	Kerberos 4 (NS cha	apter 13)		
Computer and Network Security CMSC 414 STANDARDS Udaya Shankar shankar@cs.umd.edu	 Authentication in network (Realm) Realm has KDC and principals (users) Users are humans and (distributed) applications (NFS, rsh, etc) Human users log in to workstations, use applications (apps) Apps can interact with other apps (eg, ftp with NFS) KDC authenticates login sessions and apps Based on Needham-Schroeder authentication protocol. Assumes attacker can eavesdrop and modify messages in transit. Assumes DES and IPv4 Uses timestamps, so nodes need to maintain synchronized clocks. KDC has master key for each principal Human user's master key obtained from password Apps have (high-quality) key Secret key K_{KDC} (not shared with any other principal) for encrypting master keys in local database for encrypting TGTs Read-only database (except when principal changes master key) 			
5/7/2009 shankar authentication slide 1	5/7/2009 shankar	authentication slide 2		
 When human user logs in KDC authenticates user based on user's master key. KDC provides user credentials (encrypted with master key) consisting of Session key for that login session (user master key is not used after login) Ticket Granting Ticket (TGT) used to obtain further tickets from KDC TGT is encrypted by K_{KDC} When human user wants to access an application user's workstation presents KDC with [request, TGT, timestamp] 	Login handshake user A (has pw) A's workstation 1 start login send [A,passwd] 2 send [A,KDC, AS_REQ] AS_REQ: "A needs TGT"	KDC (has A: K _A) receive msg retrieve K _A		

- (encrypted with session key)KDC returns credentials (encrypted with session key) consisting of
- session key (to talk to application)
 ticket for application (encrypted with application's master key)
 user's workstation presents application with [request, ticket]

	user A (has pw)	A's workstation	KDC (has A: K _A)
1	start login send [A,passwd]		
2		send [A,KDC, AS_REQ] AS_REQ: "A needs TGT"	receive msg retrieve K_A generate session key S_A $tgt_A \leftarrow K_{KDC}{A, S_A}$ $crd_A \leftarrow K_{A}{S_A, tgt_A}$ send [KDC, A, AS_REP, crd_A]
4	finish login	receive msg construct K _A from passwd extract S _A , tgt _A from crd _A forget passwd; shell uses S _A henceforth	

1	Acc	essing	remote principal			
1	1		(LATER IN THE S	ESSION)	Replicated KDCs to improve perfor	rmance
	1 2 3 4	A rlogin B	(LATER IN THE S A's workstation send [A,KDC,TGS_REQ, "A to talk to B", tgt _A , S _A (ts)] • S _A (ts): authenticator receive msg from KDC send [A,B, AP_REQ, tkt _B , K _{AB} {ts}]	receive msg generate session key K_{AB} get S_A from tgt_A get ts and verify find B's master key K_B tkt_B \leftarrow $K_B{A, K_{AB}}$ crd_B = $S_A{B, K_{AB}, tkt_B}$ // credential send [TGS_REP, crd_B] to A	 One master KDC and several seco Each secondary KDC has read-onl Additions/deletions/changes to m Secondary KDCs can generate ses Master disseminates KDC databas protection only (but master keys 	ndary KDCs y copy of KDC database haster keys always done at master KDC sion keys, TGTs, etc. es to secondary KDCs with integrity are encrypted with K _{KDC})
	5 6	end	receive msg	send [B,A, AP_REP, K _{AB} {ts+1}]		
5	5/7/2	009 shankar		authentication slide 5	5/7/2009 shankar	authentication slide 6
	Aut	hentica	ation across multiple realms		Key version number	
	• P • P	ossible rincipal	IT THEIT KUCS SHARE A KEY. l name = [name, instance, realm], ea	ach string of 40 chars max	If A has a ticket to B and B changes To handle this case (without A having	its password, then ticket no longer valid. ng to ask KDC for a new ticket):

A in realm X	KDC _x	KDC _Y	B in realm Y
send [A, KDC _x ,	TGS_REQ, A.X, D.Y]		
receive msg send [KDC _x , A, TGS_REP, cred to KDC _Y]			
receive msg send [A, KDC _Y , TGS_REQ, A.X, B.Y, cred]			
		receive msg send [KDC _Y , A,	TGS_REP, cred to B]
receive msg send [A, B, AP_REQ, cred,]			
			receive msg

To handle this case (without A having to ask KDC for a new ticket):

- Applications remember old master keys (up to expiry time (approx 21 hrs)
- In tickets, the key is sent along with version number
- Human users need not remember old passwords

Network layer address in tickets

- Every ticket has the IPv4 address of the principal given the ticket
- Received ticket is not accepted if ticket sender's IP address does not match
- So if B is to impersonate A, it must also spoof the IP address of A (easy to do)
- Prevents delegation
 - A cannot ask B at another IP address to do work on behalf of A (unless B spoofs IP address of A!)

