Computer and Network Security
CMSC 414

STANDARDS

Udaya Shankar
shankar@cs.umd.edu

5/7/2009 shankar

authentication slide 1

Kerberos 4 (NS chapter 13)

Authentication in network (Realm)

Realm has KDC and principals (users)

Users are humans and (distributed) applications (NFS, rsh, etc)
Human users log in to workstations, use applications (apps)

Apps can interact with other apps (eg, ftp with NFS)

KDC authenticates login sessions and apps

Based on Needham-Schroeder authentication protocol.

Assumes attacker can eavesdrop and modify messages in transit.
Assumes DES and IPv4

Uses timestamps, so nodes need to maintain synchronized clocks.

KDC has

5/7/2009 shankar

master key for each principal

Human user’s master key obtained from password

Apps have (high-quality) key

Secret key Kkpc (not shared with any other principal)

o for encrypting master keys in local database

o for encrypting TGTs

Read-only database (except when principal changes master key)

authentication slide 2

When human user logs in
e KDC authenticates user based on user’s master key.
e KDC provides user credentials (encrypted with master key) consisting of

e Session key for that login session (user master key is not used after login)

* Ticket Granting Ticket (TGT) used to obtain further tickets from KDC
TGT is encrypted by Kypc

When human user wants to access an application

o user’s workstation presents KDC with [request, TGT, timestamp]
(encrypted with session key)

¢ KDC returns credentials (encrypted with session key) consisting of
¢ session key (to talk to application)
o ticket for application (encrypted with application’s master key)

o user’s workstation presents application with [request, ticket]

5/7/2009 shankar

Login handshake

user A (has pw) |A’s workstation KDC (has A: Ky)

—_

authentication slide 3

5/7/2009 shankar

start login

send [A,passwd]

send [A,KDC, AS_REQ]
AS_REQ: “A needs TGT”)

receive msg

retrieve K,

generate session key Sy

tgta € KipcfA, Sa}

crd, € KA{SA, tgtA}

receive msg
construct K, from passwd
extract S, tgta from crd,
forget passwd;

shell uses S, henceforth
finish login

authentication slide 4

send [KDC, A, AS_REP, crd,]

Accessing remote principal
(LATER IN THE SESSION)

A A’s workstation

—_

rlogin B
2 send [A,KDC,TGS_REQ,
“A to talk to B”, tgty, Sa(ts)]

= Sa(ts): authenticator
receive msg
generate session key Kyg
get S, from tgt,
get ts and verify
find B’s master key Kg
tktg% KB{A, KAB}
CrdB = SA{B,KAB,tktB}

// credential

3 send [TGS_REP, crdg] to A
receive msg from KDC
4 send [A,B, AP_REQ, tktg, Kas{ts}] [p
send [B,A, AP_REP, Kxs{ts+1}]
6 receive msg
end
5/7/2009 shankar authentication slide 5

Replicated KDCs to improve performance

One master KDC and several secondary KDCs

Each secondary KDC has read-only copy of KDC database
Additions/deletions/changes to master keys always done at master KDC
Secondary KDCs can generate session keys, TGTs, etc.

Master disseminates KDC databases to secondary KDCs with integrity
protection only (but master keys are encrypted with Kkpc)

5/7/2009 shankar authentication slide 6

Authentication across multiple realms

e Possible if their KDCs share a key.
¢ Principal name = [name, instance, realm], each string of 40 chars max

A in realm X ‘KDCX KDCy B in realm Y

send [A, KDCy, TGS_REQ, A.X, D.Y]

receive msg
send [KDCy, A, TGS_REP, cred to KDCy]

receive msg
send [A, KDCy, TGS_REQ, A.X, B.Y, cred]

receive msg
send [KDCy, A, TGS_REP, cred to B]

receive msg
send [A, B, AP_REQ, cred, ...]
receive msg
5/7/2009 shankar authentication slide 7

Key version number

If A has a ticket to B and B changes its password, then ticket no longer valid.
To handle this case (without A having to ask KDC for a new ticket):

e Applications remember old master keys (up to expiry time (approx 21 hrs)
¢ In tickets, the key is sent along with version number

