
CMSC 414 S11 (shankar) Homework 3 Page 1 of 2

Problem 1. [50 points]

This problem and program Protocol below is based on section 11.2 of the text. The client program has a thread that
repeatedly opens and closes a session. The server has a thread that always waits to receive a session request; for each
received request, it starts a new thread to handle that request. The attacker can send and receive messages as A. The
server program uses a map to store the ids of its threads. Conventions concerning maps is on the next page.

Protocol(A, B) {
chan ← []; // channel
hst ← []; // conn history
K ← random(); // master key
startSystem(Server(B,A,K)); // server B
startSystem(Client(A,B,K)); // client A
startSystem(Attacker()); // attacker

}

Client(A, B, K) { // atomicity points: 1
t ← startThread(doSessions());
return;

function doSessions() {
while (true) {

nA ← random();
tx([A,B,1,nA,0]);

1: msg ← rx([B,A,1,.,.]);
if (msg[4] = enc(K,nA)) {

nB ← msg[3];
S ← enc(−K, nA + nB);
hst.append([A,S]);
tx([A,B,2, nA, enc(K,nB)]);

}
}

}
}

Attacker() {
α; // everything attacker has read
<send message [A,B,...]>
<receive message [B,A,...]>

}

Server(B, A, K) { // atomicity points: 1, 2
Map t ← [];
t[0] ← startThread(listen());
return;

function listen() {
while (true) {

1: msg ← rx([A,B,1,.,.]);
nA ← msg[3];
if (nA 6= 0 and msg[4] = 0)

t[nA] ← startThread(serveClient(nA));

}
}

function serveClient(nA) {
nB ← random();
tx([B,A,1,nB,enc(K,nA)]);

2: msg ← rx([A,B,2,nA,.]);
if (msg[4] = enc(K,nB)) {

S ← enc(−K, nA+nB);
hst.append([B,S]);

}
}

}
}

For each part below, answer yes or no. If yes, come up with an argument. If no, come up with a counter-example
evolution.

a. Does Inv A1 hold, where
A1 : ψ(K) // attacker does not learn K

b. Does Inv A2 hold, where
A2 : ([A,p] in hst) ⇒ ψ(p) // attacker does not learn any session key of A

c. Does Inv A3 hold, where
A3 : ((i,j in hst.keys) and i 6= j and hst[i][0] = hst[j][0] = A)

⇒ hst[i][1] 6= hst[j][1] // A uses a session key only once

d. Does Inv A4 hold, where
A4 : (i > 0 and hst[i] = [B,p]) ⇒ hst[i−1] = [A,p] // attacker cannot connect to the server as A

e. Can the attacker learn K by dictionary attack, assuming that K is a weak key.



CMSC 414 S11 (shankar) Homework 3 Page 2 of 2

Problem 2. [50 points]

Repeat problem 1 after changing the protocol so that the server uses key K+1 to respond to the client’s message and the
client uses key K−1 to respond to the server’s message.

That is, modify program Protocol so that:

• Client A expects message [B,A,1,nB, enc(K+1, nA)] (instead of [B,A,1,nB, enc(K, nA)]) in response to its message
[A,B,1,nA,0].

• Server B expects message [A,B,2,nA, enc(K−1, nB)] (instead of [A,B,2,nA, enc(K, nB)]) in response to its message
[B,A,1,nB, enc(K+1, nA)].

Answer parts a–e for this modified program.

Conventions (applicable outside this homework also)

Maps:
Collections of 2-tuples where the first element is a key and the second is a value, the keys are
distinct, and map entries can be indexed by the key.

For a map x:

• x.size: number of 2-tuples in the map.
• x.keys: sequence of its keys.
• x.vals: sequence of its values.
• x[j], where j is a key, refers to the value associated with j; i.e., x has the tuple [j,x[j]].
• x.add(j,v): adds the tuple [j,v] to x, replacing any prior [j,.] tuple.
• x[j] ← v: same as x.add(j,v).
• x.remove(j): removes any [j,.] tuple.

For example, if x is the map [[2, 5], [4, 7], [’A’, 8], [’Z’, ’SRVR’]], then the following hold:
x.size = 4; x.keys = [2,4,’A’,’Z’]; x.vals = [5,7,8,’SRVR’]; x[’Z’] = ’SRVR’.

Referring to thread-specific quantities:
If, in a predicate or in an argument, you need to refer to a quantity specific to a thread in server
B, you can do so by prefixing its name with the thread id.

For example, B.t[nA].nB refers to the nB value of the instance of function serveClient being
executed by thread B.t[nA]. Thus the following may be a desired property of Protocol:

Inv (exists(A.nB, B.t[A.nA].nB) ⇒ A.nB = B.t[A.nA].nB)

Strong key assumption:
Unless otherwise mentioned, assume that keys are strong.

Predicates with non-program free variables:
For brevity, we may write a predicate containing variables that do not appear in the program
being analyzed. When evaluating the predicate at a program state, treat these variables as
universally quantified.

For example, predicate A2 is
([A,p] in hst) ⇒ ψ(p)

Variable p is not defined in Protocol. So when evaluating A2 at a program state, we treat A2 as
forall(p: ([A,p] in hst) ⇒ ψ(p))


