Problem 1. [50 points]

Part a. [10 points]

Does Inv A_1 hold, where

\[A_1 : \psi(K) \]

// attacker does not learn K

Solution

Yes.

Initially K is not in α.

The only expressions involving K that the attacker can read are [B,A,1,B.nB,enc(K,B.nA)] messages (sent by B in function serveClient). Here B.nA is obtained from an [A,B,....] message in the channel, and so it can be a value generated by the attacker. But the attacker cannot set nA to be a simple function of K or to $\text{dec}(K,K)$. So $\text{enc}(K,B.nA)$ does not expose K.

Part b. [10 points]

Does Inv A_2 hold, where

\[A_2 : ([A,p] \text{ in } \text{hst}) \Rightarrow \psi(p) \]

// attacker does not learn any session key of A

Solution

Yes.

Let [A,p] be an entry in hst. Then p equals $\text{enc}(-K,xA+yB)$ where [xA,yB] equals [A.nA,A.nB] when the entry was added. Neither A nor B send out any encryptions using $-K$. The attacker may know xA and xB but it does not know K. Hence it does not know p.

Part c. [10 points]

Does Inv A_3 hold, where

\[A_3 : ((i,j \text{ in } \text{hst.keys}) \text{ and } i \neq j \text{ and } \text{hst[i][0]} = \text{hst[j][0]} = A) \Rightarrow p \neq q \]

// A uses a session key only once

Solution

Yes.

Let i and j satisfy the lhs (left hand side) of A_3.

Then hst[i][1] equals $\text{enc}(-K,xA+yB)$, where [xA,yB] equals [A.nA,A.nB] when the entry was added.

And hst[j][1] equals $\text{enc}(-K,yA+yB)$, where [yA,yB] equals [A.nA,A.nB] when the entry was added.

Because i differs from j and because $A.1$ assigns a new random value to A.nA at each execution, $xA+yB$ differs from $yA+yB$ unless the attacker can choose xB or yB so that $xA+yB$ equals $yA+yB$. But A gets xB and yB from [B,A,...] messages, which the attacker cannot generate or modify. So xB and yB are different random values generated by B. So $xA+yB$ differs from $yA+yB$.
Part d. [10 points]

Does Inv_{A_4} hold, where

\[A_4 : (i > 0 \text{ and } \text{hst}[i] = [B,p]) \Rightarrow \text{hst}[i-1] = [A,p] \]

// attacker cannot connect to the server as A

Solution

No.

The reflection attack works here. Here is an evolution ending in a state where A_4 does not hold. (Below, msg j means message sent in step j.)

1. Initial: $[A,B,1,x_A,0]$ in channel, where x_A equals $A.n_A$.
2. B.1 receives msg 1, starts thread $B.t[x_A]$, which sends response message.
3. Attacker receives msg 2. Attacker sends $[A,B,1,y_A,0]$ for some y_A (e.g., $y_A=7$).
4. B.1 receives msg 3, starts thread $B.t[y_A]$, which sends response message $[B,A,1,y_B,\text{enc}(K,y_A)]$.
6. B.1 receives msg 5, starts thread $B.t[y_B]$, which sends response message $[B,A,1,\ldots,\text{enc}(K,y_B)]$.
8. Thread $B.t[y_A]$ at B.2 receives msg 7, adds $[B,\text{enc}(K,y_A+y_B)]$ to hst.
 At this point, this is the only entry in hst, so A_4 does not hold.

Part e. [10 points]

Can the attacker learn K by dictionary attack, assuming that K is a weak key.

Solution

Yes.

Consider steps 1–4 in the evolution of part d.

From step 3, the attacker has y_A (it generates it).

From step 4, the attacker gets $\text{enc}(K,y_A)$ (from message $[B,A,1,y_B,\text{enc}(K,y_A)]$).

So the attacker can do the following dictionary attack:

```plaintext
for (cPw in Dictionary) {
    // cPw: candidate password
    generate cK from cPw; // cK: candidate key
    if (enc(cK,y_A) = enc(K,y_A))
        [cPw,cK] is user's [password, key]
}
```
Problem 2. [50 points]

Part a. [10 points]

Does \(\text{Inv } A_1 \) hold, where

\[
A_1 : \psi(K)
\]

// attacker does not learn \(K \)

Solution

Yes. The argument below is the same as in problem 1a, with \(K \) replaced by \(K+1 \).

Initially \(K \) is not in \(\alpha \).

The only expressions involving \(K \) that the attacker can read are \([B,A,1,B.nB,\text{enc}(K+1,B.nA)]\) messages (sent by \(B \) in function \(\text{serveClient} \)). Here \(B.nA \) is obtained from an \([A,B,...]\) message in the channel, and so it can be a value generated by the attacker. But the attacker cannot set \(nA \) to be a simple function of \(K+1 \) or to \(\text{dec}(K+1,K+1) \). So \(\text{enc}(K,B.nA) \) does not expose \(K+1 \), so it does not expose \(K \).