¢ Human users need not remember old passwords

Network layer address in tickets

Every ticket has the IPv4 address of the principal given the ticket
Received ticket is not accepted if ticket sender’s IP address does not match
So if B is to impersonate A, it must also spoof the IP address of A (easy to do)
Prevents delegation
¢ A cannot ask B at another IP address to do work on behalf of A

(unless B spoofs IP address of Al)

5/7/2009 shankar authentication slide 8

Encryption of application data

o After authentication, data exchange can be in clear or encrypted or integrity-

protected or encrypted and integrity-protected
¢ Choice is up to the application (performance vs security).
o Kerberos V4 uses some adhoc encryption techniques (not so safe).

Encryption and Integrity-protection

Recall that standard approach uses two keys and two crypto passes (expensive).

Kerberos uses a modified CBC called Plaintext CBC (PCBC)
e InCBC: cpq = El{mp @ ¢, }
¢ Modifying any c; causes only m;and m;. to be garbled.
e InPCBC: Cpiy = Ex{fmy1 @ c,®m, }
¢ Modifying any ¢; causes all m; for j > i to be garbled.
= Kerberos puts recognizable last block, so tampering detected.
* However, swapping ¢; and c¢;.; makes PCBC get back in synch from m.,

Encryption for Integrity only

Computes checksum on [session key, msg]

Probably not cryptographically strong

¢ May allow attacker to modify msg and pass integrity test
¢ May allow attacker to obtain session key

5/7/2009 shankar authentication slide 9

Kerberos 5 (NS chapter 14)

More general than V4

¢ Message formats
¢ Defined using ASN.1 and BER (Basic Encoding Rules)
o Automatically allows for addresses of different formats, etc.
e Occupies more octets

e Names: [NAME, REALM]
o Arbitrary strings of arbitrary length (allows “.”, “@”, “name®@org", etc)
¢ Allows X.500 names (Country/Org/OrgUnit/LName/PName/...)
o Kerberos 4 names have size/character limitations

¢ Cryptographic algorithms

¢ Allows choice of crypto algorithms (but DES is the only deployed version)
e Uses proper integrity protection (rather than pseudo-Juneman checksum)

5/7/2009 shankar authentication slide 10

Kerberos 5

Delegation of rights
e A can ask KDC for a TGT with

¢ network addresses different from A’s network address

(to be used by principals at other IP addresses on behalf of A)

¢ no network address (can be used by any principal at any network address)
¢ Policy decision whether KDC/network issues/accepts such tgts
¢ Having tgts with explicit addresses:

o KDC tracks delegation trail

¢ A has to interact with KDC for each delegation

A can give a TGT/tickets to B with specific constraints
 specific resources that can be accessed.
o TGT/tkt has AUTHORIZATION-DATA field that is application specific.

KDC copies this field from TGT into any derived ticket (used in OSF, Windows).

e A’s TGT can be forwardable:
e Allows A to use TGT to get a TGT (for B) with different network address.
¢ A also says whether derived TGT is itself forwardable.
e A’s TGT can be proxiable:
o Allows A to use TGT to get tickets (for B) with different network address.
Ticket lifetime

5/7/2009 shankar authentication slide 11

Kerberos 5
TGT/tkt lifetime

e Fields:
o start-time: when ticket becomes valid
¢ end-time: when ticket expires (but can be renewed (see renew-till)
e authtime: when A first logged in (copied from initial login TGT)
¢ renew-till: latest time for ticket to be renewed.

o Allows unlimited duration (upto Dec 31, 9999) subject to renewing (e.g., daily)

¢ exchange tgt/tkt at KDC for a new (renewed) tgt/tkt
o tgt/tkt has to be renewed before expiry (o/w KDC will not renew)
¢ Allows postdated tickets (e.g, for batch jobs).

