
Modeling and Analyzing Authentication Protocols

A. Udaya Shankar
shankar@cs.umd.edu

March 1, 2011 March 7, 2011

1 Modeling protocols by distributed programs

Authentication protocols are typically described with message handshake diagrams, as illustrated below. But such
descriptions can be rather incomplete. For example, the handshake below does not say whether client A talks to server
B just once or repeatedly; it does not say what the attacker is allowed to do.

session key S enc(K+1, nA+nB)

session key S enc(K+1, nA+nB)

generate random nB

[A, B, 1, nA]

[A, B, 2, enc(K, nB), enc(S, data)]

close extract data; close

Server B (key K)Client A (key K)

generate random nA

[B, A, 1, nB, enc(K, nA)]

To avoid such ambiguities, we will specify authentication protocols by distributed programs, also known as a multi-
threaded programs. The above protocol could be specified as follows.

Protocol(A, B) {
chan ← []; // channel
hst ← []; // connnection history
K ← random(); // shared key
startSystem(B, Server(B,A,K)); // start server B
startSystem(A, Client(A,B,K)); // start client A
startSystem(Attacker()); // start Attacker

}

Client(A, B, K) {
t ← startThread(client());
return;

function client() {
while (true) {

nA ← random();
tx([A,B,1,nA]);

1: msg ← rx([B,A,1,.,.]);
if (msg[4] = enc(K,nA)) {

S ← enc(K+1, nA + nB);
hst.append([A,S]);
tx([A,B,2, enc(K,msg[3]), enc(S,data)]);

} } } }

Attacker() {
α; // everything attacker has read
<read messages in chan>
<send messages [A,B,...]>
<receive messages [B,A,...]>

}

Server(B, A, K) {
t ← startThread(server());
return;

function server() {
while (true) {
1: msg ← rx([A,B,1,.]);

nB ← random();
nA ← msg[3];
tx([B,A,1,nB,enc(K,nA)]);

2: msg ← rx([A,B,2,.,.]);
if (msg[3] = enc(K,nB)) {

S ← enc(K+1, nA+nB);
hst.append([B,S]);
data ← enc(S, msg[4]);

} } } }

1

Modeling and Analyzing Auth. Protocols (Shankar) Page 2 of 6 March 7, 2011

Program Protocol is the “root” program. The thread executing this program defines the following variables: chan, the
message-passing channel; hst, history of connection establishments; and K, the master key shared between client and
server. The thread then starts server system B; this includes starting a thread in B executing function server and saving
the thread’s id in variable t of B. At this point there are two threads, the original thread and the new thread in the server
system. The original thread then starts a client system, after which there are three threads. The original thread then
starts an attacker system. All we know about program Attacker are its input-output operations and a characterization
(below) of what it cannot compute. So after Protocol’s main completes, there is a server system with its own thread, a
client system with its own thread, and an attacker system with at least one thread.

The client system is in a never-ending loop. In each iteration it does the following: chooses a random nA; sends
message [A,B,1,nA] on chan; receives a message [B,A,1,x,y] where x and y are arbitrary; if y equals enc(K,nA), the
client becomes open to B with session key S equal to enc(K+1,nA+x) and sends message [A,B,2,enc(K,nB),enc(S,data)].

The server system is in a never-ending loop. In each iteration it does the following: receives a [A,B,1,nA] message; gen-
erates a random nB; sends message [B,A,1,nB,enc(K,nA)]; receives a [A,B,2,x,y] message where x and y are arbitrary;
becomes open to A with session key enc(K+1,nA+nB) if x equals enc(K,nB).

The attacker system can read all messages in chan. This is modeled by having function tx(msg) append msg to α, even
those sent by the attacker. So chan is always a subset of α. The attacker system can also receive and send [A,B,...]
messages.

Conventions

System and thread creation:

• startSystem(Y(.)), where Y(.) is a program: the thread executing this creates a new instantiation of
Y, referred to as a system, executes the system’s main code, and returns. The first parameter in Y is
the created system’s id.

