1. [10 points]

Solution

See exam 1.

2. [20 points]

Solution

See exam 1.

3. [10 points] Company xLtd has principals X, A_1, A_2, \dots , where X issues certificates for the A_i 's, and is their trust anchor. Company yLtd has principals Y, B_1, B_2, \dots , where Y issues certificates for the B_i 's, and is their trust anchor. One day, xLtd acquires yLtd. You are to obtain a new PKI for the new xLtd. Parts a and b are independent.

Part a

Modify the old PKIs to obtain a new PKI in which X is the sole trust anchor for all A_i 's and B_i 's; minimize the number of new certificates.

Give the certificate chain that A_1 needs to get the public key of B_1 in the new PKI.

Give the certificate chain that B_1 needs to get the public key of A_1 in the new PKI.

Part b

Modify the old PKIs to obtain a new PKI in which X is the sole trust anchor for all A_i 's, and Y is the sole trust anchor for all B_i 's; minimize the number of new certificates.

Give the certificate chain that A_1 needs to get the public key of B_1 in the new PKI.

Give the certificate chain that B_1 needs to get the public key of A_1 in the new PKI.

Solution for part a

Modifications to old PKIs:

 At every B_i, add X's public key and remove Y's public key. X issues a certificate for Y 	[2 points] [1 point]
(Max 1 point if Y issues certificates for all A_i 's. -1 point if Y is online.)	r I , .)
Certificate chain for A_1 to B_1 : $[X, Y, B_1]$	[1 point]
Certificate chain for B_1 to A_1 : $[X, A_1]$	[1 point]

Solution for part b

Modifications to old PKIs:

 X issues a certificate for Y Y issues a certificate for X 	[1 point] [2 point]
Certificate chain for A_1 to B_1 : X, Y, B_1	[1 point]
Certificate chain for B_1 to A_1 : Y, X, A_1	[1 point]

4. [10 points]

Part a

Client A and server B interact over TCP/IP. The client is at TCP port p and IP address F. The server listens at TCP port q and IP address G.

There are two nodes, J and K, on the IP path between F and G. An IP packet from F to G goes first to J then to K. In the other direction, an IP packet from G to F goes first to K then to J.

Give the structure of an IP packet from A to B (i.e., containing payload of A) at the following points:

- a1. between F and J;
- a2. between J and K;
- a3. between K and G.

Solution for part a1

IP header sndr addr F; rcvr addr G; next protocol TCP; hop count; chksum;TCP header sndr port p; rcvr port q; ...Data of A

Solution for parts a2 and a3

Same as for part a1.

Part b

The configuration in part a is changed as follows.

First, A and B use SSL (over TCP).

Second, F and G operate IPsec-ESP in transport mode providing both encryption and authentication. SPI of 11 is used for both directions.

Third, J and K operate IPsec-ESP in tunnel mode providing both encryption and authentication. SPI of 22 is used for both directions.

Give the structure of an IP packet from A to B (i.e., containing payload of A) at the following points:

- b1. between F and J;
- b2. between J and K;
- b3. between K and G.

Solution for part b1

IP header sndr addr F; rcvr addr G; next protocol id ESP; hop count; chksum; ESP header SPI 11; sequence number; IV; ESP data TCP header sndr port p; rcvr port q; ... TCP data SSL-structured data of AESP trailer next header TCP; MAC

Solution for part b2

IP header sndr addr *J*; rcvr addr *K*; next protocol id ESP; hop count; chksum;
ESP header SPI 22; sequence number; IV;
ESP data IP packet of part b1 ESP trailer next header TCP; MAC

Solution for part b2

Same as in part b1.

5. [10 points] User A logs in for a session in a Kerberos realm. The user shares a password-derived key, K, with the KDC. After login, the user has a session key S and a ticket-granting ticket TGT.

Now an application B (at say another node) wants to talk (as a client) to the user shell (as a server).

Give the messages exchaged between A, B and the KDC in order for B to talk to A.

Solution

This is the double TGT authentication (section 14.12).

- B sends ["Want your TGT"] to A
- A sends [A's TGT] to B.
- *B* sends ["Want tkt for *A*", *A*'s TGT, authenticator] to KDC.
- KDC sends [enc(K_B, [K_{AB}, tkt])] to B, where K_B is B's master key shared with KDC, K_{AB} is session key generated by KDC, and tkt is enc(S, [K_{AB}, B]).
- B sends [tkt, $enc(K_{AB}, nonce)$] to A.