	Kerberos 5 (NS chapter 14)
Encryption of application data	
 After authentication, data exchange can be in clear or encrypted or integrity-protected or encrypted and integrity-protected Choice is up to the application (performance vs security). Kerberos V4 uses some adhoc encryption techniques (not so safe). 	 More general than V4 Message formats Defined using ASN.1 and BER (Basic Encoding Rules) Automatically allows for addresses of different formats, etc. Occupies more octets
Encryption and Integrity-protection	
$ \begin{array}{l} \mbox{Recall that standard approach uses two keys and two crypto passes (expensive).} \\ \mbox{Kerberos uses a modified CBC called Plaintext CBC (PCBC)} \\ \bullet \mbox{ In CBC: } c_{n+1} = E_{K}\{m_{n+1} \oplus c_{n}\} \\ \bullet \mbox{ Modifying any } c_{i} \mbox{ causes only } m_{i} \mbox{ and } m_{i+1} \mbox{ to be garbled.} \\ \bullet \mbox{ In PCBC: } c_{n+1} = E_{K}\{m_{n+1} \oplus c_{n} \oplus m_{n}\} \\ \bullet \mbox{ Modifying any } c_{i} \mbox{ causes all } m_{j} \mbox{ for } j \geq i \mbox{ to be garbled.} \\ \bullet \mbox{ Kerberos puts recognizable last block, so tampering detected.} \\ \bullet \mbox{ However, swapping } c_{i} \mbox{ and } c_{i+1} \mbox{ makes PCBC get back in synch from } m_{i+2} \\ \end{array} $	 Names: [NAME, REALM] Arbitrary strings of arbitrary length (allows ".", "@", "name@org", etc) Allows X.500 names (Country/Org/OrgUnit/LName/PName/) Kerberos 4 names have size/character limitations Cryptographic algorithms Allows choice of crypto algorithms (but DES is the only deployed version) Uses proper integrity protection (rather than pseudo-Juneman checksum)
Encryption for Integrity only	
Computes checksum on [session key, msg] Probably not cryptographically strong • May allow attacker to modify msg and pass integrity test • May allow attacker to obtain session key	
5/7/2009 shankar authentication slide 9	5/7/2009 shankar authentication slide 10
	Kerberos 5
 Kerberos 5 Delegation of rights A can ask KDC for a TGT with network addresses different from A's network address (to be used by principals at other IP addresses on behalf of A) no network address (can be used by any principal at any network address) Policy decision whether KDC/network issues/accepts such tgts Having tgts with explicit addresses: KDC tracks delegation trail A has to interact with KDC for each delegation A can give a TGT/tickets to B with specific constraints specific resources that can be accessed. TGT/tkt has AUTHORIZATION-DATA field that is application specific. KDC copies this field from TGT into any derived ticket (used in OSF, Windows). A's TGT can be forwardable: Allows A to use TGT to get a TGT (for B) with different network address. A also says whether derived TGT is itself forwardable. A's TGT can be proxiable: Allows A to use TGT to get tickets (for B) with different network address. Allows A to use TGT to get tickets (for B) with different network address. 	 TGT/tkt lifetime Fields: start-time: when ticket becomes valid end-time: when ticket expires (but can be renewed (see renew-till) authtime: when A first logged in (copied from initial login TGT) renew-till: latest time for ticket to be renewed. Allows unlimited duration (upto Dec 31, 9999) subject to renewing (e.g., daily) exchange tgt/tkt at KDC for a new (renewed) tgt/tkt tgt/tkt has to be renewed before expiry (o/w KDC will not renew) Allows postdated tickets (e.g, for batch jobs).

