Crypto Stuff

Shankar

May 18, 2013

Overview

m Encryption: plaintext + key — ciphertext

m Decryption: plaintext — ciphertext + same/related key
m Key is secret. It is the ONLY secret.

m Not secret: crypto algorithms, protocols, programs,

m Good crypto algorithm:

= Given cyphertext, hard to get plaintext.
= Given plaintext and ciphertext, hard to get key.
= Hard: requires brute-force search of key-space (eg, 2! keys)

m Types of cryptographic functions:

= Secret-key: DES, AES, ... // aka symmetric, ordinary
= Hash (of cryptographic kind): MD5, SHA-1, ...
= Public-key: RSA, DH, DSS, Fiat-Shamir, ... // aka asymmetric

Secret-key (symmetric/ordinary) crypto

m Same key for encryption and decryption
m Ciphertext about the same length as plaintext.
m Achieve confidentiality, integrity, authentication.

m A and B share secret key K and are separated by insecure
channel/storage.
m Confidentiality:
= A sends enc(plaintext, K)
= B receives and dec(ciphertext, K)
m Integrity:
= MAC (aka checksum): fragment of enc(plaintext, K)
= A sends [plaintext, MAC]
= B receives and verifies MAC
m Authentication:

= A sends random number r4 to B, and expects enc(ra, K) back
= B sends random number rg to A, and expects enc(rg, K) back

(Cryptographic) Hash functions

m H(.): <arbitrary-length msg> — <fixed-length hash>
m Easy to compute H(msg) from msg
m Hard to find msg; and msg, such that H(msgy) = H(msg)

m Keyed-hash: Hash msg along with a shared secret K
eg, H(msg|K) // “|" denotes concatenation

m Keyed-hashing provides all the capabilites of secret-key crypto.
m Integrity

= MAC = H(msg|K)
m Confidentiality

= Get pad Gy, Gy, -+ where G random and G = H(G|K)
= encryption of [Mo,/\/ll'“] is [Co7 MlEBCl, MQEBC2,"']

Public-key (asymmetric) crypto

m Each principal has two related keys:
= private key (not shared)
= public key (shared with world)
= text encrypted with one can only be decrypted with the other

m Confidentiality
= B transmits text encrypted with pubkey,.
= A decrypts using privkey,.

m Integrity and digital signature (non-repudiation)
= A sends encryption of text with privkey,
= Anyone with pubkey, can decrypt and be assured that A
generated it

m Public-key crypto is orders slower than ordinary crypto
= To sign msg: sign the hash of msg
= To encrypt msg:
- generate secret-key K,
- send [encryptn msg with K, encryptn K with public key]

Secret-Key Crypto

m Consider fixed-length message of k bits for now (eg, 64, 128)
m Fixed-size key of j bits (eg, 128, 256)

m Encryption S : k-bit msg + j-bit key — k-bit output

m S: 1-1 mapping of msgs to outputs, o/w cannot decrypt

m S must be “random”, o/w not secure

= Msgs and keys that differ only slightly should map to outputs
that differ greatly (in approx k/2 bits)

m Large enough key length j so that searching 2/ hard

m Clearly, S cannot be a “simple” function, eg, msg & key

Secret-Key Crypto (cont)

m Simple solution

= “Substitution table”: random permutation of k-bit strings

= Table is 2% x k bits

= Entries obtained via physical-world randomness (eg, coin toss)
= S5(i) is ith row of table

= Pro: S is perfectly random

= Con: Table is itself the key! Too large to be practical

m Want a compact deterministic algorithm.

m Approach: mix small-size tables and global permutations

Secret-Key Crypto (cont)

m Practical approach
= p: reasonably small divisor of k (eg, p = 8)
= 2P X p substitution tables // aka “S-boxes”
= k-bit permutation functions

1. Divide k-bit string into p-bit strings
2. Apply S-boxes to p-bit strings // localized scrambling
3. Concatenate the resulting p-bit outputs /] k-bit string
4. Apply permutation to get k-bit string // propagate scrambling
= Repeat 1-4 for n rounds (with 4's output as 1's input)
= n should be large enough to get good scrambling

Each output bit is “influenced” by all input bits

m Decryption, ie, reversing, is no more expensive.
= Often can be done with the same algorithm /hardware.