• startThread(f(.)), where f(.) is a function in a program: the thread executing this creates a new
thread executing f(.) and returns with the created thread’s id.

Crypto:

• random(): random value.
• enc(k,x): symmetric encryption of x using key k. (e.g., DES-CBC)
• dec(k,x): symmetric decryption of x using key k.

Message-passing:

• tx(msg): append message msg to chan. If the attacker can eavesdrop, this also appends msg to α.
• rx(): receive any message in chan; i.e., removes the message from chan and returns it. Blocks if there

is no message in chan.
• rx(.): argument is a message pattern, indicating the kind of message to receive. For example,
rx([A,B,1,.,.]) only receives a [A,B,1,x,y] message where x and y can be any value; blocks if there
is no such message in chan.

Sequences: A sequence is a list of values enclosed in square brackets, e.g., [4,2,5,6]. The entries are
indexed starting from 0 at the head (at left); so in the previous sequence, x[0] is 4, x[1] is 2, and so on.

• []: the empty sequence.
• i..j: sequence of integers between i and j (inclusive); e.g., 1..4 is [1,2,3,4] and 4..1 is [].
• x.size: number of entries in sequence x.
• x.keys: sequence of indices of sequence x, i.e., [0..x.size−1]
• x[i..j]: sequence of x[k] for k in i..j. Note that it’s empty if i > j.
• x.append(y): append value y to the tail (at right) of sequence x.
• x.remove(): remove x[0] from sequence x and return it; undefined if x is empty.
• x ⊆ y: true iff every entry in sequence x is in sequence y.

Messages: sequences; typically, the first two entries are the sender’s id and the intended receiver’s id.

Modeling and Analyzing Auth. Protocols (Shankar) Page 3 of 6 March 7, 2011

2 Modeling the attacker

Modeling the attacker is not simple for two reasons. First, we don’t know the program executed by the attacker.
Second, the attacker knows much more than the values it reads. It also knows the programs executed by the users
(client and server) and the parameters (other than keys) with which the programs were instantiated. Thus when the
attacker reads a value, it knows the expressions that went into computing the value. Matching this information with
information obtained earlier, the attacker may be able to compute expressions that users computed but did not send
out, or would compute in the future, or would never compute. The only computations that are off-limits to the attacker
are those that would overcome crypto, e.g., decrypt ciphertext without the key.

We illustrate using program Protocol. If the attacker reads nA and does not know K or enc(K,nA), then it has no way
of obtaining enc(K,nA). If the attacker reads [A,B,1,nA] and [B,A,1,nB,enc(K,nA)], it knows that the session key S to
be used will equal enc(K+1, nA+nB), but it cannot obtain the value. If the attacker knows nA and nB from a previous A-B
connection, and A attempts a new connection with the same nA, the attacker knows the response, enc(K,nA), and so it
can get A to become open without B becoming open (but it still wouldn’t know the session key).

Now to make all this precise for any authentication protocol program (and not just program Protocol). The basic idea
is as follows. First, each value that is computed by a user is tagged by its “expression tree” (the tree of expressions
that went into computing the value). Second, α contains expression trees, and not just values. Third, a value is not
computable by the attacker if that value is not in α or is in α and can be reached from α’s root node only by traversing
an encryption operation without the key. Details follow.

Expression trees: Every value x computed in a user system is associated with an expression tree, denoted x↑. Each
node in x↑ is a value-expression pair. The root node is [x, ’exp’], where exp is the expression that yielded the value x.
For every term y in exp, there is a child node y↑. Here are some examples:

x← 2; x↑ has root node [2, ’2’] and no child nodes.
x← random(); x↑ has root node [x, ’random()’] and no child nodes.
x← a + b + c; x↑ has root node [x, ’a + b + c’] and child subtrees a↑, b↑ and c↑
x← enc(K, [a,c]); x↑ has root node [x, ’enc(K, [a,c])’] and child subtrees K↑ and [a,c]↑.