Part b. [10 points]

Does \(\text{Inv } A_2 \) hold, where

\[
A_2 : ([A,p] \text{ in } hst) \Rightarrow \psi(p)
\]

// attacker does not learn any session key of \(A \)

Solution

Yes. The argument below is the same as in problem 1b.

Let \([A,p]\) be an entry in \(hst \). Then \(p \) equals \(\text{enc}(-K,xA+xB) \) where \([xA,xB]\) equals \([A.nA,A.nB]\) when the entry was added. Neither \(A \) nor \(B \) send out any encryptions using \(-K\). The attacker may know \(xA \) and \(xB \) but it does not know \(K \). Hence it does not know \(p \).

Part c. [10 points]

Does \(\text{Inv } A_3 \) hold, where

\[
A_3 : ((i,j \text{ in } hst.keys) \text{ and } i \neq j \text{ and } hst[i][0] = hst[j][0] = A) \Rightarrow p \neq q
\]

// \(A \) uses a session key only once

Solution

Yes. The argument below is the same as in problem 1c.

Let \(i \) and \(j \) satisfy the lhs (left hand side) of \(A_3 \).

Then \(hst[i][1] \) equals \(\text{enc}(-K,xA+xB) \), where \([xA,xB]\) equals \([A.nA,A.nB]\) when the entry was added.

And \(hst[j][1] \) equals \(\text{enc}(-K,yA+yB) \), where \([yA,yB]\) equals \([A.nA,A.nB]\) when the entry was added.

Because \(i \) differs from \(j \) and because \(A.1 \) assigns a new random value to \(A.nA \) at each execution, \(xA+xB \) differs from \(yA+yB \) unless the attacker can choose \(xB \) or \(yB \) so that \(xA+xB \) equals \(yA+yB \). But \(A \) gets \(xB \) and \(yB \) from \([B,A,...]\) messages, which the attacker cannot generate or modify. So \(xB \) and \(yB \) are different random values generated by \(B \). So \(xA+xB \) differs from \(yA+yB \).
Part d. [10 points]

Does $Inv\ A_4$ hold, where

$$A_4: (i > 0 \text{ and } \text{hst}[i] = [B,p]) \Rightarrow \text{hst}[i-1] = [A,p]$$

// attacker cannot connect to the server as A

Solution

Yes. The reflection attack does not work here.

Let $[B,\text{enc}(−K, xA+xB)]$ be added to hst at time t_0, where xA, xB equals $B.nA, B.nB$. We need to show that $[A,\text{enc}(−K, xA+xB)]$ is the last entry in hst just before t_0.

At t_0, thread $B.t[xA]$ is at 2 and receives $[A,B,2,xA,\text{enc}(K−1,xB)]$ (otherwise it would not have added the above entry to hst).

Let thread $B.t[xA]$ have set its nB (i.e., $B.t[xA].nB$) to xB at some time $t_1 (< t_0)$, upon receiving $[A,B,1,xA,0]$.

Because no thread in B sends an encryption using $K−1$ and because the attacker does not have K, the $\text{enc}(K−1,xB)$ field in message $[A,B,2,xA,\text{enc}(K−1,xB)]$ was generated by A at some time t_2 between t_1 and t_0. Because the attacker cannot alter or read this message, the entire message $[A,B,2,xA,\text{enc}(K−1,xB)]$ was generated by A at time t_2.

So at t_2, A receives $[B,A,1,xB,\text{enc}(K+1,yA)]$, where yA equals $A.nA$, and added $[A,\text{enc}(−K, yA+xB)]$ to hst. This message was sent by B (because the attacker cannot send a $[B,A,...]$ message). Because field 3 of this message is xB, this message was sent by thread $B.t[xA]$, i.e., it’s the message sent at time t_1. So yA equals xA. So the entry that A adds to hst at time t_2 is $[A,\text{enc}(−K, xA+xB)]$. Between t_2 and t_0, there is no change to hst. We are done.

Part e. [10 points]

Can the attacker learn K by dictionary attack, assuming that K is a weak key.

Solution

Yes. The argument below is the same as in problem 1e.

Consider the following evolution.

1. Initial: $[A,B,1,xA,0]$ in channel, where xA equals $A.nA$.
2. $B.1$ receives msg 1, starts thread $B.t[xA]$, which sends response message.
3. Attacker receives msg 2. Attacker sends $[A,B,1,yA,0]$ for some yA (e.g., $yA=7$).
4. $B.1$ receives msg 3, starts thread $B.t[yA]$, which sends response message $[B,A,1,yB,\text{enc}(K+1,yA)]$.

From step 3, the attacker has yA (it generates it).

From step 4, the attacker gets $\text{enc}(K+1,yA)$.

So the attacker can do the following dictionary attack:

```plaintext
for (cPw in Dictionary) {
    // cPw: candidate password
    generate cK from cPw; // cK: candidate key
    if (enc(cK+1,yA) = enc(K+1,yA))
        [cPw,cK] is user’s [password, key]
}
```