slide 23

PKI trust model (cont)

Oligarchy
• Multiple root CAs (trust anchors)
• Advantage: monopoly pricing is not possible
• Disadvantage:

• More CAs to go wrong.
• Choice/control over the CAs pre-installed in your program/hardware.
• Adding new trust anchors possible, hence vulnerable to

� adding malicious CA
� modifying an existing trust anchor’s public key

Anarchy
• Each user independently chooses some trust anchors.
• Advantage: not dependent on other organizations.
• Disadvantage:

• unorganized certificate space
• not easy to find certification chains that are acceptable to user.

5/7/2009 shankar authentication slide 24

PKI trust model (cont)
Name constraints
• Each CA is trusted for certifying only a subset of the principal name space.
• Usually hierarchical: i.e., CA x.y is trusted to certify x.y.*, but not x.z.
• Subset can be a function of the user (see below)

Top-down trust model with name constraints
• Monopoly with delegated CAs except

• each CA can only certify principals in its subtree (excluding itself).

Bottom-up trust model with name constraints
• Hierarchical name space
• Down-links (as usual):

• x.y certifies x.y.z
• Up-link (unusual!):

• x.y.z certifies x.y
• Allows x.y.z.a to use x.y.z as trust anchor for users outside x.y.z:

� e.g., chain [x.y.z , x.y , x , x.p , x.p.q]
• Cross-link: x.y certifies p.q,

� where x.y and p.q are CAs of two interacting organizations
• Improves performance. Can also improve security...?

• Allows PKI to be deployed incrementally in (real-world) situation

5/7/2009 shankar authentication slide 25

PKI trust model (cont)

Certificates with relative names
• Can of worms

Policies in certificates
• Which CAs are acceptable as trust anchors
• Which CAs are not acceptable in chains
• etc

5/7/2009 shankar authentication slide 26

Internet Security Architecture (NS 16.1)

• TCP/IP stack without security

apps apps

TCP UDP … TCP UDP …

IP LRD channel IP

• TCP provides apps with

• connection establishment
• reliable data transfer

• Want to extend this to handle attackers

• network attackers: passive / active
• endpoint attackers: send messages with arbitrary fields
• authentication: (extends connection establishment)
• confidentiality, integrity: (extends reliable data transfer)

5/7/2009 shankar authentication slide 27

Natural solution to TCP/IP stack with security

apps apps

TCP STCP UDP … TCP STCP UDP …

IP LRD/attacker channel IP

• STCP (Secure TCP) like TCP except

• client app’s conn req includes client/server id, authentication secret (K)

• server app’s conn accept includes client/server id, authentication secret (K)

• stcp conn est does

� tcp-like 3-way conn est using Internet ids, then

� auth handshake involving client/server ids, challenges/responses

� above two can overlap

• stcp data transfer is tcp-like except

� ip header is in clear but stcp header and payload encrypted

5/7/2009 shankar authentication slide 28

STCP handshake

server B, port y stcp stcp

[x,y,A,B,K,open]

client A, port x

[x,y,A,B,K,open]

← [y,B,attach]

← [y,x,B,accept.K]

open
open [x,y,A,B] →

[x,y,A,B]

auth handshake using K
establish session key(s)
u ing K

← authenticated
authenticated →

stcp msgs with ip
header in clear

plain text plain text

disconnect

5/7/2009 shankar authentication slide 29

Reality

• Implementors did not want
• modifications to TCP (which is implemented in OS kernel)
• another protocol like TCP in OS kernel
• another protocol like TCP in application space (e.g., above UDP)

• Approach 1: SSL

• Approach 2: IPsec

apps apps

SSL

SSL

TCP UDP … TCP UDP …

IP LRD/attacker channel IP

apps apps

TCP UDP … TCP UDP …

IPsec IPsec

IP LRD/attacker channel IP

5/7/2009 shankar authentication slide 30

Approach 1: SSL

• tcp hdr in clear => easy denial-of-service attack (rogue packet attack)
• option 1: restart user or ssl connection
• option 2: have ssl do retransmissions and acks (i.e. implement tcp)

client A, port x ssl ssl server B, port y tcp tcp

[y,B,attach]

