Solution to problem 1a [10 points]

We prove Inv (mKey ncf α).

Informal argument [4 points]

It suffices to show that any mKey-term in α is a secure encryption using mKey (because of axiom 2). The messages sent by A or B contain three kinds of fields: (1) ids (A, B); (2) challenges (nL values); and (3) responses (enc(mKey,nR) values). Only the response field involve mKey, and these are secure encryptions using mKey because the attacker cannot write to chan.

Proof [6 points]

The conjunction of C1–C4 is invariantly complete, and C1 implies (mKey ncf α).

| C1 : (y in α.inpts(mKey)) ⇒ (y seu mKey) [2 points] |
| C2 : (y in chan.inpts(mKey)) ⇒ (y seu mKey) [2 points] |
| C3 : A.nL.inpts(mKey) = [] [1 point] |
| C4 : B.nL.inpts(mKey) = [] [1 point] |

Details:

<table>
<thead>
<tr>
<th>initial step</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>C2, C3, C1</td>
<td>C2, C3</td>
<td>true</td>
<td>C4</td>
</tr>
<tr>
<td>B.1</td>
<td>C2, C4, C1</td>
<td>C2, C4</td>
<td>C3</td>
<td>true</td>
</tr>
<tr>
<td>B.2</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
</tr>
</tbody>
</table>
Solution to problem 1b [10 points]

We prove \(\text{Inv} \) for all \(i \) in \(\text{hst.keys: hst[i] = [B,nB,nA] \Rightarrow [A,nA,nB] in hst[0..i-1]} \)

Informal argument [4 points]

Because the attacker cannot write \(\text{chan} \), the protocol’s behavior is simple to describe:

0. \(A \) sends \([A,B,1]\)
1. \(B \) receives \([A,B,1]\) and sends \([B,A,1,\text{enc(mKey,1)}]\).
2. \(A \) receives above msg, adds \([A,1,1]\) to \(\text{hst} \), and sends \([A,B,\text{enc(mKey,1)}]\) and \([A,B,2]\).
3. \(B \) receives first msg above, adds \([B,1,1]\) to \(\text{hst} \).
4. Repeat steps 1, 2, 3 with the \(nR \) and \(nL \) values in the messages increased by 1.

So just before \([B,nB,nA]\) is added to \(\text{hst} \), the last entry in \(\text{hst} \) is \([A,nA,nB]\).

Proof [6 points]

The conjunction of \(D_0 \) and \(D_1 \) is invariantly complete. Hence \(\text{Inv} D_0 \) holds, and this is what we want to establish.

\[
\begin{align*}
D_0 : & \quad \forall i \in \text{hst.keys: hst[i] = [B,nB,nA] \Rightarrow [A,nA,nB] in hst[0..i-1]} \\
D_1 : & \quad (E_1 \lor E_2 \lor E_3), \text{ where} \\
E_1 : & \quad (B \text{ at } 1 \text{ and chan } = [[A,B,A.nL]]) \quad \text{[2 points]} \\
E_2 : & \quad (B \text{ at } 2 \text{ and } B.nR = A.nL \text{ and chan } = [[B,A,B.nL,\text{enc(mKey,B.nR)}]]) \quad \text{[2 points]} \\
E_3 : & \quad (B \text{ at } 2 \text{ and } B.nR < A.nL \text{ and } ([A,B,nR,B.nL] \text{ in hst}) \text{ and chan } = [[A,B,B.nR,\text{enc(mKey,B.nL)}], [A,B,A.nL]]) \quad \text{[2 points]}
\end{align*}
\]

Details:

\[
\begin{array}{|c|c|c|}
\hline
\text{initial step} & D_0 & D_1 \\
\hline
A.1 & true & \text{true} \\
\hline
B.1 & D_0 & D_1 (E_2 \text{ before ensures } E_3 \text{ after}) \\
\hline
B.2 & D_0, D_1 (E_3 \text{ before}) & D_1 (E_3 \text{ before ensures } E_1 \text{ after}) \\
\hline
\end{array}
\]
Solution to problem 2a [10 points]

We prove $\text{Inv} \langle \text{mKey ncf } \alpha \rangle$.

Informal argument [4 points]

(Almost the same as for problem 1a.)

It suffices to show that any mKey-term in α is a secure encryption using mKey (because of axiom 2). The messages sent by A or B contain three kinds of fields: (1) ids (A, B); (2) challenges (nL values); and (3) responses ($enc(\text{mKey}, nR)$ values). Only the response field involve mKey, and these are secure encryptions using mKey because even though the attacker can write to chan, the mKey values it can write are themselves secure encryptions using mKey.

