Total points: 60. Total time: 75 minutes.
 6 problems over 7 pages.
 No book, notes, or calculator

Page 1 of 11

1. [14 points]

Are n=323 and e=5 valid numbers for RSA. Explain. If you answer yes, obtain the corresponding d.

Solution

There are two requirements:

- n must be a product of two primes
- e must be relatively prime to $\phi(n)$ (so that d, which equals e^{-1} mod-n, exists)

First requirement

n = 323 = 17.19. 17 and 19 are primes. So this holds.

Second requirement

Recall that if $n = p \cdot q$ where p and q are distinct primes, then $\phi(p \cdot q) = (p-1) \cdot (q-1)$ So $\phi(323) = (17-1) \cdot (19-1) = 288$. e, which equals 5, is relatively prime to 288 (because 5 is prime and does not divide 288 exactly) So this requirement holds.

So $d = 5^{-1} \mod 288$

Obtaining d

Use Euclid's algorithm to get a and b such that $1 = a \cdot 5 + b \cdot 288$ (then $a = 5^{-1} \mod 288$). [Below, rows n = -2 and n = -1 are initialization. $r_n \leftarrow remainder (r_{n-2}/r_{n-1});$ $q_n \leftarrow quotient (r_{n-2}/r_{n-1});$ $u_n \leftarrow u_{n-2} - q_n \cdot u_{n-1};$ $v_n \leftarrow v_{n-2} - q_n \cdot v_{n-1};$]

n	q _n	r _n	u _n	v _n
-2		288	1	0
-1		5	0	1
0	57	3	1	-57
1	1	2	-1	58
2	1	1	2	-115
3	2	0		

From row n=2, we have

 $\begin{aligned} r_n &= \gcd(5,\ 288) = 1 \ (\text{which we already knew}), \text{ and} \\ 1 &= (2) \cdot (288) + (-115) \cdot 5 \\ \text{So } d &= -115 \ \text{mod} \ 288 \ = \ 288 - 115 \ = \ 173 \end{aligned}$

[6 points]

[2 points]

[2 points]

[4 points]

Name:____

Name:__

2. [5 points]

Recall that a **DES encryption operation** takes a 64-bit plaintext block and a 56-bit key and produces a 64-bit ciphertext block. Recall also that each DES encryption operation itself consists of a number of iterations, which we shall refer to as **basic** iterations.

For the DES encryption in CBC mode of a plaintext message of N 64-bit blocks, obtain the following (in terms of N):

- a. Total number of DES encryption operations.
- b. Size of the output. Explain briefly.
- c. Total number of basic iterations. Explain briefly.

Solution

Le	et the plaintext message be $[m_1, m_2,, m_N]$.	
Its	s CBC encryption is given by $C_j = DES_Encrypt(C_{j-1} \text{ XOR } m_j)$ for $j = 1,, N$, whe	re $C_0 = IV$.
a.	The DES-CBC encryption involves N DES encryption operations.	[1 point]
b.	The output is [IV, C_1 ,, C_N], which is (N+1) 64-bit blocks. Only 1 point if incorrect answer but IV is mentioned.	[2 points]
c.	Each DES encryption operation has	[2 points]
•	16 iterations to transform the plaintext block into the ciphertext block.	
	So there are 16N of these iterations.	
•	16 iterations to produce the 16 48-bit keys from the 56-bit key.	
	But these 16 iterations need be done only once for the entire message.	
	So the answer is 16N + 16 iterations. 16N and 32N are also acceptable.	
	1 point if you don't give an answer in terms of N but say there are 16 iterations pe	r DES encryption operation.

Page 3 of 11

[3 points]

3. [6 points]

Is there an integer K in the range 1, ..., 47 such that K^{48} mod-105 is not equal to 1? If you answer yes, produce such a K and the value of K^{48} mod-105 (as an integer in the range 1, ..., 47). If you answer no, explain.