What the attacker reads: When the attacker reads a value x, it actually reads x↑. So if the attacker has read messages
m1, m2 and m3, then α is the sequence [m1↑, m2↑, m3↑]. So tx(msg) appends msg to chan and, if the attacker can eavesdrop,
msg↑ to α. For convenience, we assume α has a root node, whose children are the entries of α.

What the attacker cannot compute: For brevity, we introduce the following notation. For any value x, let ψ(x)
stand for the statement “the attacker cannot compute x from α”. The only tool we have (as of now) to establish ψ(x) is
the following.

• ψ(x) holds for a given α if for every appearance of x in α, the path from α’s root to x goes through a enc(p,q)
node such that ψ(p) holds.

There are some additional technical restrictions on p and q; these would typically hold unless the protocol
is doing something pretty perverse.

– q should not be dec(p,p) (for obvious reasons).
– q should not be a “simple” function of p, e.g., p or p+2. (Apparently, this leaks information about p.)

This is a recursive definition, with the base case being that x is not in α.

3 Invariant assertions

Given an authentication protocol specified by a program, we need an unambiguous method to express desired prop-
erties of the program. Here are some examples of desired properties for program Protocol, stated informally. To

Modeling and Analyzing Auth. Protocols (Shankar) Page 4 of 6 March 7, 2011

distinguish variables of different user systems, variable names are prefixed by the system id; e.g., A.nA refers to vari-
able nA of A’s program, and B.nA refers to variable nA of B’s program.

A1 : A.nA always equals B.nA, as long as both exist.
A2 : The attacker never learns K.
A3 : The attacker never learns a session key S.
A4 : If B becomes open with a session key S then A has already become open with the same session key.

We will express such properties by invariant assertions, which are statements of the form Inv P, where P is a predicate
(a boolean-valued expression) in the program’s variables. Inv P says that at any time, the state of the program satisfies P,
where the state is a snapshot of the values of its variables (i.e., chan, hst, α, A’s variables, B’s variables) and the control
location of each thread. Given this, here is how the properties stated informally above can be expressed precisely:

A1 : Inv (exists(A.nA, B.nA) ⇒ A.nA = B.nA)

A2 : Inv ψ(K)

A3 : Inv (exists(A.S) ⇒ ψ(A.S))

A4 : Inv forall(i in hst.keys:
[B,S] = hst[i] ⇒ ([A,S] in hst[0..i−1]))

Given a program with multiple threads, there are invariably many possible evolutions of the program, each corre-
sponding to a different order in which threads execute. Another way of saying this is that if the program is in a state
where several threads are active, then there can be several possible next states, each resulting from the execution of
a statement by a different thread. (To illustrate, if program Protocol has just started the attacker system, then at this
point thread, A.t can send a message [A,B,1,nA], the attacker can send a message, but B.t cannot do anything until a
[B,A,1,.,.] message shows up in chan.)

An evolution is a sequence of states and steps that the program can go through starting from the initial state. An as-
sertion Inv P holds for the program iff it holds at every possible state of every possible evolution. Hence the following:

• To prove that assertion Inv P holds for the program, we have to show that it holds in every possible state of every
evolution.

• To prove that assertion Inv P does not hold for the program, we have to come up with one evolution that ends in
a state where P does not hold.

Atomicity

Not every statement execution has to be treated as a separate step of an evolution. We can treat a sequence of statements
executed by a thread as an atomic step if no other thread can observe or affect an intermediate state in the sequence.
For program Protocol, the following sequences can be treated as atomic steps:

• Initial step: consisting of Protocol’s main code, B’s main code and function server upto statement label 1, and
A’s main code and function client upto statement label 1.

• Step A.1: an iteration of client’s loop, starting from the statement 1 and ending at statement 1.

• Step B.1: the sequence of statements in server from 1 to 2.

