Problem 1. [15 points]

Does assertion $\text{Inv } B_3$ hold for program Protocol, where

$$B_3 : (\exists (A, S) \Rightarrow \psi(A, S))$$

Solution

It holds.

We have already shown that $\text{Inv } \psi(K)$ holds (in the Note). So $\text{Inv } \psi(K+1)$ also holds. [5 points]

Neither A nor B send out anything encrypted by $K+1$. [5 points]

So the only way the attacker can compute $\text{enc}(K+1, A.n_A + A.n_B)$ is if $A.n_A + A.n_B$ is some silly thing like $\text{dec}(K+1, K+1)$. But this is not the case because $A.n_A$ is randomly computed and the attacker cannot influence it. [5 points]
Problem 2. [15 points].

Does assertion \(\text{Inv } B_4 \) hold for protocol, where

\[
B_4 : \forall i \in \text{hst.keys: } [B,S] - \text{hst}[i] \Rightarrow ([A,S] \in \text{hst}[0..i-1])
\]

Solution

Let’s try to prove it.

Suppose \([B,\text{enc}(K+1,xA+xB)]\) enters \text{hst} at time \(t_0 \), where \(B.nB \) equals \(xB \) and \(B.nA \) equals \(xA \). So at \(t_0 \), \(B \) receives

\([A,B,2,\text{enc}(K,xB),..]\).

Suppose \(B.nB \) was set to \(xB \) at time \(t_1 \) (\(< t_0 \)). At \(t_1 \), \(B \) receives \([A,B,1,xA]\) and responds with \([B,A,1,xB,\text{enc}(K,xA)]\). During \((t_1,t_0) \), \(B \) is idle (otherwise its \(nB \) would not be \(xB \) at \(t_0 \)).

At some time \(t_2 \) where \(t_1 < t_2 < t_0 \) holds, \(A \) sends a message with \(\text{enc}(K,xB) \) (the attacker couldn’t have sent it because it does not have \(K \), as proved earlier). So at \(t_2 \), \(A \) sends a \([A,B,2,\text{enc}(K,xB),..]\) message (because that is the only kind of message that \(A \) sends with a \(\text{enc}(K,xB) \) field).

\(A \) sends this message at \(t_2 \) only if it receives a \([B,A,1,xB,\text{enc}(K,yA)]\) message, where \(yA \) equals \(A.nA \). **Because the attacker cannot send message \([B,A,...]\), message \([B,A,1,xB,\text{enc}(K,yA)]\) was sent by \(B \). Because field 3 equals \(xB \), \(B \) sent this message when it set \(B.nB \) to \(xB \), i.e., at time \(t_2 \). Hence \(yA \) equals \(B.nB \) at that time, which equals \(xA \). So \([A,\text{enc}(K+1,xA+xB)]\) is added to \text{hst} at \(t_2 \).

So \(\text{Inv } B_4 \) holds.
Different problem

If the attacker could also send and receive messages as B, or read/write the channel, then Inv B_4 does not hold, as shown below.

Solution attempt 1

Let’s try to prove it.

Suppose [B, enc(K+1, xA+xB)] enters hst at time t_0, where B.nB equals xB and B.nA equals xA. So at t_0, B receives [A,B,2, enc(K, xB), .].

Suppose B.nB was set to xB at time t_1 (t_1 < t_0). At t_1, B receives [A,B,1,xA] and responds with [B,A,1,xB, enc(K,xA)]. During (t_1, t_0), B is idle (otherwise its nB would not be xB at t_0).

At some time t_2 where t_1 < t_2 < t_0 holds, A sends [A,B,2, enc(K,xB), .]. (The attacker couldn’t have sent it because it does not have K [proved earlier]). So at t_2, A receives [B,A,1,xB, enc(K,A,nA)] and adds [A,enc(K+1, A.nA+xB)] to hst.

So if A.nA equals xA (which is what B.nA equals), then Inv B_4 would hold. Could the attacker arrange it so that A.nA is not xA? Think about it.

Solution

Let’s try to disprove it. Below, “msg I” means the message sent in step I.

1. Initial step.
 After this: A.nA = yA; [A,B,1,yA] in chan.
2. B receives msg 1 (i.e., msg sent in step 1).
 After this: B is at 2; B.nA = yA; B.nB = yB; [B,A,1,yB, enc(K,yA)] in chan.
3. Attacker receives msg 2 and sends [A,B,2,zA, .] where zA is not yA.
4. B receives msg 3 and goes back to 1 without updating hst (because zA does not equal enc(K,yB)).
5. Attacker sends [A,B,1,zA, .].
 After this: B is at 2; B.nA = zA; B.nB = zB; [B,A,1,zB, enc(K,zA)] in chan.
7. Attacker receives msg 6, changes the last field to enc(K,yA) (which it had read in step 3), and sends [B,A,1,zB, enc(K,yA)].
8. A receives msg 7 and updates hst (because it gets the response it expects).
 After this: hst = [[A,enc(K+1, yA+xB)]; [A,B,2, enc(K,zB), .]] in chan.
9. B receives msg 8 and adds [B, enc(K+1, zA+zB)] to hst.
 After this: hst = [[A,enc(K+1, yA+xB)]; [B,enc(K+1, zA+zB)]. A_4 does not hold.

So Inv A_4 does not hold.

Can you come up with a simpler counter-example evolution?