[x,y,A,B,K]

tcp conn est
handshake

auth handshake using K
establish session key(s)
u ing K

open [x,y,A,B] →

← [y,x,B.A,K]

tcp msgs with
tcp hdr in clear

plain text
plain text

disconnect

5/7/2009 shankar authentication slide 31

SSL (NS chapter 19)

SSL (cont)

[y,B,attach]

client A ssl x tcp x tcp y ssl y server B

[x,y,A,B,K] [x,y]

tcp conn est
handshake

[y,B,]
[x,y,B, ciphers supported, RA]

RA

[y,x,B, cipher chosen, certB, RB]

S

K=f(S,RA,RB)
[x,y,{S}B, K{keyed hash of hndshk)]

[y,x,K{another keyed hash of hndshk]
A auth B

passwd handshake
encrypted by K-derived keys

B auth A

5/7/2009 shankar authentication slide 32

• A authenticates B using certificateB
• B authenticates A using password (usual case)
Can also use certificatea for authenticating A

• S: pre-master secret
• K: master secret

• K = f(S, RA, RB)
• keys for data encryption/integrity obtained from K, RA, RB

• A’s write (transmit) key = B’s read (receive) key
• B’s write (transmit) key = A’s read (receive) key

• A does two public-key crypto operations

• verifying certB
• calcluating {S}B

• To minimize this, S can be reused across different sessions
• motivated by http 1.0 (which opens many tcp sessions between same A,B)
• session id

5/7/2009 shankar authentication slide 33

SSL (cont)

ssl A

[x,y,B, ciphers, RA] →

ssl A

← [y,x,B, session-id = X, certB, cipher, RB] initial session

new session later on

[x,y,B, session-id = X, ciphers, RA] →

← [y,x,B, session-id = X, certB, cipher, RA,

keyed hash of handshake]

if ssl A still has X:S
can reuse it

[x,y, keyed hash of handshake] →

5/7/2009 shankar authentication slide 34

IPsec: AH and ESP (NS chapter 17)

• IPsec sits above IP and below TP (transport protocol: TCP, UDP, IP, …

• IP packet: [IP hdr, IPsec hdr, TP hdr, TP payload]

 ←−−−−- IP payload −−−−−−−→

 ←− IPsec payload →

• TP is IP: “tunnel” mode, because often used to tunnel IP traffic
TP is not IP: “transport” mode

• IP hdr:
• sender ip addr, rcvr ip addr
• hop count // mutable
• next protocol id: TCP, UDP, IP, IPsec (AH or ESP), …

• IPsec header (generic):
• SPI (security parameter index): identiifies IPsec connection (SA)
• sequence number: of IPsec packet (for replay attacks)
• IV (for encryption/integrity)
• authentication data (integrity check)
• next protocol id: (TCP, UDP, IP, …)

5/7/2009 shankar authentication slide 35

IPsec: AH and ESP (cont)

• IPsec connection referred to as IPsec SA (security association)

• An SA is one-way, so need two SAs for bi-directional packet flow.

• IPsec entity in a node has
• Security policy database (control path)

� for <ip addr, port, etc>: crypto or not? type? integrity/encryp, …
• SA (security association) database (data path)

� outgoing: for remote ip addr: SPI, crypto key/alg, sequence number
� incoming: for SPI: crypto key/algo, expected seq number, …

• IPsec headers are in two flavors:
• AH hdr: SPI, sequence number, auth data, next protocol id

� integrity only but on enclosing IP <payload + “immutable” header>
� not compatible with NAT, firewalls

• ESP hdr: SPI, seq number, IV, auth data, next protocol id
� integrity and/or encryption on enclosing IP payload
� compatible with NAT, firewalls

5/7/2009 shankar authentication slide 36

IPsec: IKE (NS chapter 18)

• In order for an IPsec SA to operate, its parameters (integrity/encryp, key, …)
must be set in the (SA database of the) end-points of the SA

• Can be done manually by end-point administrators or dynamically using IKE

• IKE runs over UDP

• IKE has two phases:

• Phase 1:
� end-points do mutual authentication and establish phase-1 session keys
� 3 ways to prove id:

• public signature key, public encryption key, or secret key
� two kinds of handshakes, each involving Diffie-Helman

• aggressive mode: 3 msgs, less options
• main mode: 6 msgs, more options

� so total of 6 types of handshakes (actually 8)

• Phase 2: establish one or more IPsec SAs
Each SA:
� 3 msgs. all encrypted with phase-1 keys
� session keys generated using phase-1 session key as seed
� public-key crypto (e.g., Diffie-Hellman) is optional

5/7/2009 shankar authentication slide 37

IPsec IKE: Phase 1

• CA, CB (cookies): distinguish different phase 1 connections between A,B.
Must be different for each connection attempt.