• Step B.2: the sequence of statements in server from 2 to 1.

In future, we will identify the atomic steps of the program not as above, but by tagging locations in the program as
atomicity points. Program Protocol has three atomicity points: at statement 1 of function client and at statements
1 and 2 of function server. The initial state is the state immediately after the initial step of the distributed program.
The directed graph now has only those states where every thread is at an atomicity point. The size of the graph is
usually unbounded (because the user and attacker programs are non-terminating and/or the program has unbounded
parameters).

Modeling and Analyzing Auth. Protocols (Shankar) Page 5 of 6 March 7, 2011

4 Analysis of program Protocol

Assertion A1

Does assertion A1 hold for Protocol? It’s usually convenient to have a label for the predicate of an assertion one is
analyzing. So we ask whether Inv B1 holds for Protocol, where

B1 : (exists(A.nA, B.nA) ⇒ A.nA = B.nA)

Let’s trace out the first few steps of Protocol assuming the attacker does nothing.

• Initial state:
chan = [[A,B,1,xA]]; α = [[A,B,1,xA]↑]; (A.t at 1); A.nA = xA; (B.t at 1); not exists(B.nA).
B1 holds in this state because B.nA does not exist.

• After thread B.t executes step B.1:
chan = [[B,A,1,xB,enc(K,xA)]]; α = [[A,B,1,xA]↑, [B,A,1,xB,enc(K,xA)]↑]; (A.t at 1); A.nA = xA; (B.t at 2);
B.nA = xA; B.nB = xB.
B1 holds in this state because B.nA = A.nA = xA.

• After thread A.t executes step A.1:
chan = [[A,B,2,enc(K,xB),enc(S,data)], [A,B,1,yA]];
α = [[A,B,1,xA]↑, [B,A,1,xB,enc(K,xA)]↑, [A,B,2,enc(K,xB),enc(S,data)]↑, [A,B,1,yA]↑];
(A.t at 1); A.nA = yA; (B.t at 2); B.nA = xA; B.nB = xB.
B1 does not hold in this state because B.nA = xA, A.nA = yA, and yA 6= xA because yA is a new random number.

Hence Inv B1 does not hold for Protocol.

The amount of detail in the states of the above evolution is overkill. Something much briefer is adequate, for example:

• Initial state:
A.nA = xA; (B.t at 1).

• After step B.1:
A.nA = xA; (B.t at 2); B.nA = xA.

• After step A.1:
A.nA = yA 6= xA; B.nA = xA.

B1 does not hold.

Make sure your evolution starts from the initial state. It’s no good reaching a faulty state if you start from an unreach-
able state.

Modeling and Analyzing Auth. Protocols (Shankar) Page 6 of 6 March 7, 2011

Assertion A2

Does assertion Inv B2 hold for Protocol, where

B2 : ψ(K)

It looks like this holds. So let’s try to prove it. Let’s look at an arbitrary state S of an arbitrary evolution of Protocol.
We want to show that S satisfies the following: if K appears in α↑, then the path from the α↑’s root to the node with K
goes through a enc(p,q) node where ψ(p) holds.

Initially, K is not in α. The client system sends out K in only two ways:

• enc(K,nB), where nB is received from the channel.
• enc(enc(K+1, nA+nB)),data), where nB is received from the channel, nA is randomly generated locally, and data

does not depend on K.

In both cases, the value nB can come from the attacker. But as long as the attacker does not have a simple function of
K, it cannot slip in an nB that will cause A to encrypt a simple function of K using K. (Note that this is really an induction
over the steps of the program.)

A similar argument holds for expressions involving K that the server sends out.

Thus we can conclude that if K appears in α↑, then it appears in node of the form

• enc(K,q) node or
• enc(enc(K+1,q),r)

where q and r are not simple functions of K. So the attacker never learns K. Hence Inv B2 holds.

Assertions A3 and A4

See homework 2.

