
CMSC 414 (Shankar) HW 1: Solution Page 1 of 4

1. (text 3.5) Suppose the DES mangler function maps every 32-bit value to zero,

regardless of the value of its input. What function would DES then compute?

DES does the following (see text figure 3-2):

• Initial permutation

• 16 DES rounds

• Swap left and right halves

• final permutation (inverse of initial permuation)

With a mangler function that outputs 0 always, each DES round just swaps L and R.

So after 16 (even number) DES rounds, the initial 64-bit word would be unchanged.

So DES would do the following:

• Initial permutation

• Swap left and right halves

• final permutation

Based on the initial permutation, the net result is a permutation that interchanges

consecutive even and odd bits.

[If the swap were not there, DES would have no affect at all.]

Grading key [out of 5 points]:
1 point for just writing something.

2 points for saying that each DES round just exchanges L and R.

3 points for saying that each DES round just exchanges L and R,

so after 16 (even) rounds, there is no change.

4 points: if you miss the final L-R swap and just say that DES has no effect.

5 points: if you get the answer.

2. (text 3.8) Why is a DES weak key its own inverse? (Hint: DES encryption and

decryption are the same once the per-round keys are generated.)

For a DES weak key, each of C0 and D0 is equal to all ones or all zeros. Each Ci is a

permutation of C0, so each Ci equals C0. Each Di is a permutation of D0, so each Di equals

D0. Ki depends only on Ci and Di, so all Ki’s are equal. So the sequence K1, K2, ⋅⋅⋅, K16 is

the same as the sequence K16, K15, ⋅⋅⋅, K1. So the encryption operation is the same as the

decryption operation (because decryption is the same as encryption but with the keys in

reverse order).

Explanation of the hint: In case the hint is not clear, here are more details (from slides):

DES_encryption {

initial permutation to get L0|R0 from data block

for n=1, 2, ⋅⋅⋅, 16 do Ln|Rn := En(Kn, Ln-1|Rn-1),

where En denotes the computation of encryption round n.

swap left and right halves, yielding R16|L16

inverse of initial permutation, yielding cipher block

}

CMSC 414 (Shankar) HW 1: Solution Page 2 of 4

DES_decryption {

initial permutation of cipher block, yielding R16|L16

for n = 16, 15, ⋅⋅⋅, 1 do Rn-1|Ln-1 := Dn(Kn, Rn|Ln),

where Dn denotes the computation of decryption round n.

swap left and right halves, yielding L0|R0

inverse of initial permutation, yielding data block.

}

Section 3.3.4 explains that decryption round n is identical to encryption round n with Ln

and Rn swapped, i.e., Dn(Kn, Rn|Ln) equals En(Kn, Ln|Rn). Substituting this in

DES_decryption, we see that the only difference between encryption and decryption is

that the Kn’s are used in the opposite order. So there is no difference if all the Ki’s are the

same.

Grading Key [Out of 5 points]

1 Points for mentioning what are the properties of weak keys.

2 Points for explaining the generation of per round keys for DES.

2 Points for explaining what would happen if the sequence K1, K2, ⋅⋅⋅, K16 is the same as

the sequence K16, K15, ⋅⋅⋅, K1.

1 Point for getting the answer.

3. (text 4.1) What pseudo-random block stream is generated by 64-bit OFB with a

weak DES key.

The OFB pad sequence is Ex(IV), Ex(Ex (IV)), Ex(Ex(Ex (IV))), ...

A weak key is its own inverse, i.e., for any block b: Ex(b) = Dx(b). So Ex(Ex(b)) = b.

So the resulting OFB pad sequence is Ex(IV), IV, Ex(IV), IV, ⋅⋅⋅⋅

Grading Key [Out of 5 points]

2 Points for showing the correct OFB pad sequence with a weak DES key.

2 Points for showing that Ex(b) = Dx(b). So Ex(Ex(b)) = b for a weak key as it is own

inverse.

1 Point for showing the resulting OFB pad sequence.

4. (text 4.2) The pseudo-random stream of blocks generated by 64-bit OFB (i.e.,

K{IV}, K{K{IV}}, ...) must eventually repeat. Will K{IV} necessarily be the first

block to be repeated. Explain.

