1. [14 points]

Are n=323 and e=5 valid numbers for RSA. Explain. If you answer yes, obtain the corresponding d.

2. [5 points]

Recall that a **DES encryption operation** takes a 64-bit plaintext block and a 56-bit key and produces a 64-bit ciphertext block. Recall also that each DES encryption operation itself consists of a number of iterations, which we shall refer to as **basic** iterations.

For the DES encryption in CBC mode of a plaintext message of N 64-bit blocks, obtain the following (in terms of N):

- a. Total number of DES encryption operations.
- b. Size of the output. Explain briefly.
- c. Total number of basic iterations. Explain briefly.

3. [6 points]

Is there an integer K in the range 1, ..., 47 such that K^{48} mod-105 is not equal to 1? If you answer yes, produce such a K and the value of K^{48} mod-105 (as an integer in the range 1, ..., 47). If you answer no, explain.

Name:

4. [10 points]

Consider a public key infrastructure with principals $A_1, A_2, ..., A_{20}$ and $B_1, B_2, ..., B_{20}$. There are three certification authorities, namely, X, Y, and Z. Each principal (i.e., A_i and B_i) has X's public key. X issues certificates for Y and Z. Y issues certificates for $A_1, A_2, ..., A_{20}$. Z issues certificates for $B_1, B_2, ..., B_{20}$.

Suppose A_1 wants the public key of B_2 . What are the documents (e.g., certificates) that A_1 looks for. For each document, describe its fields and any constraints that must hold.

5. [10 points]

The chart below shows a skeleton of an authentication protocol. Initially, principals A and B share a secret key K and public Diffie-Hellman parameters g and p. Assume an attacker that can eavesdrop, intercept messages, and send messages with another's sender id. Supply an authentication protocol (i.e., the part indicated by the " $\bullet \bullet \dots \bullet \bullet$ ") such that:

- A initiates the protocol.
- A and B authenticate each other (i.e., the attacker cannot impersonate one to the other).
- A and B establish a session key S (for encrypting data) such that after A and B disconnect and forget S, even if the attacker learns K, the attacker cannot decrypt the data exchanged.
- The authentication involves *at most* 4 messages (it can be fewer). (Only one cell can be used in each row.)

	A (has K, g, p)	B (has K, g, p)
•		
•		
•		
•		
	A and D analysis data	
	<pre><> A and B disconnect></pre>	
	<> A and b disconnect>	

6.15 points]

In the authentication protocol below, pw is A's password and J is a key derived from pw.

A (has pw)		B (has J)
send [A, B, conn]	// msg 1	
		receive [A, B, conn] generate random challenge R_B $S_B \leftarrow$ encrypt(R_B) with key J send [B, A, S_B] // msg 2
receive [B, A, S _B] compute J from pw $T_B \leftarrow decrypt(S_B)$ with key J $U_B \leftarrow encrypt(T_B+1)$ with key J		
generate random challenge R_A $S_A \leftarrow encrypt(R_A)$ with key J send [A, B, U _B , S _A]	// msg 3	
		$\begin{array}{l} \mbox{receive } [A, B, U_B, S_A] \\ V_B \leftarrow \mbox{decrypt}(U_B) \mbox{ with key J} \\ \mbox{if } V_B = R_B + 1 \mbox{ then A is authenticated else abort} \\ T_A \leftarrow \mbox{decrypt}(S_A) \mbox{ with key J} \\ U_A \leftarrow \mbox{encrypt}(T_A + 1) \mbox{ with key J} \\ \mbox{send } [B, A, U_A] \end{tabular} \end{tabular} \end{tabular} \end{tabular}$
receive [B, A, U _A] $V_A \leftarrow \text{decrypt}(U_A)$ with key J if $V_A = R_A + 1$ then B is authenticated else	se abort	

- a. Consider an attacker that can **only eavesdrop** (i.e., can hear messages in transit but cannot intercept messages or send messages with somebody else's sender id). Can this attacker obtain pw by off-line password guessing. If you answer no, explain briefly. If you answer yes, describe the attack.
- b. Consider an attacker that can **only spoof A** (i.e., send messages with sender id A and receive messages with destination id A, but not eavesdrop or intercept messages). Can this attacker obtain pw by off-line password guessing. If you answer no, explain briefly. If you answer yes, describe the attack.
- c. Consider an attacker that can **only spoof B** (i.e., send messages with sender id B and receive messages with destination id B, but not eavesdrop or intercept messages). Can this attacker obtain pw by off-line password guessing. If you answer no, explain briefly. If you answer yes, describe the attack.

Page 7 of 7

Name:_____

[BLANK PAGE]