Name:

1. [10 points]

Are n=221 and d=35 valid numbers for RSA. Explain. If you answer yes, obtain the corresponding e.

Solution

There are two requirements:

- n must be a product of two primes
- e must be relatively prime to $\phi(n)$ (so that d, which equals e^{-1} mod-n, exists)

First requirement

n = 221 =	: 13.17.	13 and 17	are primes.	So this h	olds.

Second requirement

[2 points]

[2 points]

[4 points]

If n =p·q where p and q are distinct primes, then $\phi(p \cdot q) = (p-1) \cdot (q-1)$ So $\phi(221) = (13-1) \cdot (17-1) = 12 \cdot 16 = 192$

gcd(35, 192) = 1

[because 35 = 7.5 and $192 = 2^6.3$, so they have no factors in common] So e=35 is valid. So d = 35^{-1} mod 192 [2 points]

Obtaining d

We want integers a and b such that $1 = a \cdot 192 + b \cdot 35$ (then b will be e). We can do trial and error or use Euclid's algorithm, as shown below. [Below, rows n = -2 and n = -1 are initialization. $r_n \leftarrow$ remainder (r_{n-2}/r_{n-1}) ; $q_n \leftarrow$ quotient (r_{n-2}/r_{n-1}) ;

 $\begin{array}{l} q_n \leftarrow q_{uotient} \left(\mathbf{1}_{n-2} \mathbf{1}_{n-1} \right) \\ u_n \leftarrow u_{n-2} - q_n \cdot \mathbf{u}_{n-1}; \\ v_n \leftarrow v_{n-2} - q_n \cdot \mathbf{v}_{n-1}; \end{array}$

n	q_n	r _n	u _n	Vn
-2		192	1	0
-1		35	0	1
0	5	17	1	-5
1	2	1	-2	11
2	17	0		

From row n=1, we have

$$\begin{split} r_n &= \gcd(35,\,192) = 1 \ (\text{which we already knew}), \, \text{and} \\ 1 &= (-2) \cdot (192) + (11) \cdot 35 \quad [= -384 + 385 \] \\ \text{So } d &= 11 \ \text{mod} \ 192 \ = \ 11. \end{split}$$

2. [6 points]

Every day X talks to Y via nodes A1, A2, B2, B1, as shown above: X sends a msg of 56 octets; A1 attaches a header of "A1,A2"; B1 puts the entire packet in another packet with header "B1,B2"; B2 undoes B1's wrapping; A2 undoes A1's wrapping. Addresses A1, A2, B1, B2 are each 32 bits.

One day, X and Y decide to *encrypt* their communication with a secret key J (i.e., X and Y share J), and B1 and B2 decide to *integrity-protect* their communication with a secret key K (i.e., B1 and B2 share K). Both pairs use DES in CBC mode. Give the size of A1-B1 packet and the size of the B1-B2 packet. Explain your answers briefly.

Solution

DES operates on 8-octet (64-bit) data blocks. CBC requires an IV of the encryption block size, so this too is 8 octets. A1, A2, B1, B2 are each 32 bits, which is 4 octets.

• X-A1 pkt = $J\{msg\}$	[2 points]
pkt size = IV + msg.size	
= 8 + 56 octets = 64 octets	
• A1-B1 pkt = [A1,A2, J{msg}] pkt size = $4 + 4 + 64 = 72$ octets	[1 point]
• MAC{[A1-A2 pkt]} = IV + CBC residue mac size = 8 + 8 octets	[2 points]
 B1-B2 pkt = [B1, B2, [A1-A2 pkt], MAC{[A1-A2 pkt]] pkt size = 4+4+ 72 + 8+8 = 96 octets 	[1 points]

[3 points for the A1-B1 pkt and 3 points for the B1-B2 pkt.]

[-1 point for each missing IV]

[-1 point for missing residue]

3. [14 points]

An organization has a PKI (public-key infrastructure) for its employees consisting of a single CA (certification authority) and a single directory server (DS). Answer the following questions. Be brief and precise.