Solution

$105 = 5 \cdot 21 = 3 \cdot 5 \cdot 7$. So 105 is a product of distinct primes. $\phi(105) = (3-1) \cdot (5-1) \cdot (7-1) = 2 \cdot 4 \cdot 6 = 48$	[1 point]
By Euler's theorem: K^{48} mod-105 = 1 for all K relatively prime to 105 But this does not account for all K in 1,, 47. [Also, by generalization of Euler's theorem, K^{48+1} mod-105 = K for all K in 1,, 47, but K^{48+1} mod-105 = K does not imply K^{48} mod-105 = 1.]	[1 point]
So need to look for a counter-example K that is not relatively prime to 105.	[1 point]

Calculating K⁴⁸ mod-105

Example calculations

K=3

3 is not relatively prime to 105, so we try that (all lines below are mod-105): $3^3 = 27$ $3^6 = 27 \cdot 27 = 729 = -6$ $3^{12} = (-6) \cdot (-6) = 36$ $3^{24} = (36) \cdot (36) = 1296 = 36$ $3^{48} = (36) \cdot (36) = 36$

K=5

5 is also not relatively prime to 105. $5^2 = 25$ $5^3 = 125 = 20$ $5^6 = 20 \cdot 20 = 400 = -20$ $5^{12} = (-20) \cdot (-20) = 400 = -20$ $5^{24} = (-20) \cdot (-20) = -20$ $5^{48} = (-20) \cdot (-20) = -20 = 85$

Note K=2 would not work because 2 is relatively prime to 105.

Name:__

4. [10 points]

Consider a public key infrastructure with principals $A_1, A_2, ..., A_{20}$ and $B_1, B_2, ..., B_{20}$. There are three certification authorities, namely, X, Y, and Z. Each principal (i.e., A_i and B_i) has X's public key. X issues certificates for Y and Z. Y issues certificates for $A_1, A_2, ..., A_{20}$. Z issues certificates for $B_1, B_2, ..., B_{20}$.

Suppose A_1 wants the public key of B_2 . What are the documents (e.g., certificates) that A_1 looks for. For each document, describe its fields and any constraints that must hold.

Solution

A_1	looks for	
•	Certificate issued by X for Z that	[1 point]
	has not yet expired	[1 point]
•	CRL issued by X that	[1 point]
	is recent enough	[1 point]
	and does not include the serial number of the above certificate for Z	[1 point]
•	Certificate issued by Z for B_2 that	[1 point]
	has not yet expired	[1 point]
•	CRL issued by Z that	[1 point]
	is recent enough	[1 point]
	and does not include the serial number of the above certificate for B_2	[1 point]
0 p	points for giving a KDC-based approach.	

(Note that X, Y, Z need not be online, and A_1 does not talk to them.)

5. [10 points]

The chart below shows a skeleton of an authentication protocol. Initially, principals A and B share a secret key K and public Diffie-Hellman parameters g and p. Assume an attacker that can eavesdrop, intercept messages, and send messages with another's sender id. Supply an authentication protocol (i.e., the part indicated by the " $\bullet \bullet \dots \bullet \bullet$ ") such that:

- A initiates the protocol.
- A and B authenticate each other (i.e., the attacker cannot impersonate one to the other).
- A and B establish a session key S (for encrypting data) such that after A and B disconnect and forget S, even if the attacker learns K, the attacker cannot decrypt the data exchanged.
- The authentication involves *at most* 4 messages (it can be fewer). (Only one cell can be used in each row.)

	A (has K, g, p)	B (has K, g, p)
•		
•		
•		
•		
	<> A and B exchange data>	
	<> A and B disconnect>	

Name:

Solution to 5

The solution is to do an authenticated Diffie-Hellman (DH) using the shared key K.

Solution 1.

The easiest solution is to do DH using K to encrypt the DH messages:

	A (has K, g, p)	B (has K, g, p)
1	generate random S_A	
	$T_A \leftarrow g^{\circ A} \mod p$	
	$U_A \leftarrow encrypt(T_A)$ with K	
	send [A, B, U _A]	
2		receive [A, B, U _A]
		extract T_A from U_A using K
		generate random S_B
		$T_{B} \leftarrow g \stackrel{\text{s}}{\longrightarrow} \mod p$
		$U_{\rm B} \leftarrow {\rm encrypt}(T_{\rm B})$ with K
		send [B, A, U_B]
		session key $S_B \leftarrow T_A^{-B} \mod p$
•		
3	receive $[B, A, U_B]$	
	session key $S_A \leftarrow T_B^{S_A} \mod p$	
	$r = \frac{1}{2} - \frac{1}{2}$	
	\land and B exchange data using S then disconnect>	
	A and D exchange data using 5, then disconnect>	

Note that at the end of step 3, it is possible A and B are both talking via a "man-in-the-middle" attacker; however, the attacker will not have the session key S, and so cannot impersonate A to B or B to A any further in the session. Even this can be avoided by using nonces, as described in solution 2 below.