Kerberos 5 Kerberos 5 Hierachy of realms Kevs KDC remembers old master keys of human users (in addition to applications) • Needed because tgts/tickets are now renewable and can be postdated. Allows KDC chains of authentication (unlike V4) • For each principal, KDC database stores [key, p_kvno, k_kvno] • Suppose KDCs A, B, C, where A, B share key, B,C share key, but A,C do not. • key: principal's master key encryped with K_{KDC} (current or past version). Allows C to accept a ticket sent by A and generated by B. • p_kvno: version number of principal's master key. • Each ticket inclues all the intermediate KDCs • k_kvno: version number of K_{KDC} used to encrypt receiving KDC can reject ticket if ticket has a suspect intermediary • max_life: max lifetime for tickets issued to this principal Evading off-line password guessing • V4 allows off-line password guessing: • max renewable life: max total lifetime for tickets issued to this principal • expiration: when this entry expires KDC does not authenticate TGT REQ before issuing TGT mod date: when entry last modified • So B can spoof A, get a TGT for A, do off-line dictionary attack on TGT • mod name: principal that last modified this entry • flags: preauthentication?, forwardable?, proxiable?, etc. In V5 • password expiration: • Req for TGT for A must contain K_A{timestamp}; so above attack not possible. • last pwd change: • KDC also does not honor requests for tickets to human users by others. last succes: time of last successful login • Prevents logged-in B to ask KDC for a ticket (to delegate) for A, on which it can do off-line password guessing. Human user master key derived from password and realm name. • So even if A uses the same password in several realms, compromising A's master key (but not password) in one realm does not compromise it in another realm. 5/7/2009 shankar authentication slide 13 5/7/2009 shankar authentication slide 14 Kerberos 5 X windows B (human user) B's workstation C (may be B's workstation) Key inside authenticator X server • Suppose A and B share a session key K_{AB} generated by KDC. login to X server • A and B can have another (simultaneous) session using a different key. • This can be done without involving the KDC: [B, passwd] • A makes up a key for this second session and gives that to B encryped by K_{AB} • request TGT_B from KDC obtain [S_B, TGT_B] from KDC **Double TGT authentication** forget B's passwd • Allows A to access server B that has session key, say S_B, but not master key K_B • Needed for X windows: human user runs remote app that can display locally. start serving B (eg, keybd, mouse) • X server manages display on workstation screen request X client at C • X clients (eg, xterm, browser) run on local or remote workstations (eg, xterm) • X client (A) needs tkt to X server (B) to display on screen. • X client starts • No good for A to get from KDC a (regular) tkt encrypted with B's master key has info to display at B's screen Instead • get TGT_B from X server • A gets TGT_B from B, sends ["A to talk to B", TGT_A, TGT_B] to KDC • ask KDC for tkt encrypted by S_B KDC • present tkt to X server and info to display

- extracts S_B from TGT_B (encrypted with K_{KDC})
- creates session key K_{AB}
- generates tkt_B encrypted with S_B [ie, S_B ['A', K_{AB}] and sends to A

• X server displays client's info

 PKI: Public-Key Infrastructure (NS Chapter 15) PKI: infrastructure for obtaining public keys of principals examples: S/MIME, PGP, SSL, Lotus Notes, Consists of Principal name space usually hierarchical: usr@cs.umd.edu; www.cs.umd.edu/usr; Certification authorities (CAs): subset of the principals Repository for certificates and CRLs: (e.g., DNS, directory server) searched by principals updated by CAs Method for searching repository for a chain of certificates given starting CA: trust anchor of the chain ending subject: target of the chain 	Recall certificates, CRLs, certificate chains• Certificate:• issuer C; // name of CA (principal) issuing the certificate• subject X; // name of principal whose public key is being certified• subject public key J; // certified public key of X• expiry time T; // date/time when this certificate expires• serial number; // used in CRL• principals that subject can certify; // optional• signature; // C's signature on all the above• CRL:• issuer C; // name of CA issuring the CRL• list of serial numbers of revoked certificates;• issue time T; // date/time when this CRL was issued• signature; // C's signature on all the above• Certificate chain: // below, 'cft' is short for 'certificate'• sequence <(cft1, crl1),, (cftn, crln)> such that cft1 subject = cft1+1 issuer• cft1 issuer: trust anchor of the chain• chain is valid (my terminology) if for every i in 1,, n:• cft1 is unexpired• crl1 is recent enough and does not include cft1
5/7/2009 shankar authentication slide 17	5/7/2009 shankar authentication slide 18
 Updates in PKI Introduction of public key J of principal X: request every CA that can certify X to issue a certificate for [X, J] (online/offline?) each such CA checks the request (online/offline?) if the request passes the CA's checks then generate a certificate for [X, J] and add to the repository if X is also a trust anchor to a set of principals inform every principal in the set of [X, J] (online/offline?) Is this necessary? Revocation of public key J of principal X: request every CA that has certified [X, J] to revoke it in the CA's next CRL if request passes the CA's checks, it includes [X, J] in its next CRL if X is also a trust anchor to a set of principals inform every principal in the set that [X, J] is not to be used Is this necessary? Updates in PKI should preserve the following desired property: For every valid certificate chain CC in the repository if X is the subject and J the public key of a cft in CC then J is X's public key at issue time of earliest CRL in CC prefix upto cft. 	Revocation• Online revocation service (OLRS)• Delta CRLs• First valid certificate• Good-lists vs bad-lists• BoringPKIX and X.509X.509 certificates used in Internet PKIs