Proof [6 points]

(Predicates are the same as for problem 1a.)

The conjunction of C_1–C_4 is invariantly complete, and C_1 implies ($\text{mKey ncf } \alpha$).

$$
\begin{align*}
C_1 & : (y \text{ in } \alpha \cdot \text{inpts} (\text{mKey})) \Rightarrow (y \text{ seu } \text{mKey}) & [2 \text{ points}] \\
C_2 & : (y \text{ in } \text{chan. inpts} (\text{mKey})) \Rightarrow (y \text{ seu } \text{mKey}) & [2 \text{ points}] \\
C_3 & : A.nL \cdot \text{inpts} (\text{mKey}) = [] & [1 \text{ point}] \\
C_4 & : B.nL \cdot \text{inpts} (\text{mKey}) = [] & [1 \text{ point}]
\end{align*}
$$

Details: (The only difference from the table in 1a is the “attacker write” row.)

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial step</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
| A.1 | C_2 | C_3 | C_4 | true | C_4
| B.1 | C_2 | C_3 | C_4 | C_3 | true |
| B.2 | C_2 | C_3 | C_4 | C_4 |
| attacker write | C_1 | C_2 | C_3 | C_4 |

Solution to problem 2b [10 points]

We disprove Inv forall $i \text{ in hst.keys: } \text{hst}[i] = [B,nB,nA] \Rightarrow [A,nA,nB] \text{ in hst}[0..i-1])$

Informal argument [4 points]

In B’s message, $[B,A,nB,enc(\text{mKey},nA)]$, nA equals nB (assuming the attacker does nothing). So the attacker can make up the response to B without A receiving the message.

Proof [6 points]

Counter-example evolution:

- Initial step
 - After: $[A,B,1]$ in chan; hst = [].
- B.1
 - After: $[B,A,1,enc(\text{mKey},1)]$ in chan; $B.nL = B.nR = 1$; hst = [].
- Attacker, using $enc(\text{mKey},1)$ field in above message, sets chan to $[[B,A,enc(\text{mKey},1)]]$.
- B.2
 - After: $[B,A,1,enc(\text{mKey},1)]$ in chan; hst = $[[B,1,1]]$. Assertion’s predicate not satisfied.
Solution to problem 3 [15 points]

(Taken from my 414 spring 2010 exam 1.)

Part a. [5 points]
- A interacts with CA offline. [2 points]
- A generates its public-key pair [pub_A, pri_A] and gives CA its pub_A. [2 points]
- A gets CA’s public key pub_CA and (optionally) certificate for A issued by CA, cert_A. [2 points]

Part b. [3 points]
- C can impersonate A to B until A’s certificate expires (1 year at worst) [3 points]

Part c. [6 points]
- A interacts offline with CA [2 points]
- A generates a new public key pair (as in part a) [2 points]
- CA adds A’s old certificate’s serial number in the next CRL it issues [2 points]
- Assume B uses latest CRL. Then C can impersonate A to B until A’s old certificate’s expiry time or until next CRL is issued, which is within 1 hour of contacting CA, whichever is earlier. [2 points]

Part a
- 2 point for missing CA’s public key.
- 1 point for missing certificate.

Part b
- 2 point for not referring explicitly to expiry time

Part c
- 3 point for not using CRL
Solution to problem 4a [5 points]

No, an attacker who can only read cannot obtain data because A and B establish a Diffie-Hellman key.

Solution to problem 4b [10 points]

Yes, an attacker who can read and write chan can obtain data, by doing the classic man-in-middle attack.

- Initial step: \([A,B,A.tL]\) in chan.
- Attacker removes message. Generates random \(Z_{nL}\), sets \(ZtL\) to \(g^{ZnL} \mod p\), sends \([A,B,ZtL]\).
- B.1: sets \(B.key_{DH}\) to \(g^{ZnL} \cdot B.nl\) \(\mod p\), sends \([B,A,B.tL]\).
- Attacker removes message. Sends \([B,A,ZtL]\).
 - Sets \(ZB\) to \(g^{ZnL} \cdot B.nl\) \(\mod p\) (DH key shared with B).
 - Sets \(ZA\) to \(g^{ZnL} \cdot A.nl\) \(\mod p\) (DH key shared with A).
- A.1 sends \([A,B,'DATA',\text{enc}(A.key_{DH}, data)]\).
- Attacker reads message. Uses \(ZA\) to decrypt field 4.