Grading

6 points for the Diffie Helman operations

•	generate random S_{A_2} , $T_A \leftarrow g^{S_A}$ mod p, etc, corresponding operations for B	[3 points]
•	session key S \leftarrow T _B ^{SA} mod p, etc, corresponding operations for B	[3 points]

session key S $\leftarrow T_B^{S_A}$ mod p, etc, corresponding operations for B

4 points for authenticating the DH exchange using K

- One way is to encrypt the DH exchange using K (as shown above).
- Another way is to do unencrypted DH and then use the DH session key to encrypt a challenge-response involving K.

At most 2 out of 4 points if K is not involved in the DH session key construction or subsequent verification.

- One example is if the DH handshake is not encrypted with K. •
- Another example is if K alone is used to encrypt a challenge-response.

In such cases, a man-in-the-middle attack is possible where the attacker hijacks session after the authentication handshake (as shown in solution attempt 3 below).

At most 2 out of 10 points if session key obtained from other than DH (which would allow the attacker to decrypt data if it learns K later).

Name:____

Solution 2 (detects authentication attack earlier)

	A (has K, g, p)	B (has K, g, p)
1	generate random N_A generate random S_A $T_A \leftarrow g^{S_A} \mod p$ $U_A \leftarrow encrypt(T_A, N_A)$ with K	
2	send [A, B, U _A]	receive [A, B, U _A] extract T _A and N _A from U _A using K $M_A \leftarrow N_A + 1$ generate random N _B generate random S _B $T_B \leftarrow g^{S_B} \mod p$ $U_B \leftarrow encrypt(T_B, N_B, M_A)$ with K send [B, A, U _B] session key S _B $\leftarrow T_A^{S_B} \mod p$
3	receive [B, A, U _B] extract T_B , N_B , M_A if $M_A = N_A + 1$ then B authenitcated $M_B \leftarrow N_B + 1$ session key $S_A \leftarrow T_B^{S_A}$ mod p send [A, B, $K\{M_B\}$]	receive [A, B, $K\{M_B\}$] extract M_B from message using K if $M_B = N_B + 1$ then A authenticated
	< A and B exchange data with session key S = $S_A = S_B$ > <	

Name:_____

Solution attempt 3 (does not use K and DH in conjunction, hence does not work)

	A (has K, g, p)	B (has K, g, p)
1	generate random NA and SA	
	$T_A \leftarrow g^{S_A} \mod p$	
	send [A, B, K{ N_A }, T _A]	
2		receive [A, B, K{N _A }, T _A]
		$M_A \leftarrow decrypt K\{N_A\}$ using K
		generate random N_B and S_B
		$T_B \leftarrow g^{S_B} \mod p$
		send [B, A, M _A , K{N _B }, T _B]
		session key $S \leftarrow T_A^{SB} \mod p$
3	receive $[B, A, M_A, K\{N_B\}, T_B]$	
	if $M_A = N_A$ then B authenticated else abort	
	$M_B \leftarrow \text{decrypt } K\{N_B\} \text{ using } K$	
	session key $S \leftarrow T_B^{S_A} \mod p$	
	send [A, B, M _B]	
		receive $[A, B, M_B]$
		if $M_B = N_B$ then A authenticated else abort
	< A and B use session key $S=S_A=S_B$ for data and closing>	

Page 9 of 11

Name:_____

Here is a man-in-the-middle attack on solution attempt 3

	A (has K, g, p)]	Attacker C		B (has K, g, p)
1	$\begin{array}{l} \text{generate random } N_A \text{ and } S_A \\ T_A \leftarrow g^{S_A} \mod p \\ \text{send } [A, B, K\{N_A\}, T_A] \ \text{//msg 1} \end{array}$	\rightarrow	intercept msg 1 generate random S _C $T_C \leftarrow g^{S_C} \mod p$ session key S _{AC} = $T_A^{S_C} \mod p$ forward msg 1 with $T_A \rightarrow T_C$	\rightarrow	
2		<i>←</i>	intercept msg 2 session key $S_{BC} = T_B^{S_C} \mod p$ forward msg 2 with $T_B \rightarrow T_C$	~	receive [A, B, K{N _A }, T _C] $M_A \leftarrow decrypt K{N_A} using K$ generate random N _B and S _B $T_B \leftarrow g^{S_B} \mod p$ send [B, A, M _A , K{N _B }, T _B] //msg 2 session key S $\leftarrow T_A^{S_B} \mod p$
3	receive [B, A, M _A , K{N _B }, T _C] $M_A = N_A$ so B is authenticated $M_B \leftarrow$ decrypt K{N _B } using K session key $S_A \leftarrow T_C^{S_A} \mod p$ send [A, B, M _B] // msg 3	\rightarrow	no need to modify msg 3	\rightarrow	
		_			receive [A, B, M _B] $M_B = N_B$ so A authenticated
	< A shares session key S _A with C A thinks it shares it with B	C>		<	- B shares session key S _B with C> B thinks it shares it with A
	C does fo (includin, • interce • decryp • forwar C does th (with the	g for every msg that A sends to B sconnection handshake messages): nessage, pted fields with S_{AC} and re-encrypt with fied msg to B for every msg that B sends to A f S_{AC} and S_{BC} interchanged).	th S _{BC}	;,	