- a. Describe the steps taken by a new employee A upon joining the organization.
- b. Describe the steps employee A takes to email a message confidentially to an employee B (who may not be online).
- c. Describe the steps employee A takes to send a message confidentially to an employee B (who may not be online) such that B can be assured from the contents of the message that it was sent by A (without doing any further interactions).

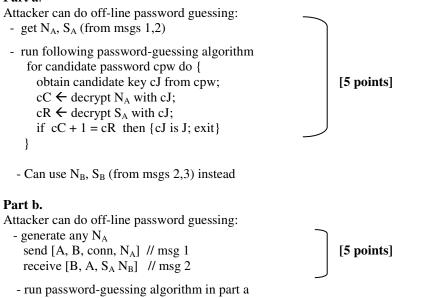
Solution

Part a. [4 points]	
• A interacts with CA offline	
 A generates its public key pair < pub_A, pri_A > [2 point and gives CA its pub_A 	s]
• A gets CA's public key pub _{CA} [2 point and [optionally] certificate for A issued by CA cert _A	s]
Part b. [5 points]	
• A contacts DS and gets certificate for B (cert _B) and latest CRL [3 point	s]
 A verifies cert_B using pub_{CA} [2 point encrypts msg using pub_B and emails encrypted msg to B 	s]
Part c. [5 points]	
• A contacts DS and gets certificates for A and B (cert _A , cert _B) [3 point and latest CRL	s]
 A verifies cert_B using put_{CA} [2 point encrypts msg using pub_B signs result with its private key pri_A and emails encrypted msg and signature to B 	s]
Parts b and c. Roughly zero points for involving CA. Roughly zero points for doing an authentication with B -1 point for missing CRL. -1 point for missing a certificate.	

Part c

-1 point for not sending cert_A and CRL to B (without them, B has to interact with DS)

4. [10 points]


client A (has J)	server B (has J)
generate random C _A	
$N_A \leftarrow \text{encrypt } C_A \text{ with key } J$	
send [A, B, conn, N _A] // msg 1	
	receive [A, B, conn, N_A] $R_A \leftarrow$ decrypt N_A with key J $S_A \leftarrow$ encrypt (R_A +1) with key Jgenerate random C_B $N_B \leftarrow$ encrypt C_B with key Jsend [B, A, S_A , N_B]
receive [B, A, S _A , N _B] $T_A \leftarrow \text{decrypt } S_A \text{ with key } J$ if $T_A = C_A + 1$ then B is authenticated else abort $R_B \leftarrow \text{decrypt } N_B \text{ with key } J$ $S_B \leftarrow \text{encrypt } (R_B+1) \text{ with key } J$ send [A, B, S _B] // msg 3	
	receive [A, B, S _B] $T_B \leftarrow$ decrypt S _B with key J if $T_B = C_B + 1$ then A is authenticated else abort

Client A and server B use the above authentication protocol. J is a key obtained from a password. B handles at most one client at a time. Answer the following; each part below is independent.

- a. Consider an attacker that can **only eavesdrop** (i.e., hear messages in transit but cannot intercept messages or send messages with somebody else's sender id). Can this attacker obtain J by off-line password guessing. If you answer no, explain briefly. If you answer yes, describe the attack.
- b. Consider an attacker that can **only spoof A** (i.e., send messages with sender id A and receive messages with destination id A, but not eavesdrop or intercept messages). Can this attacker obtain J by off-line password guessing. If you answer no, explain briefly. If you answer yes, describe the attack.

Solution

Part a.

c. 5. [5 points]

The same protocol as in problem 4 except that J is now a high-quality key, B can handle muliple clients at a time, and the different instances of B do not communicate with each other.

