CMSC 41	4 F06	Exam	1
---------	-------	-------------	---

Page 1 of 6

Name:		

T-4-1 !4 40	T-4-14:	(l.l (M. b. d
Total points: 40.	Total time: 75 minutes.	6 problems over 6 pages.	No book, notes, or calculator

1. [14 points] Are n=187 and e=9 valid numbers for RSA. Explain. If you answer yes, obtain the corresponding d.

CMSC	414	F06	Exam	1

Page 2 of 6

Name:		
maine:		

2. [6 points]

Consider a sensor X that periodically sends a 64-octet measurement to a receiver Y. One day the administrator decides that X should encrypt the measurement data using DES in CBC mode. How many octets does X now send for each measurement? Explain your answer.

CMSC	414	F06	Fyam	1
CIVIOL	414	TUU	Lam	

Page 3 of 6

Name:

3. [8 points]

Lish, Pish, and Kish are three languages like English, except that each of them has an alphabet of 4 characters, namely, "A", "B", "C", and "D". The frequency (as percentage) of letter usage in these languages is as follows:

	"A"	"B"	"C"	"D"
Lish	35	15	35	15
Pish	40	30	20	10
Kish	20	20	40	20

Let P be plaintext that can be in either Lish, Pish, or Kish. You are given ciphertext Q obtained from P using a permutation cipher (e.g., "A, B, C, D" \rightarrow "D, C, B, A"). Q has 1300 A's, 3700 B's, 1700 C's, 3300 D's. Which language is P most likely to be in. Justify your answer.

CMSC	414	F06	Fyam	1
CIVIOL	414	TUU	Lam	

Page 4 of 6

4. [4 points]

In the authentication protocol below, pw is A's password and J is a key derived from pw. Can an attacker that can eavesdrop messages (but not intercept or spoof messages) obtain pw by off-line password guessing. If you answer no, explain briefly. If you answer yes, describe the attack.

A (has pw)	B (has J)
send [conn] to B	
compute J from pw compute $X \leftarrow \text{encrypt}(R)$ with key J	generate random challenge R send [R]
send [X] to B	compute $Y \leftarrow decrypt(X)$ with key J if $Y = R$ then A is authenticated

CMSC	414	F06	Fyam	1
CIVIOL	414	TUU	Lam	

Page 5 of 6

Name:

5. [4 points]

In the authentication protocol below, pw is A's password, J is a key derived from pw, and L is a high-quality key (which A gets from B as shown below). Can an attacker that can eavesdrop messages (but not intercept or spoof messages) obtain pw by off-line password guessing. If you answer no, explain briefly. If you answer yes, describe the attack.

A (has pw)	B (has J, L)
send [conn] to B	
compute J from pw $L' \leftarrow \text{decrypt}(X) \text{ with key J}$ $Y' \leftarrow \text{encrypt}(R) \text{ with key L'}$ $\text{send } [Y'] \text{ to B}$	$X \leftarrow \text{encrypt}(L)$ with key J generate random challenge R send [X , R]
	compute $Y \leftarrow \text{encrypt}(R)$ with key L if $Y' = Y$ then A is authenticated

.

CMSC	414	F06	Evam	1
CIVIOL	414	TUU	Lixaiii	

Page 6 of 6

Name:

6. [4 points]

The chart below shows an authentication protocol, followed by data exchange, followed by disconnection. Only an initial part of the authentication protocol is shown; here, pw is A's password, J is a key derived from pw, and L is a high-quality key. Assume an attacker that can (1) eavesdrop messages and (2) intercept and spoof messages sent by A (but not those sent by B). Complete the authentication protocol (i.e., supply the part indicated by the " $\bullet \bullet \dots \bullet \bullet$ ") so that inspite of this attacker

- B authenticates A,
- this authentication is not vulnerable to off-line password guessing, and
- A and B establish a session key S (for encrypting data) such that after A and B disconnect and forget S, even if the attacker learns pw, the attacker cannot decrypt the data exchanged.

	A (has pw)	B (has J, L)
	send [conn] to B	
		$X \leftarrow \text{encrypt}(L) \text{ with key J}$ send [X]
	compute J from pw $L' \leftarrow decrypt(X)$ with key J	
•		
•		
•		
•		
•		
•		
•		
•		
	<> A and B exchange data	
	<> A and B disconnect>	