Name:__

6.15 points]

In the authentication protocol below, pw is A's password and J is a key derived from pw.

A (has pw)		B (has J)
send [A, B, conn]	// msg 1	
		$\begin{array}{l} \mbox{receive [A, B, conn]} \\ \mbox{generate random challenge } R_B \\ \mbox{S}_B \leftarrow \mbox{encrypt}(R_B) \mbox{ with key J} \\ \mbox{send [B, A, S_B]} \mbox{// msg 2} \end{array}$
receive [B, A, S _B] compute J from pw $T_B \leftarrow decrypt(S_B)$ with key J $U_B \leftarrow encrypt(T_B+1)$ with key J		
generate random challenge R_A $S_A \leftarrow encrypt(R_A)$ with key J send [A, B, U _B , S _A]	// msg 3	
		receive [A, B, U _B , S _A] $V_B \leftarrow \text{decrypt}(U_B)$ with key J if $V_B = R_B + 1$ then A is authenticated else abort
		$\begin{array}{l} T_A \leftarrow decrypt(S_A) \text{ with key J} \\ U_A \leftarrow encrypt(T_A+1) \text{ with key J} \\ send [B, A, U_A] & // msg 4 \end{array}$
receive [B, A, U _A] $V_A \leftarrow decrypt(U_A)$ with key J if $V_A = R_A + 1$ then B is authenticated	else abort	

- a. Consider an attacker that can **only eavesdrop** (i.e., can hear messages in transit but cannot intercept messages or send messages with somebody else's sender id). Can this attacker obtain pw by off-line password guessing. If you answer no, explain briefly. If you answer yes, describe the attack.
- b. Consider an attacker that can **only spoof A** (i.e., send messages with sender id A and receive messages with destination id A, but not eavesdrop or intercept messages). Can this attacker obtain pw by off-line password guessing. If you answer no, explain briefly. If you answer yes, describe the attack.
- c. Consider an attacker that can **only spoof B** (i.e., send messages with sender id B and receive messages with destination id B, but not eavesdrop or intercept messages). Can this attacker obtain pw by off-line password guessing. If you answer no, explain briefly. If you answer yes, describe the attack.

Name:

Solution to 6

Part a. [5 points] Yes, off-line password guessing is possible. [5 points] Attacker does following with S_B and U_B (note $S_B = J\{R_B\}$ and $U_B = J\{R_B + 1\}$): for each cpw in dictionary do { $cJ \leftarrow key constructed from cpw;$ $cR \leftarrow decrypt S_B using cJ;$ cRplus1 \leftarrow decrypt U_B using cJ; if cRplus1 = cR + 1 then done; // pw = cpw; J = cJ, }

Same attack possible with S_A and U_A .

0 points for saying "yes" without any explanation or with a completely wrong explanation.

Part b. [5 points]

No, off-line password guessing is not possible. [5 points] The attacker can get $S_B (= J\{R_B\})$ by sending [A, B, conn], but it cannot get anything more. Because it does not have J, it cannot compute $U_B (= J\{R_B+1\})$. So whatever msg 3 the attacker sends will not elicit a responding msg 4 from B.

0 points for saying "no" without any explanation or with a completely wrong explanation. At most 2 points if you do not explain why the attacker cannot get B to send msg 4.

Part c. [5 points]

Yes, off-line password guessing is possible. [5 points] Attacker waits until A requests a connection, upon which it sends msg 2 with random S_B . A responds with msg 3 in which $U_B = \text{encrypt}(\text{decrypt } S_B \text{ using } J)$ using J. Then do the following with S_B and U_B (exactly as in part a): for each cpw in dictionary do { $cJ \leftarrow key constructed from cpw;$ $cR \leftarrow decrypt S_B using cJ;$ cRplus1 \leftarrow decrypt U_B using cJ; if cRplus1 = cR + 1 then done; // pw = cpw; J = cJ, }

0 points for just saying yes without any explanation or with a completely wrong explanation.