5/7/2009 shankar authentication slide 12

Kerberos 5
Keys
KDC remembers old master keys of human users (in addition to applications)
¢ Needed because tgts/tickets are now renewable and can be postdated.
e For each principal, KDC database stores [key, p_kvno, k_kvno]
e key: principal’s master key encryped with Kgpc (current or past version).
e p_kvno: version number of principal’s master key.
e k_kvno: version number of Kypc used to encrypt

max_renewable_life: max total lifetime for tickets issued to this principal
expiration: when this entry expires

mod_date: when entry last modified

mod_name: principal that last modified this entry

flags: preauthentication?, forwardable?, proxiable?, etc.
password_expiration:

last_pwd_change:

last_succes: time of last successful login

Human user master key derived from password and realm name.

e So even if A uses the same password in several realms, compromising A’s
master key (but not password) in one realm does not compromise it in another
realm.

5/7/2009 shankar authentication slide 13

Kerberos 5
Hierachy of realms

Allows KDC chains of authentication (unlike V4)

e Suppose KDCs A, B, C, where A, B share key, B,C share key, but A,C do not.
Allows C to accept a ticket sent by A and generated by B.

e Each ticket inclues all the intermediate KDCs
e receiving KDC can reject ticket if ticket has a suspect intermediary

Evading off-line password guessing
¢ V4 allows off-line password guessing:
e KDC does not authenticate TGT_REQ before issuing TGT
¢ So B can spoof A, get a TGT for A, do off-line dictionary attack on TGT

e InV5
e Req for TGT for A must contain Kx{timestamp}; so above attack not possible.
¢ KDC also does not honor requests for tickets to human users by others.
e Prevents logged-in B to ask KDC for a ticket (to delegate) for A,
on which it can do off-line password guessing.

5/7/2009 shankar authentication slide 14

Kerberos 5

Key inside authenticator
¢ Suppose A and B share a session key K,z generated by KDC.
¢ A and B can have another (simultaneous) session using a different key.
e This can be done without involving the KDC:
* A makes up a key for this second session and gives that to B encryped by K,

Double TGT authentication
* Allows A to access server B that has session key, say Sg, but not master key Kg
¢ Needed for X windows: human user runs remote app that can display locally.
¢ X server manages display on workstation screen
e X clients (eg, xterm, browser) run on local or remote workstations
e X client (A) needs tkt to X server (B) to display on screen.
¢ No good for A to get from KDC a (regular) tkt encrypted with B’s master key
¢ Instead
o A gets TGT; from B, sends [“A to talk to B”, TGT,, TGTg] to KDC
e KDC
o extracts Sg from TGTg (encrypted with Kypc)
e creates session key Kag,
o generates tktg encrypted with Sg [ie, Sg{‘A’, Kap}] and sends to A

5/7/2009 shankar authentication slide 15

X windows

B’s workstation
X server

B (human user) C (may be B’s workstation)

¢ login to X server
[B, passwd]

request TGTg from KDC

obtain [Sg, TGTg] from KDC

forget B’s passwd

start serving B (eg, keybd, mouse)

e request X client at C
(eg, xterm)
X client starts
has info to display at B’s screen
get TGTg from X server
ask KDC for tkt encrypted by Sg
present tkt to X server
and info to display

e X server displays client’s info

5/7/2009 shankar authentication slide 16

PKI: Public-Key Infrastructure (NS Chapter 15)

PKI: infrastructure for obtaining public keys of principals
o examples: S/MIME, PGP, SSL, Lotus Notes, ...

Consists of
¢ Principal name space
e usually hierarchical: usr@cs.umd.edu; www.cs.umd.edu/usr;

o Certification authorities (CAs): subset of the principals

e Repository for certificates and CRLs: (e.g., DNS, directory server)
¢ searched by principals
e updated by CAs

e Method for searching repository for a chain of certificates given
o starting CA: trust anchor of the chain
e ending subject: target of the chain