DES

m Old standard no longer being used: 56-bit keys, 64-bit text

DES Encryption

| 64-bitinput |

linitial permutation 56-bit key
- . generate 16
| Lin-1) H R(n-1) ‘ 48-bit keys
K1, K2, ..., K16
rounds
1,2 16 use Kn for round n
) L
[t | Rm |

l final permutation (inverse of initial)

| 64-bit output ‘

DES (cont)

DES encryption

al: Ly | Ry « perm(pt)

a2:forn = 0,..., 15

a3: L,,+1 — R,,

ad: Rpy1 < mnglry(Ry, Kpt1)®L,
// yields L16 | R16

a5 Li7 | Ri7 « Rig | Lis
a6: ct« perm (R | Lie)

// key order: Ky, --- | Kig

DES decryption

bl: R16 | L16 <—perm(ct)

b2: forn = 15,...,0

b3: R,, — L,,+1

ba: L, mnglr,(Ry, Ky)®Rpt1
// sets L, to X such that

/] Rni1 < mnglry(Rp, Kp)®X

// ylelds R0|L0
b5: L0|R0 < Ro‘l_o
b6: pt « perm=1(Lo|Ro)

// key order K16, --- | Ki

//a6 bw
//a2 bw
//a3 bw
/ /a4 bw

//a5 bw
//al bw

Multiple Encryption DES (EDE or 3DES)

m Makes DES more secure

= Encryption: encrypt keyl — decrypt key2 — encrypt keyl
= Decryption: decrypt keyl — encrypt key2 — decrypt keyl

m encrypt keyl — encrypt keyl is not effective
= Just equivalent to using another single key.

m encrypt keyl — encrypt key2 is not so good

m Current standard encryption algorithm: AES

= different sizes of keys (64, 128, ...)
= different data block sizes (..., 64, 128, ...)

Encrypting Arbitrary-length Messages

m Encrypting large msg given k-bit block encryption
= Pad message to multiple of block size:
msg — My, M,,---
= Use block encryption repeatedly to get ciphertext

M17M27"' — ClaC27"'
m Desired
» G # Gy even if M; = M // like block encryption

= Repeated encryptions of msg vyield distinct ctxt
// unlike block encryption
= A ctxt —/~ predictable A plaintext // really an integrity issue

m Various methods: ECB, CBC, CFB, OFB, CTR, others

ECB: Electronic Code Book

m Encryption: My, My,--- — (G, G,

m Obvious approach: encrypt each block independently
m Encryption: G = enck(M;)

m Decryption: M; = deck(G;)

m Not good: repeated blocks get same cipherblock

CBC: Cipher Block Chaining

m Encryption: My, My, .-+ — (G, G, -
m Use C;_; as a “random” pad to M; before encrypting.

= (o« random IV M, M, M
m C« encK(M,-@C,-_l)

n

" | | |

= send Co, C1, G, - -~ —® O cee @
| /5l /ol

C1 CQ Cn_1 Cn

m Decryption: G, G, -+ — My, Ms, ---
w M; « deck(C; ® Ciq), fori=1,2,---

m “Attacks” on integrity:
« XP® C, — M, garbled, M, 1+ @® X, other M;'s unchanged.
= Can somewhat overcome with ordinary checksum (eg, CRC)

OFB: Output Feedback Mode

m Encryption: My, M,,--- — (1, G,

m Generate pad By, By, - -:

= Byis IV
] B,' — encK(B,-_l)

mC B DM
m One-time pad that can be generated in advance.

m Attacker with <plaintext, ciphertext> can obtain B;'s.
Hence generate ciphertext for any plaintext

CFB: Cipher Feedback Mode

m Like OFB except that output C;_; is used instead of B;
s Gois IV
] C,' — M,' D enCK(C,-_l)

m Cannot generate one-time pad in advance.

