Problem 1. [15 points]

Part a. [7 points]

Does Inv_{A_1} hold, where
$$A_1 : ((j \in \text{hst.keys}) \text{ and } j > 0 \text{ and } \text{hst}[j] = [A, p]) \implies \text{hst}[j-1] = [B, 1, p]$$

Solution

No.

Here is a counter-example evolution.

1. Protocol goes through steps Initial, A.1, B.1, Z.1, B.2, starting with A sending msg $[A, B, 1, enc(kA, [A, B, xA])]$.

 State: $A.nL = xA$; $A.key = kA$; $A.t$ at A.2; B.t at B.3; $B.kAB = p$; $\text{hst} = [[B, 1, p]]$;

 $[B, A, eA]$ in channel where $eA = enc(kA, [xA, p])$.

 Attacker sends $[A, B, 2, grbg]$. B.t receives this message, executes B.3 unsuccessfully, returns to B.1.

3. Attacker replays msg 1, $[A, B, 1, enc(kA, [A, B, xA])]$. Protocol goes through steps B.1, Z.1, B.2.

 State: $A.nL = xA$; $A.key = kA$; $A.t$ at A.2; B.t at B.3; $B.kAB = q$ and $q \neq p$; $\text{hst} = [[B, 1, p], [B, 1, q]]$;

 $[B, A, fA]$ in channel where $fA = enc(kA, [xA, q])$.

5. A.t receives msg 4, executes A.2 successfully.

 State: $\text{hst} = [[B, 1, p], [B, 1, q], [A, p]]$ and $q \neq p$.

 A_1 false.

Part b. [8 points]

Does Inv_{A_2} hold, where
$$A_2 : ((j \in \text{hst.keys}) \text{ and } j > 0 \text{ and } \text{hst}[j] = [B, 2, p]) \implies \text{hst}[j-1] = [A, p]$$

Solution

No.

Here is a counter-example evolution.

1. Protocol goes through steps Initial, A.1, B.1, Z.1, B.2, starting with A sending msg $[A, B, 1, enc(kA, [A, B, xA])]$.

 State: $A.nL = xA$; $A.key = kA$; $A.t$ at A.2; B.t at B.3; $B.kAB = p$; $\text{hst} = [[B, 1, p]]$;

 $[B, A, eA]$ in channel where $eA = enc(kA, [xA, p])$.

 Attacker sends $[B, A, grbg]$ (prelude to doing getPwdA).
 A.t receives this message, executes A.2 unsuccessfully, returns to A.1.

3. Attacker executes getPwdA; obtains kA.
 Attacker decrypts eA using kA to get p.
 Attacker sends $[A, B, 2, enc(p, "HELLO")].$

4. B.t receives msg 3, executes B.3 successfully.

 State: $\text{hst} = [[B, 1, p], [B, 2, p]]$.

 A_2 false.
Problem 2. [15 points]

Part a. [7 points]

Does \(\text{Inv } A_1 \) hold, where

\[
A_1 : ((j \text{ in hst.keys) and } j > 0 \text{ and } \text{hst}[j] = [A,p]) \Rightarrow \text{hst}[j-1] = [B,1,p]
\]

Solution

No.
The evolution in problem 1a also works here.

Part b. [8 points]

Does \(\text{Inv } A_2 \) hold, where

\[
A_2 : ((j \text{ in hst.keys) and } j > 0 \text{ and } \text{hst}[j] = [B,2,p]) \Rightarrow \text{hst}[j-1] = [A,p]
\]

Solution

No.
The evolution in problem 1b also works here.
Problem 1a: Attempt to prove $\text{Inv} \ A_2$ holds

First prove that master keys are not exposed and that the keys at the users and the kdc are equal.

- $\text{Inv} \ \psi(A.\text{key})$ holds.
 (Holds initially. The only $A.\text{key}$ expressions sent by the users and kdc are: $\text{enc}(A.\text{key}, [A,B,xA])$ where xA is random; and $\text{enc}(A.\text{key}, [xA,kAB])$ where kAB is random.)

- $\text{Inv} \ A.\text{key} = Z.\text{key}_A$ holds.
 (Holds initially. Preserved by getPwdA.)

- $\text{Inv} \ \psi(B.\text{key})$ and $\text{Inv} \ B.\text{key} = Z.\text{key}_B$ hold.
 (Proof similar to that of $\text{Inv} \ \psi(A.\text{key})$ and $\text{Inv} \ A.\text{key} = Z.\text{key}_A$.)

Now to attempt to prove $\text{Inv} \ A_2$.

1. Suppose B appends $[B,2,p]$ to hst at time b_0.
 So $B.\text{t}$ is at $B.3$ and receives $[A,B,2,\text{enc}(p, \text{"HELLO"})]$ where $p = B.kAB$.

2. So B’s previous step is $B.2$, say at time b_1.
 B receives $[Z,B,\text{enc}(\text{key}_B, [xB,p]),...], \text{ where } xB = B.nL$,
 and appends $[B,1,p]$ to hst.

3. So B’s previous step is $B.1$, say at time b_2.
 B receives $[A,B,1,f], \text{ sets } B.nL \text{ to random value } xB,$
 and sends $[B,Z,\text{enc}(B.\text{key}, [A,B,xB,f])]$.

4. Because xB is random and $\text{Inv} \ \psi(B.\text{key})$ holds, Z generated entry $\text{enc}(\text{key}_B, [xB,p])$ in msg 2 at some time z_0 during $[b_2, b_1]$.
 So Z sends $[Z,B,\text{enc}(\text{key}_B, [xB,p]),...], \text{ where } xB = B.nL$ at z_0.
 So at z_0, Z receives $[B,Z,\text{enc}(B.\text{key}, [A,B,xB,\text{enc}(A.\text{key}, [A,B,xA])])$ for some xA.
 Entry 2 of this message has to be generated by B (because $\text{Inv} \ \psi(B.\text{key})$ holds).
 For this value xB, B generates such an entry only once.

 Hence in step 3, f equals $\text{enc}(A.\text{key}, [A,B,xA])$.

5. Hence at some time a_0 before b_2, A generated f and set $A.nL$ to the random value xA.
 (Attacker could not have generated this entry because $\text{Inv} \ \psi(A.\text{key})$ holds.)

6. At time z_0, $\psi(p)$ holds (because attacker does not have $B.\text{key}$).
 If $\psi(p)$ continues to hold at b_0, then attacker could not have generated entry $\text{enc}(p, \text{"HELLO"})$ in step 1 message.
 Hence it was generated by A at some time a_1 during $[z_0, b_0]$, at which point A adds $[A,p]$ to hst.
 After that A has not updated hst. So A_2 holds.

 If $\psi(p)$ does not hold at b_0, then attacker can generate the message in step 1. So we have to show that this is not possible.
 Attacker can obtain p only by obtaining the $A.\text{key}$ after time z_0.
 Attacker can get $A.\text{key}$ after time z_0 using getPwdA, but for that it has to move $A.\text{t}$ to $A.1$....