5/7/2009 shankar authentication slide 17

Recall certificates, CRLs, certificate chains

e Certificate:
e issuer C; // name of CA (principal) issuing the certificate
e subject X; // name of principal whose public key is being certified
e subject public key J; // certified public key of X
e expiry time T; // date/time when this certificate expires
e serial number; // used in CRL
e principals that subject can certify; // optional
e signature; /1 C’s signature on all the above

e CRL:
e issuer C; // name of CA issuring the CRL
o list of serial numbers of revoked certificates;
e issue time T; // date/time when this CRL was issued
e signature; /1 C’s signature on all the above

sequence <(cfty, crly), ..., (cft,, crl,)> such that cft; subject = cft;.; issuer
cft, issuer: trust anchor of the chain

cft, subject: target of the chain

chain is valid (my terminology) if for everyiin 1, ..., n:

= cft; is unexpired

= crl; is recent enough and does not include cft;

e Certificate chain: // below, ‘cft’ is short for ‘certificate’

5/7/2009 shankar authentication slide 18

Updates in PKI

Introduction of public key J of principal X:
¢ request every CA that can certify X to issue a certificate for [X, J]
(online/offline?)
e each such CA checks the request (online/offline?)
« if the request passes the CA’s checks
then generate a certificate for [X, J] and add to the repository
 if X is also a trust anchor to a set of principals
« inform every principal in the set of [X, J] (online/offline?)
¢ Is this necessary?

Revocation of public key J of principal X:

e request every CA that has certified [X, J] to revoke it in the CA’s next CRL
« if request passes the CA’s checks, it includes [X, J] in its next CRL

 if X is also a trust anchor to a set of principals
¢ inform every principal in the set that [X, J] is not to be used
e s this necessary?

Updates in PKI should preserve the following desired property:
e For every valid certificate chain CC in the repository
if X is the subject and J the public key of a cft in CC
then J is X’s public key at issue time of earliest CRL in CC prefix upto cft.

5/7/2009 shankar authentication slide 19

Revocation

¢ Online revocation service (OLRS)
e Delta CRLs

e First valid certificate

¢ Good-lists vs bad-lists

e Boring...

PKIX and X.509
X.509 certificates used in Internet PKls

5/7/2009 shankar authentication slide 20

PKI trust model
Defines where a user gets the trust anchors and what chain paths are legal

Monopoly:
e One CA, say R, trusted by all organizations and countries.

¢ Public key of R is the single trust anchor embedded in all software/hardware.

e every certificate is signed by R
e Advantages:

« simplicity: verification involves checking one certificate
o Disadvantages:

¢ infeasible to change R’s public key if it gets compromised

¢ R can charge whatever it wants

e Security of entire world rests on R

¢ Bottleneck in obtaining certificates

¢ Bottleneck in issuing CRLs

5/7/2009 shankar authentication slide 21

PKI trust model (cont)

Monopoly + Registration Authorities (RAs)
¢ Like monopoly except
¢ CA chooses other organizations (RAs) to interact with world
e CAinteracts only with RAs
¢ Has all the disadvantages of monopoly except CA is not a bottleneck.
e May be less secure because RAs may not be as careful as CA.

Monopoly + Delegated CAs

e Tree of CAs with one root CA

¢ Users can obtain certificates from a delegated CA rather than root CA.
¢ Verification invovles chain of certificates with root CA as trust anchor

5/7/2009 shankar authentication slide 22

PKI trust model (cont)

Oligarchy
¢ Multiple root CAs (trust anchors)
e Advantage: monopoly pricing is not possible
e Disadvantage:
¢ More CAs to go wrong.
¢ Choice/control over the CAs pre-installed in your program/hardware.
¢ Adding new trust anchors possible, hence vulnerable to
= adding malicious CA
= modifying an existing trust anchor’s public key

Anarchy
e Each user independently chooses some trust anchors.
¢ Advantage: not dependent on other organizations.
e Disadvantage:
« unorganized certificate space
e not easy to find certification chains that are acceptable to user.

