Page 1 of 6

Name:

Total points: 100. Total time: 115 minutes. 6 problems over 6 pages. No book, notes, or calculator

Unless stated otherwise, the following conventions are used:

- K{X} denotes X encrypted with secret key K (e.g., DES-CBC)
- Passive attacker: can only eavesdrop.
- Active attacker: can intercept messages and send messages with another's sender id.
- Server handles at most one client at a time

1. [10 points]

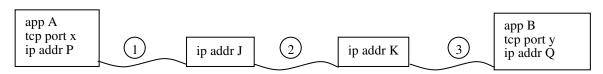
Company xLtd has principals X, A₁, A₂, ..., where X issues certificates for the A_i's, and is their trust anchor.

Company yLtd has principals Y, B₁, B₂, ..., where Y issues certificates for the B_i's, and is their trust anchor.

- One day, xLtd acquires yLtd. You are to obtain a new PKI for the new xLtd. Parts a and b are independent.
- a. Modify the old PKIs to obtain a new PKI in which X is the sole trust anchor for all A_i's and B_i's; minimize the number of new certificates.

Give the certificate chain that A_1 needs to get the public key of B_1 in the new PKI.

Give the certificate chain that B_1 needs to get the public key of A_1 in the new PKI.


b. Modify the old PKIs to obtain a new PKI in which X is the sole trust anchor for all A_i's, and Y be the sole trust anchor for all B_i's; minimize the number of new certificates.

Give the certificate chain that A1 needs to get the public key of B1 in the new PKI.

Give the certificate chain that B₁ needs to get the public key of A₁ in the new PKI.

2. [20 points]

- Below, "structure of an IP packet" means its headers (IP, TCP, etc, up to payload) and the values of addresses, ports, SPIs. a. Applications A and B communicate over TCP over IP as shown, where J and K are intermediate IP routers. Give the
 - structure of an IP packet from A to B at points 1, 2, and 3.

b. The above configuration is now modified as follows: P and Q operate IPsec-AH with SPI of 11 (for both directions); J and K operate IPsec-AH with SPI of 22. Give the structure of an IP packet from A to B at points 1, 2, and 3.

CMSC 414 S09 Exam 2

Page 3 of 6

Name:____

3. [20 points]

A (client, has K)	B (server, has entry [A, K])		
send [A, B, conn] // msg1			
	receive msg1 generate random R _B send [B, A, R _B] // msg2		
receive msg2 $S_B \leftarrow K\{R_B\}$ generate random R_A send [A, B, S _B , R_A] // msg3			
	receive msg3 if $S_B = K\{R_B\}$ then A authenticated else abort $S_A \leftarrow K\{R_A\}$ send [B, A, S _A] // msg4		
receive msg4 if $S_A = K\{R_A\}$ then A authenticated else abort			
$\leftarrow \text{ exchange data encrypted with session key} = \text{function}(R_A, R_B, K) \rightarrow Close session}$			

A and B share a high-quality secret key K and periodically establish sessions as shown above. Each part below defines a specific session key function and a question for a kind of attacker. If you answer yes, give the attack, and if you answer no, explain briefly.

a. If the session key is R_A+R_B , can a passive attacker decrypt the data exchanged in a session?

b. If the session key is $K\{R_A+R_B\}$, can a passive attacker decrypt the data exchanged in a session?

c. If the session key is $K\{R_A+R_B\}$, can an active attacker decrypt the data exchanged in a session?

d. If the session key is $(K+1)\{R_A+R_B\}$, can an active attacker decrypt the data exchanged in a session?