PKI trust model

PKI trust model (cont)

 Monopoly: One CA, say R, trusted by all organizations and countries. Public key of R is the single trust anchor embedded in all software/hardware. every certificate is signed by R Advantages: simplicity: verification involves checking one certificate Disadvantages: infeasible to change R's public key if it gets compromised R can charge whatever it wants Security of entire world rests on R Bottleneck in obtaining certificates Bottleneck in issuing CRLs 57/2009 sharkar the state of the		 Like monopoly except CA chooses other organizations (RAs) to interact with world CA interacts only with RAs Has all the disadvantages of monopoly except CA is not a bottleneck. May be less secure because RAs may not be as careful as CA. Monopoly + Delegated CAs Tree of CAs with one root CA Users can obtain certificates from a delegated CA rather than root CA. Verification invovles chain of certificates with root CA as trust anchor 		
5/7/2009 shankar a	uthentication slide 21 5/7/2009 shankar		authentication slide 22	
 PKI trust model (cont) Oligarchy Multiple root CAs (trust anchors) Advantage: monopoly pricing is not possible Disadvantage: More CAs to go wrong. Choice/control over the CAs pre-installed in your program/I Adding new trust anchors possible, hence vulnerable to adding malicious CA modifying an existing trust anchor's public key Charchy Each user independently chooses some trust anchors. Advantage: not dependent on other organizations. Disadvantage: unorganized certificate space not easy to find certification chains that are acceptable to the set of the	Name cons • Each CA • Usually h • Subset ca Top-down f • Monopoly • each C Bottom-up • Hierarchi • Down-lin • x.y cer • Up-link (f • x.y.z C • Allows • e.g. • Cross-lind • whe • Improv • Allows Pł	PKI trust model (cont) traints is trusted for certifying only a subset of the inerarchical: i.e., CA x.y is trusted to certify an be a function of the user (see below) trust model with name constraints y with delegated CAs except A can only certify principals in its subtree trust model with name constraints ical name space ks (as usual): rtifies x.y.z unusual!): certifies x.y 5 x.y.z.a to use x.y.z as trust anchor for use , chain [x.y.z , x.y , x , x.p , x.p.q] k: x.y certifies p.q. ere x.y and p.q are CAs of two interacting of yes performance. Can also improve security. KI to be deployed incrementally in (real-world)	e principal name space. y x.y.*, but not x.z. (excluding itself). ers outside x.y.z: organizations /? orld) situation	

PKI trust model (cont)	Internet Security Architecture (NS 16.1)	
Certificates with relative names Can of worms 	TCP/IP stack without security	
	apps apps	
Policies in certificates	TCP UDP TCP UDP	
 Which CAs are not acceptable in chains etc 	IP LRD channel IP	
	 TCP provides apps with connection establishment reliable data transfer Want to extend this to handle attackers network attackers: passive / active endpoint attackers: send messages with arbitrary fields authentication: (extends connection establishment) confidentiality, integrity: (extends reliable data transfer) 	
5/7/2009 shankar authentication slide 25	5/7/2009 shankar authentication slide	26
Natural solution to TCP/IP stack with security	STCP handshake	
apps apps	client A, port x stcp stcp server B, port	у
	← [y,B,attach]	
IP I RD/attacker channel IP	[x,y,A,B,K,open] [x,y,A,B,K,open]	
STCP (Secure TCP) like TCP except	open [x,y,A,B] → open [x,y,A,B] →	
 client app's conn reg includes client/server id. authentication secret (K) 	← [y,x,B,accept.K]	
 server app's conn accept includes client/server id, authentication secret (K) 	auth handshake using K	
• stcp conn est does	$\leftarrow authenticated \qquad establish \ session \ key(s) \qquad authenticated \rightarrow$	
 tcp-like 3-way conn est using Internet ids, then 		
 auth handshake involving client/server ids, challenges/responses 	plain text stcp msgs with ip plain text header in clear plain text	