5/7/2009 shankar authentication slide 23

PKI trust model (cont)
Name constraints
e Each CA is trusted for certifying only a subset of the principal name space.
¢ Usually hierarchical: i.e., CA x.y is trusted to certify x.y.*, but not x.z.
e Subset can be a function of the user (see below)

Top-down trust model with name constraints
¢ Monopoly with delegated CAs except
e each CA can only certify principals in its subtree (excluding itself).

Bottom-up trust model with name constraints

¢ Hierarchical name space

¢ Down-links (as usual):

e X.y certifies x.y.z

Up-link (unusual!):

e X.y.z certifies x.y

e Allows x.y.z.a to use x.y.z as trust anchor for users outside x.y.z:
= e.g., chain [x.y.z, X.y, X, X.p, X.p.q]

e Cross-link: x.y certifies p.q,
= where x.y and p.q are CAs of two interacting organizations

e Improves performance. Can also improve security...?

Allows PKI to be deployed incrementally in (real-world) situation

5/7/2009 shankar authentication slide 24

PKI trust model (cont)

Certificates with relative names
e Can of worms

Internet Security Architecture (NS 16.1)

o TCP/IP stack without security

apps apps
Policies in certificates
e Which CAs are acceptable as trust anchors TCP ‘ ubpP ‘ TCP‘ ubDP ‘
» Which CAs are not acceptable in chains 1P _____LRDchannel P
e etc
e TCP provides apps with
e connection establishment
¢ reliable data transfer
¢ Want to extend this to handle attackers
e network attackers: passive / active
¢ endpoint attackers: send messages with arbitrary fields
« authentication: (extends connection establishment)
« confidentiality, integrity: (extends reliable data transfer)
5/7/2009 shankar authentication slide 25 5/7/2009 shankar authentication slide 26
Natural solution to TCP/IP stack with security STCP handshake
apps apps client A, port x stcp stcp server B, port y
TCP |STCP| UDP | ... TCP |STCP| UDP < [y,B,attach]
[x,y,A,B,K,open] [x,y,A,B,K,open]
IP LRD/attacker channel IP

o STCP (Secure TCP) like TCP except
« client app’s conn req includes client/server id, authentication secret (K)
e server app’s conn accept includes client/server id, authentication secret (K)
e stcp conn est does
= tcp-like 3-way conn est using Internet ids, then
= auth handshake involving client/server ids, challenges/responses
= above two can overlap
o stcp data transfer is tcp-like except
= ip header is in clear but stcp header and payload encrypted

5/7/2009 shankar authentication slide 27

open [x,y,A,B] open [x,Y,A,B] —

« [y,x,B,accept.K]

o »

auth handshake using K
« authenticated | establish session key(s)

authenticated —

y N

v

stcp msgs with ip

plain text header in clear

plain text

disconnect

5/7/2009 shankar authentication slide 28

Reality

Approach 1: SSL

« Implementors did not want client A, port x ssl tep tep sl serverB, porty
¢ modifications to TCP (which is implemented in OS kernel) [y,B,attach]
« another protocol like TCP in OS kernel [X,Y,A,B,K]
¢ another protocol like TCP in application space (e.g., above UDP) P R

< » open [X,y,A,B] —
tcp conn est
e Approach 1: SSL handc<hake < [yXBAK]
apps apps < P
SSL m auth handshake using K
establish session key(s)
TCP | UDP | .. TCP | UDP | ..
IP LRD/attacker channel IP — : >
———————————————————————— plain text tcp msgs with plain text
ten hdr in clear
e Approach 2: IPsec . R
apps apps disconnect
TP | UDP | TCP | UDP |
IPsec ... IPsec e tcp hdrin clear => easy denial-of-service attack (rogue packet attack)
IP LRD/attacker channel IP e option 1: restart user or ssl connection
------------------------ e option 2: have ssl do retransmissions and acks (i.e. implement tcp)
5/7/2009 shankar authentication slide 29 5/7/2009 shankar authentication slide 30
SSL (NS chapter 19) * A authenticates B using certificateg
¢ B authenticates A using password (usual case)
client A ssl x tep x tcpy ssly server B Can also use certificate, for authenticating A
[y,B,attach]
[x,¥,A,B,K] | [xy] ‘ e S: pre-master secret
tcp conn est ¢ K: master secret
handchake ‘ o K= f(S, RA; RB)
R, . [y,B,] » keys for data encryption/integrity obtained from K, Ry, Rp
[x,y,B, ciphers supported, Ry] o A’s write (transmit) key = B’s read (receive) key
| e B’s write (transmit) key = A’s read (receive) key
[y,x,B, cipher chosen, certg, Rg]
g ¢ A does two public-key crypto operations
K=£(5, Ru.Ro) ‘ ¢ verifying certg
" [x,y, s, Kikeyed hash of hndshk)] » calcluating {S}s
| | * To minimize this, S can be reused across different sessions
[y,x,K{another keyed hash of hndshk] e motivated by http 1.0 (which opens many tcp sessions between same A,B)
Aauth B | | session id
— ——
passwd handshake B auth A
encrunted hv K-derived kevc v