client A (has J)	server B (has J)
generate random C _A	
$N_A \leftarrow encrypt C_A$ with key J	
send [A, B, conn, N _A] // msg 1	
	receive [A, B, conn, N_A] $R_A \leftarrow$ decrypt N_A with key J $S_A \leftarrow$ encrypt (R_A+1) with key Jgenerate random C_B $N_B \leftarrow$ encrypt C_B with key Jsend [B, A, S_A , N_B]
receive [B, A, S _A , N _B] $T_A \leftarrow \text{decrypt } S_A \text{ with key } J$ if $T_A = C_A + 1$ then B is authenticated else abort $R_B \leftarrow \text{decrypt } N_B \text{ with key } J$ $S_B \leftarrow \text{encrypt } (R_B+1) \text{ with key } J$ send [A, B, S _B] // msg 3	
	receive [A, B, S _B] $T_B \leftarrow$ decrypt S _B with key J if $T_B=C_B+1$ then A is authenticated else abort

Consider an attacker who can only **spoof A**. Can this attacker impersonate A to B. If you answer no, explain briefly. If you answer yes, describe the attack.

Solution

To impersonate A to B, the attacker must deliver a suitable msg 3 to B, i.e., one that has S_B equal to the correct response for N_B	[1 points]	
Because B can handle multiple clients at the same time, the attacker obtain $J\{N_B\}$ via a reflection attack: - request another connection to B with msg 1 set to [A, B, conn, N _B] - the msg 2 response from this instance of B will have S _A equal to $J\{N_B\}$	[4 points]	
So the attacker can impersonate A to B.		
0 points for password-guessing attack (not possible because J is high-quality key) 0 points if no explanation provided		

6. [10 points]

Server B, which supports many clients, is attached to the Internet at a well-known (not secret) <TCP port, IP addr> y. Each client shares a password-dervied key with B. So B has for, each client, an entry consisting of the client id and key. The clients and server also share Diffie-Hellman parameters g and p (not secret).

B has so many clients that it can decrypt ciphertext encrypted with a client key only if it already knows the client id; i.e., it is not feasible for B to try all the client keys until it finds one that results in sensible plaintext.

Write down an authentication protocol so that a client A attached at an Internet <TCP port, IP addr> x can connect to B without disclosing its id (i.e., "A") to an attacker that can **only eavesdrop** (i.e., hear messages in transit but cannot intercept messages or send messages with somebody else's sender id). Cliearly identify the operations done at each side and the messages exchanged.

Solution	
1. A attaches to x and requests TCP connnection to y	[3 points]
2. After connection is established, A initiates DH exchange with B	[3 points]
3. After DH exchange, A sends its id encrypted with DH key and authentication nonce, etc	[4 points]

A at x (has g, p and secret key K)	B at y (has g, p and a [client id, key] entry for each client)
Part 1 (x establishes TCP connection with y)	
attach to x; request TCP connection to y	
	accept connection request
become open to x	
	become open to y
Part 2 (A and B establish DH key)	
gen a	
$T_A \leftarrow g^a \mod p$	
send $[x, y, T_A]$ (i.e., send T_A as data on TCP connection)	
	gen b
	$T_B \leftarrow g^b \mod p$
	send [x, y, T _B] $J_B \leftarrow (T_A)^b \mod p // DH \text{ key}$
$J_A \leftarrow (T_B)^a \mod p // DH \text{ key}$	$J_B \leftarrow (T_A) \mod p / / DH Key$
$J_A \leftarrow (I_B) \mod p // DH \text{ key}$	
Part 3 (A initiates authentication with B using K)	
gen N_A send [x, y, J_A {"A", K{ N_A }]]	
	extract "A", $K\{N_A\}$ using J_B
	$R_A \leftarrow 1 + \text{decrypt } K\{N_A\} \text{ using } K$
	gen N _B
	send[y, x, $J_B{R_A, K{N_B}}$]
extract R_A , $K\{N_B\}$ using J_A	
if $R_A = N_A + 1$ then B authenticated	
$R_B \leftarrow 1 + \text{decrypt } K\{N_B\} \text{ using } K$	
$send[x, y, J_B{R_B}]$	
	extract R_A , $K\{N_B\}$ using J_A
	if $R_B = N_B + 1$ then A authenticated

At most 1 point if part 1 missing. (Without part 1, A and B cannot authenticate without exposing A's id.) 0 points if A or B sends messages with "A" exposed in part 2 (e.g., send [A, B, T_A]).