IV will be the first block to repeat.

Proof:

For brevity, let bi denote the i-fold encryption of IV.

So the pad sequence is b1, b2, b3,, where bi+1 is the encryption of bi and bi is the

decryption of bi+1 (because decryption is the inverse of encryption).

Let bk be the first repeat element and let bk=bj where j < k.

• If j=1 we are done.

• If j > 1 then bj-1 = bk-1 (since bj = bk). So bk is not the first repeat element.

Contradiction.

So bk = b1.

Note that we only needed the fact that encryption is reversable.

CMSC 414 (Shankar) HW 1: Solution Page 3 of 4

Grading key [out of 5 points]:

1 point for just writing something.

2 points for saying K{IV} is the first block to be repeated.

3-5 points for the proof:

a) bk is decryption of bk+1, and bk+1 is encryption of bk

b) if bk = bj, k > j, then bk�1 = bj�1

c) b1 is the first one to be repeated in the sequence b1, b2,

Missing any of (a), (b) or (c) will lose one point.

Correct proof but saying IV is first repeated block instead of K{IV} will lose one point.

5. (text 5.1) Would it be reasonable to compute an RSA signature on a long message

m by signing m mod-n (i.e., using (m mod-n)
d
 mod-n as the signature).

No. Recall that RSA restricts the message to be signed to be smaller than n.

If m is larger than n, then message m and message (m mod-n) would have the same

signature. So it would be easy to generate different messages that have the same

signature.

6. (text 5.6) Why do MD4, MD5, and SHA-1 require padding of messages that are

already a multiple of 512-bits?

Otherwise it would be easy to find two messages with the same hash. Let M' be any

message that is not a multiple of 512 bits. Let M be M' padded as in MD4, so M is a

multiple of 512 bits. If no padding is used for M (because it is a multiple of 512 bits) then

MD4(M) would be the same as MD4(M').

7. (text 6.8) Given your RSA signature on m1 and m2, how can one compute your

signature on m1
j
⋅m2

k
 for any positive integers j and k.

Let s1 be the signature of m1, i.e., s1 = m1
d
 mod-n.

Let s2 be the signature of m2, i.e., s2 = m2
d
 mod-n.

Signature(m1
j
) = s1

j
 mod-n [because (m1

j
)
d
 mod-n = (m1

d
)
j
 mod-n].

Signature(m1⋅m2) = s1⋅s2 mod-n [because (m1⋅m2)
d
 mod-n = (m1

d
)⋅(m2

d
) mod-n].

Signature(m1
j
⋅m2

k
) = s1

j
⋅s2

k
 mod-n [from above].

Grading key [out of 5 points]:

1 Point to show what a signature on m1 looks like.

2 Points to show what would Signature(m1
j
) be in terms of m1

d
.

2 Points to get the final computation i.e. Signature(m1
j
⋅m2

k
) = s1

j
⋅s2

k
 mod-n.

CMSC 414 (Shankar) HW 1: Solution Page 4 of 4

8. Using the efficient algorithm, compute 131
25

 mod-15.

25 = (11001)2

 [25 = 16 + 8 + 1]

131
(1)

 mod-15 = 11

131
(10)

 mod-15 = 11⋅11 mod-15 = 121 mod-15 = 1

131
(11)

 mod-15 = 1⋅11 mod-15 = 11 mod-15 = 11

131
(110)

 mod-15 = 11⋅11 mod-15 = 121 mod-15 = 1

131
(1100)

 mod-15 = 1⋅1 mod-15 = 1

131
(11000)

 mod-15 = 1⋅1 mod-15 = 1

131
(11001)

 mod-15 = 1⋅11 mod-15 = 11

So 131
25

 mod-15 = 11

9. Suppose a plaintext file of 5 MB is encrypted with a secret-key algorithm (e.g., DES,

AES), and the resulting file is compressed with a lossless compression algorithm

(e.g., zip), and the resulting file is 3 MB. What does this imply about the plaintext,

about the encryption algorithm, and about the compression algorithm.

It implies that the encryption algorithm is weak. A good algorithm would randomize

the plaintext sufficiently so that the compression algorithm would not be able to find

structure to exploit.

It does not imply anything about the plaintext or the compression algorithm.