5/7/2009 shankar

SSL (cont)

authentication slide 31

5/7/2009 shankar authentication slide 32

SSL (cont)

ssl A ssl A

[x,y,B, ciphers, Ry] —

« [y,x,B, session-id = X, certg, cipher, Rg] initial session

< >

new session later on

X,Y,B, session-id = X, ciphers, Ry] —
by P g if ssl A still has X:S

< [y,x,B, session-id = X, certs, cipher, Ry, | 3" reuse it

keyed hash of handshake]

[x,y, keyed hash of handshake] —

5/7/2009 shankar authentication slide 33

IPsec: AH and ESP (NS chapter 17)

¢ |Psec sits above IP and below TP (transport protocol: TCP, UDP, IP, ...

o |P packet: [IP hdr, IPsec hdr, TP hdr, TP payload]
—- IP payload ———— -
< IPsec payload —

e TPis IP: “tunnel” mode, because often used to tunnel IP traffic
TP is not IP: “transport” mode

e IP hdr:
e sender ip addr, rcvr ip addr
e hop count // mutable
¢ next protocol id: TCP, UDP, IP, IPsec (AH or ESP), ...

¢ |Psec header (generic):
o SPI (security parameter index): identiifies IPsec connection (SA)
e sequence number: of IPsec packet (for replay attacks)
o |V (for encryption/integrity)
¢ authentication data (integrity check)
e next protocol id: (TCP, UDP, IP, ...)

5/7/2009 shankar authentication slide 34

IPsec: AH and ESP (cont)

¢ |IPsec connection referred to as IPsec SA (security association)
e An SA is one-way, so need two SAs for bi-directional packet flow.

¢ [Psec entity in a node has
o Security policy database (control path)
= for <ip addr, port, etc>: crypto or not? type? integrity/encryp, ...
¢ SA (security association) database (data path)
= outgoing: for remote ip addr: SPI, crypto key/alg, sequence number
= incoming: for SPI: crypto key/algo, expected seq number, ...

» |Psec headers are in two flavors:
e AH hdr: SPI, sequence number, auth data, next protocol id
= integrity only but on enclosing IP <payload + “immutable” header>
= not compatible with NAT, firewalls
e ESP hdr: SPI, seq number, IV, auth data, next protocol id
= integrity and/or encryption on enclosing IP payload
= compatible with NAT, firewalls

5/7/2009 shankar authentication slide 35

IPsec: IKE (NS chapter 18)

e In order for an IPsec SA to operate, its parameters (integrity/encryp, key, ...

must be set in the (SA database of the) end-points of the SA
¢ Can be done manually by end-point administrators or dynamically using IKE
¢ IKE runs over UDP
¢ |KE has two phases:

e Phase 1:
= end-points do mutual authentication and establish phase-1 session keys
= 3 ways to prove id:
e public signature key, public encryption key, or secret key
= two kinds of handshakes, each involving Diffie-Helman
e aggressive mode: 3 msgs, less options
e main mode: 6 msgs, more options
= so total of 6 types of handshakes (actually 8)