CMSC 414 S09 Exam 2

Page 4 of 6

4. [15 points]

A (has pw)		B (has entry A:V)
obtain V from pw generate random a $T_A \leftarrow g^a \mod p$	//1	
send [A, B, V $\{T_A\}$]	// msg1	
		receive msg1 extract T_A from V{ T_A } using V
		generate random b
		$T_{B} \leftarrow g^{b} \mod p$
		$K_B \leftarrow (T_A)^b \mod p$
		send $[B, A, T_B]$ // msg2
receive msg2		
$K_A \leftarrow (T_B)^a \mod p$		
send[A,B, $K_A{M}$]	// msg3	
← close	e connection→	

Principal A periodically delivers plaintext information M to principal B using the above protocol, where V is a key obtained from A's password, g and p are public Diffie-Hellman parameters, and M changes across sessions.

In each part below, if you answer no, explain briefly; if you answer yes, describe the attack.

a. Can a passive attacker capable of off-line dictionary attack obtain M?

b. Can an active attacker capable of off-line dictionary attack obtain M?

Name:___

5. [15 points]

It is the year 2020, and quantum computing has just made it feasible for the general public to factor large numbers. Your company uses the following protocol, where g and p are Diffie-Hellman parameters, and K_1 and K_2 are explained below.

	A at tcp port x	B at tcp port y	
	\leftarrow establish tcp connection between x and y		
1	generate random a send [x, y, K ₁ {A, B, g, p, g ^a mod p}] // msg1		
2		receive msg1 generate random b send [y, x, K_2 {B, A, g^b mod p}] // msg2 compute g^{ab} mod p	
3	receive msg2 compute g ^{ab} mod p send [x, y, hash{g ^{ab} mod p }] // msg3		
4		receive msg 3 send [y, x, hash{1, g ^{ab} mod p}] // msg4	
	$\leftarrow A \text{ and } B \text{ use } g^{ab} \text{ mod } p \text{ to encrypt data } \rightarrow$		

a. Suppose K₁ is B's RSA public encryption key, and K₂ is A's RSA public encryption key.

a1. Does the protocol hide B's identity against a passive attacker? If yes, explain. If no, show an attack.

a2. Does the protocol provide perfect forward secrecy against a passive attacker? If yes, explain. If no, show an attack.

b. Repeat part a but now suppose that K_1 is a shared secret key (and hence the same as K_2).

c. In what situation would the protocol in part b not be practical.

Page 6 of 6

Name:___

6. [20 points]

In the following Needham-Schroeder-like protocol, KAB, N1, N2, N3, and N4 are randomly generated.

A (has master key K _A)	KDC (has $[A, K_A], [B, K_B],)$	B (has master key K _B)			
send [A,KDC, N ₁ , 'A to B'] // msg1					
	receive msg1				
	$tkt_{AB} \leftarrow K_B\{K_{AB}, A, N_2\}$				
	send [KDC,A, K_A { N_1 , N_2 , B, K_{AB} , tk	at_{AB}] // msg2			
receive msg2					
if $(N_1 \text{ in } msg1) \neq (N_1 \text{ in } msg2)$ then abort					
send [A,B, tkt _{AB} , K_{AB} {N ₂ , N ₃ }] // msg3					
		receive msg3			
		if $(N_2 \text{ in } tkt_{AB}) \neq (N_2 \text{ in } K_{AB}\{N_2, N_3\})$ then abort			
		$M_3 \leftarrow N_3 - 1$			
		send [B,A, $K_{AB}{M_3, N_4}$] // msg4			
receive msg4					
if $M_3 = N_3 - 1$ then B authenticated					
$M_4 \leftarrow N_4 - 1$					
send [A,B, $K_{AB}{M_4}$] // msg5					
		receive msg5			
		if $M_4 = N_4 - 1$ then A authenticated else abort			
\leftarrow A and B use K _{AB}	to encrypt data				

a. An attacker can eavesdrop and send messages with sender id A (but not B). The attacker learns A's master key K_A after which A changes it.

Show how the attacker can have itself authenticated as A to B.

b. Modify the protocol to stop the attack in part a. You can add new messages and/or augment existing messages.

c. Modify the code executed by B to stop the attack in part a. Do not add new messages or change the existing messages.