• K = f(gab mod p, nonceA, nonceB)

client A (at udp x) server B (at udp y)

Main mode (generic)

[CA (cookie), CP (crypto supported)] →

← [CA,CB,CPA (crypto accepted)]

[CA,CB, g
a mod p, nonceA] →

← [CA,CB, g
b mod p, nonceB]

[CA,CB, K{A, proof I’m A}] →

← [CA,CB, K{B, proof I’m B}]

5/7/2009 shankar authentication slide 38

IPsec IKE: Phase 1 (cont)

• If aggressive mode is rejected (perhaps because CP not acceptable to B),
A should use main mode (rather than aggressive with different CP).

client A (at udp x) server B (at udp y)

Aggressive mode (generic)

[CA, g
a mod p, A, nonceA, CP] →

← [CA,CB, g
b mod p, nonceB, CPA, proof I’m B)]

[CA,CB, A, proof I’m A}] →

5/7/2009 shankar authentication slide 39

IPsec IKE: Phase 1 (cont)

Negotiating crypto parameters

• Algorithms

• encryption: DES, 3DES, ...

• hash: MD5, SHA-1, ...

• authentication method:
� pre-shared keys
� RSA signature
� DSS
� RSA encryption (original)
� RSA encryption (improved)
� ...

• Diffie-Hellman group
� modular exponentiation, choice of g and p
� ellicptic curve, choice of parameters
� ...
� Not negotiable in aggressive mode

• Lifetime of SA
• duration and/or quantity of data transferred

• Must-implement defaults

5/7/2009 shankar authentication slide 40

IPsec IKE: Phase 1 (cont)
Session keys

• Integrity and encryption keys
• used on last of phase-1 msgs and all phase-2 handshake msgs

• Seed for phase-2 SA keys

• Keys obtained from hashing (prf) quantities of handshake
• e.g., DES CBC residue, HMAC, …

• SKEYID (key seed)
= prf(nonces, gab mod p) if public signature key used for auth
= prf(hash(nonces), cookies) if public encryption key used for auth
= prf(pre-shared secret key, nonces) if pre-shared secret used for auth

• SKEYID_d (seed) = prf(SKEYID, gab mod p, cookies, 0)

• SKEYID_a (integrity key) = prf(SKEYID, SKEYID_d, gab mod p, cookies, 1)

• SKEYID_e (encryp key) = prf(SKEYID, SKEYID_a, gab mod p, cookies, 2)

• Proof of id for A = prf(SKEYID, ga, gb, cookies, A's CP, A)
Accompanied by certificate (if used)

• Proof of id for B = prf(SKEYID, gb, ga, cookies, A's CP, B)
Accompanied by certificate (if used)

5/7/2009 shankar authentication slide 41

IPsec IKE: Phase 2

• Phase-2 initiator need not be same as phase-1 initiator

• CA, CB: from phase 1

• Y: 32-bit id of this phase-2 SA

• msgs after “CA,CB,Y” under phase-1 keys (SKEYID_e, SKEYID_a)
• IV for msg 1 is final ciphertext block of last phase-1 msg hashed with Y
IV for later msgs is final ciphertext block of previous msg hased with Y

• traffic descriptor [optional]

• DH [optional]

client A (at udp x) server B (at udp y)

phase-1 handshake

[CA,CB, Y, CP, SPIA, nonceA, [g
a mod p],[traffic]] →

← [CA,CB,Y, CPA, SPIB, nonceB, [g
b mod p], [traffic]]

[CA,CB, Y, ack] →

Phase-2 SA setup