¢ Phase 2: establish one or more IPsec SAs
Each SA:
= 3 msgs. all encrypted with phase-1 keys
= session keys generated using phase-1 session key as seed
= public-key crypto (e.g., Diffie-Hellman) is optional

5/7/2009 shankar authentication slide 36

)

IPsec IKE: Phase 1

Main mode (generic)

client A (at udp x) server B (at udp y)

[C4 (cookie), CP (crypto supported)] —
<« [Ca,Cg,CPA (crypto accepted)]

[Ca,Cs, g* mod p, nonce,] —
« [Ca,Cs, 2° mod p, nonceg]

[Ca,Cs, K{A, proof I’'m A}] —

« [Ca,Cs, K{B, proof I’'m B}]

e C,, Cg (cookies): distinguish different phase 1 connections between A,B.
Must be different for each connection attempt.

e K= f(g® mod p, nonce,, nonceg)

5/7/2009 shankar authentication slide 37

IPsec IKE: Phase 1 (cont)

Aggressive mode (generic)

client A (at udp x) server B (at udp y)
[Ca, g% mod p, A, nonce,, CP] —
« [Ca,Cs, g° mod p, nonceg CPA, proof I’m B)]

[Ca,Cs, A, proof I’'m A}] —

o [f aggressive mode is rejected (perhaps because CP not acceptable to B),
A should use main mode (rather than aggressive with different CP).

5/7/2009 shankar authentication slide 38

IPsec IKE: Phase 1 (cont)

Negotiating crypto parameters
e Algorithms
e encryption: DES, 3DES, ...
e hash: MD5, SHA-1, ...
 authentication method:
= pre-shared keys
RSA signature
DSS
RSA encryption (original)
RSA encryption (improved)

¢ Diffie-Hellman group
= modular exponentiation, choice of g and p
= ellicptic curve, choice of parameters

= Not negotiable in aggressive mode

o Lifetime of SA
e duration and/or quantity of data transferred

¢ Must-implement defaults

5/7/2009 shankar authentication slide 39

IPsec IKE: Phase 1 (cont)
Session keys

¢ Integrity and encryption keys
¢ used on last of phase-1 msgs and all phase-2 handshake msgs
e Seed for phase-2 SA keys

¢ Keys obtained from hashing (prf) quantities of handshake
e e.g., DES CBC residue, HMAC, ...

e SKEYID (key seed)
= prf(nonces, g®® mod p) if public signature key used for auth
= prf(hash(nonces), cookies) if public encryption key used for auth
= prf(pre-shared secret key, nonces) if pre-shared secret used for auth

e SKEYID_d (seed) = prf(SKEYID, g®® mod p, cookies, 0)

 SKEYID_a (integrity key) = prf(SKEYID, SKEYID_d, g®° mod p, cookies, 1)

o SKEYID_e (encryp key) = prf(SKEYID, SKEYID_a, g®® mod p, cookies, 2)

e Proof of id for A = prf(SKEYID, g°, gb, cookies, A's CP, A)
Accompanied by certificate (if used)

¢ Proof of id for B = prf(SKEYID, g, g%, cookies, A's CP, B)

Accompanied by certificate (if used)

5/7/2009 shankar authentication slide 40

IPsec IKE: Phase 2

Phase-2 SA setup

client A (at udp x) server B (at udp y)
phase-1 handshake

[Ca,Cs, Y, CP, SPI,, nonce,, [g2 mod p],[traffic]] —

« [Ca,Cs,Y, CPA, SPIs, nonceg, [gb mod p], [traffic]]
[CA,CB, Y, ack] —

Phase-2 initiator need not be same as phase-1 initiator
Ca, Cg. from phase 1
Y: 32-bit id of this phase-2 SA

msgs after “C,,Cg,Y” under phase-1 keys (SKEYID_e, SKEYID_a)
IV for msg 1 is final ciphertext block of last phase-1 msg hashed with Y
IV for later msgs is final ciphertext block of previous msg hased with Y

traffic descriptor [optional]
DH [optional]

5/7/2009 shankar authentication slide 41

