There are two requirements:
- n must be a product of two primes [1 point]
- e must be relatively prime to \(\phi(n) \) (so that d, which equals \(e^{-1} \mod{n} \), exists) [1 point]

First requirement [2 points]
n = 77 = 7·11. 7 and 11 are primes. So this holds.

Second requirement [6 points]
Recall that if \(n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k} \) where \(p_i \) is prime, then
\[
\phi(p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k}) = (p_1-1)p_1^{a_1-1} \cdot (p_2-1)p_2^{a_2-1} \cdots (p_k-1)p_k^{a_k-1}
\]
So \(\phi(77) = (7-1)(11-1) = 60 \).
e, which equals 5, is not relatively prime to 60.
So this requirement does not hold.

So these are not valid RSA numbers.
2. [5 points]
Assume that Bob uses RSA and the following hold:
- \(n=15 \)
- Bob’s signature of message \(m=2 \) is 5
- Bob’s signature of message \(m=3 \) is 4

Obtain Bob’s signature for the message \(m=12 \). Show your derivation here.

Recall that if \(s_1 \) is the signature of \(m_1 \) (i.e., \(s_1 = m_1^d \mod n \)) and \(s_2 \) is the signature of \(m_2 \), then
- \(\text{signature}(m_1^j) = s_1^j \mod n \)
- \(\text{Signature}(m_1 \cdot m_2) = s_1 \cdot s_2 \mod n \)
- \(\text{signature}(m_1^j \cdot m_2^k) = s_1^j \cdot s_2^k \mod n \)

So we express message \(m=12 \) in terms of 2 and 3.
\[
12 = 2 \cdot 2 \cdot 3
\]

So \(\text{signature}(12) = \text{signature}(2) \cdot \text{signature}(2) \cdot \text{signature}(3) \mod 15 \)
\[
= 5 \cdot 5 \cdot 4 \mod 15 \\
= 100 \mod 15 \\
= 10 \quad \text{(because 15 \cdot 6 = 90)}
\]

So \(\text{signature}(12) = 10 \)

3. [5 points]
How many numbers between 1 and 250000 are relatively prime to 250000? Explain

By definition, this equals \(\phi(250000) \).

Recall that if \(n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k} \) where \(p_i \) is prime, then
\[
\phi(p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k}) = (p_1-1) \cdot p_1^{a_1-1} \cdot (p_2-1) \cdot p_2^{a_2-1} \cdots (p_k-1) \cdot p_k^{a_k-1}
\]

\[
250000 = 5^2 \cdot 10000 = 5^2 \cdot 10^4 = 5^2 \cdot (5 \cdot 2)^4 = 5^6 \cdot 2^4
\]

So \(\phi(250000) = (4 \cdot 5^5) \cdot (1 \cdot 2^3) = (4 \cdot 25 \cdot 25 \cdot 5) \cdot (1 \cdot 8) = 100 \cdot 25 \cdot 5 \cdot 8 = 100 \cdot 5 \cdot 200 = 100 \cdot 1000 = 100,000
\]

So there are 100000 numbers between 1 and 250000 that are relatively prime to 250000.
4. [10 points]
Using the efficient algorithm, compute $131^{25} \mod 15$

\[
25 = (11001)_2 \quad [25 = 16 + 8 + 1]
\]

\[
131^{(1)} \mod 15 = 11
\]
\[
131^{(10)} \mod 15 = 11 \cdot 11 \mod 15 = 121 \mod 15 = 1
\]
\[
131^{(11)} \mod 15 = 1 \cdot 11 \mod 15 = 11 \mod 15 = 11
\]
\[
131^{(110)} \mod 15 = 11 \cdot 11 \mod 15 = 121 \mod 15 = 1
\]
\[
131^{(1100)} \mod 15 = 1 \cdot 1 \mod 15 = 1
\]
\[
131^{(11000)} \mod 15 = 1 \cdot 1 \mod 15 = 1
\]
\[
131^{(110001)} \mod 15 = 1 \cdot 11 \mod 15 = 11
\]
So $131^{25} \mod 15 = 11$
5. [10 points]
Obtain a formula that yields a number x in \mathbb{Z}_{45} such that $x \mod 5 = x_1$ and $x \mod 9 = x_2$.
Or if you think such a formula does not exist, explain.

Note that $45 = 5 \cdot 9$ and that 5 and 9 are relatively prime.
Thus the CRT tells us that there is a unique x for any x_1 and x_2 and gives the formula
$x = [x_2 \cdot a \cdot z_1 + x_1 \cdot b \cdot z_2] \mod z_1 \cdot z_2$ where $a \cdot z_1 + b \cdot z_2 = 1$ (in this case, $z_1 = 5$ and $z_2 = 5$).

So the formula is $x = [x_2 \cdot a \cdot 5 + x_1 \cdot b \cdot 9] \mod 5 \cdot 9$, where a and b satisfy $a \cdot 5 + b \cdot 9 = 1$.
Doing Euclid$(5,9)$ yields a and b, but in this case we can also do it by “brute force”.
Because $a \cdot 5$ ends in 0 or 5 and hits all such numbers, it suffices if $b \cdot 9$ ends in 1 or 6.

So $b = 4$ works. In this case, $b \cdot 9 = 36$, so $a = -7$ works [check: $(-7) \cdot 5 + 4 \cdot 9 = -35 + 36 = 1$].
So one valid formula is
\[
x = [x_2 \cdot (-7) \cdot 5 + x_1 \cdot 4 \cdot 9] \mod 5 \cdot 9,
\]
or
\[
x = [\ -x_2 \cdot 35 + x_1 \cdot 36 \] \mod 45
\]
Or

$b = 9$ also works. In this case, $a = -16$ [check: $(-16) \cdot 5 + 9 \cdot 9 = -80 + 81 = 1$].
So another valid formula is
\[
x = [x_2 \cdot (-16) \cdot 5 + x_1 \cdot 9 \cdot 9] \mod 5 \cdot 9,
\]
or
\[
x = [\ -x_2 \cdot 80 + x_1 \cdot 81 \] \mod 45
\]
Or

$b = -1$ also works. In this case, $a = 2$ [check: $2 \cdot 5 + (-1) \cdot 9 = 10 + (-9) = 1$].
So another valid formula is
\[
x = [x_2 \cdot 2 \cdot 5 + x_1 \cdot (-1) \cdot 9] \mod 5 \cdot 9,
\]
or
\[
x = [x_2 \cdot 10 - x_1 \cdot 81 \] \mod 45
\]
There are of course many more (a,b) pairs that will work.