- auth handshake involving client/server ids, challenges/responses
- above two can overlap
- stcp data transfer is tcp-like except
 - ip header is in clear but stcp header and payload encrypted

disconnect

Reality

- Implementors did not want
 - modifications to TCP (which is implemented in OS kernel)
 - another protocol like TCP in OS kernel
 - another protocol like TCP in application space (e.g., above UDP)
- Approach 1: SSL

• Approach 2: IPsec

apps			apps		
ТСР	UDP		TCP	UDP	
IPsec		[IP	sec	
IP		LRD/attacker channel	IP		

Approach 1: SSL server B, port y client A, port x ssl ssl tcp tcp [y,B,attach] [x,y,A,B,K]open $[x,y,A,B] \rightarrow$ tcp conn est handshake \leftarrow [y,x,B.A,K] auth handshake using K establish session key(s)plain text tcp msgs with plain text tcp hdr in clear disconnect

- tcp hdr in clear => easy denial-of-service attack (rogue packet attack)
 option 1: restart user or ssl connection
 - option 2: have ssl do retransmissions and acks (i.e. implement tcp)

IPsec IKE: Phase 1 IPsec IKE: Phase 1 (cont) Main mode (generic) Aggressive mode (generic) client A (at udp x) server B (at udp y) client A (at udp x) server B (at udp y) $[C_A (cookie), CP (crypto supported)] \rightarrow$ $[C_A, g^a \mod p, A, \operatorname{nonce}_A, CP] \rightarrow$ \leftarrow [C_A,C_B,CPA (crypto accepted)] \leftarrow [C_A,C_B, g^b mod p, nonce_B, CPA, proof l'm B)] $[C_A, C_B, g^a \mod p, \text{nonce}_A] \rightarrow$ \leftarrow [C_A,C_B, g^b mod p, nonce_B] $[C_A, C_B, A, \text{ proof I'm } A] \rightarrow$ $[C_A, C_B, K[A, proof I'm A]] \rightarrow$ \leftarrow [C_A,C_B, K{B, proof I'm B}] • If aggressive mode is rejected (perhaps because CP not acceptable to B), • C_A, C_B (cookies): distinguish different phase 1 connections between A,B. A should use main mode (rather than aggressive with different CP). Must be different for each connection attempt. • $K = f(g^{ab} \mod p, nonce_A, nonce_B)$ 5/7/2009 shankar authentication slide 37 5/7/2009 shankar authentication slide 38 IPsec IKE: Phase 1 (cont) IPsec IKE: Phase 1 (cont) Session keys Negotiating crypto parameters Integrity and encryption keys • used on last of phase-1 msgs and all phase-2 handshake msgs Algorithms • encryption: DES, 3DES, ... Seed for phase-2 SA keys • Keys obtained from hashing (prf) quantities of handshake • hash: MD5, SHA-1, ... • e.g., DES CBC residue, HMAC, ... • authentication method: • SKEYID (key seed) pre-shared keys = prf(nonces, g^{ab} mod p) RSA signature if public signature key used for auth DSS = prf(hash(nonces), cookies) if public encryption key used for auth = prf(pre-shared secret key, nonces) if pre-shared secret used for auth RSA encryption (original) RSA encryption (improved) = prf(SKEYID, g^{ab} mod p, cookies, 0) • SKEYID d (seed) • ... • **SKEYID_a** (integrity key) = prf(SKEYID, SKEYID_d, g^{ab} mod p, cookies, 1) Diffie-Hellman group • **SKEYID_e** (encryp key) = prf(SKEYID, SKEYID_a, g^{ab} mod p, cookies, 2) modular exponentiation, choice of g and p = prf(SKEYID, g^a, g^b, cookies, A's CP, A) • Proof of id for A ellicptic curve, choice of parameters Accompanied by certificate (if used) • ... = prf(SKEYID, g^b, g^a, cookies, A's CP, B) Not negotiable in aggressive mode • Proof of id for B Accompanied by certificate (if used) Lifetime of SA duration and/or quantity of data transferred

- C_A, C_{B:} from phase 1
- Y: 32-bit id of this phase-2 SA
- msgs after "C_A,C_B,Y" under phase-1 keys (SKEYID_e, SKEYID_a)
- IV for msg 1 is final ciphertext block of last phase-1 msg hashed with Y IV for later msgs is final ciphertext block of previous msg hased with Y
- traffic descriptor [optional]
- DH [optional]

5/7/2009 shankar

authentication slide 41