MACs from encryption

m MAC: message authentication code, aka cryptographic checksum
m Provides integrity

m Encrypting msg (using CBC, CFB, OFB) does not provide
integrity
= Modified ciphertext yields plaintext that
a human or program may find fishy
= But not a MAC

m MAC is usually generated by hash functions

m Standard way to generate MAC with an encryption function

= residue(msg): last block in CBC encryption of msg
= MAC = [IV, residue (msg)]

Confidentiality and Integrity with Encryption

m Send enc(msg) | residue(msg)] // not ok
= Just repeats the last cipherblock

m enc(msg | residue(msg)) // not ok
= Last block is enc(0) //® of last cipherblock with itself

m enc(msg | ordinary _checksum(msg)) // not ok
= Almost works. Subtle attacks are known.

B enCeyo(msg | residuexe,1(msg) // ok

= But twice the work.
= Key?2 can be related to Key2 (eg, Keyl = Key2 + 1)

m encrypt(msg | weak crypto checksum(msg)) // probably ok

m Offset Codebook Mode (OCB)

Hashes, aka Message Digests

m Hash function H: arbitrary message — k-bit hash
= Not 1-1: msg space > hash space (= 2¥)

m Want: hard to find any two msgy, msgy st H(msgy) = H(msg)
= This is stronger than collision for a given msg;

m Assuming H is random, how large should k be?
m Pr(collision in N random messages) ~ N?/K

= N random messages, my, my, -+, my

= Pr|collision]
= Pr[H(my) = H(my) or H(my) = H(m;3) or ---]
= (N(N = 1)/2)(1/K)

m Want searching through v/2k to be hard
= So k = 128 assumes searching through 2% is hard

Keyed Hash: Hash (msg + secret key)

m Keyed-hash Hy(msg):
= hash H applied to some merge of message msg and key K
m Equivalent to secret-key encryption

m Encryption: My, My, -+ — Co, Gy, G, - - -
= Generate pad: B; « Hx(B;_1) where By is IV
s G« B M
= Transmit IV and G, Gy, - - -
= Decryption identical
m Encryption with plaintext mixed into pad is similar
[] B,' — HK(C;_l) where Co is IV
w G« B d M

m Authentication:

= A sends random rs and expects to get Hg(ra)
= B sends random rg and expects to get Hyx(rg)

Keyed hash: How to merge msg and key K

m H(K|msg) NOT OK
= Because usually H(msgi|msg,) is H(H(msgy))
= So given msg and Hy(msg), attacker can append any m to msg
and get Hx(msg|m) by H(Hx(msg))

m OK
= H(msg|K)
= half the bits of H(K|msg)
= H(K|msg|K)

m HMAC standard
= Any hash function H (eg, MD2, MD4, SHA-1) and any key size
= paddedKey « pad key with 0's to 512 bits
if key is larger than 512 bits, first hash key and then pad
= hl « H(msg|paddedKey@® [string of 3646 octets])
= MAC: H(hl|paddedKey@® [string of 5Ci¢ octets])

MD4: Message Digest 4

m MD4: 128-bit hash, 32-bit architecture
m Step 1: Pad msg to multiple of 512 bits
= pmsg « msg|one 1| p 0's| (64-bit encodng of p) // pin 1..512

m Step 2: Process pmsg in 512-bit chunks to get hash md

= treat 128-bit md as 4 words: dy, di, d>, d3
= initialize to 01|23]...|89|ab|cd|ef|fe|dc]|...|10

= For each successive 512-bit chunk of pmsg:
treat 512-bit chunk as 16 words: mg, my, -+ , mys
€..63 « dy..d3 // save for later
pass 1 using mangler H1 and permutation J
// for I:O,,15 Cl_/(,)%ll'/].(l7 do,dl,dQ,dg,,m,')

= pass 2: same but with mangler H2

= pass 3: same but with mangler H3

s dy..dz — dy..dzs D gp..€3
s md « Clo..dg

More Hash Functions

m MD2: octet-oriented
m message of arbitrary number of octets — 128-bit digest
m Like MD4 except
= Step 1: pad to multiple of 16 octets
= Step 2: append 16-octet checksum (not cryptographic)
= Step 3: do 18 passes over msg in 16-octet chunks

m MD5: 32-bit-word oriented
= Message of arbitrary number of bits — 128-bit digest
= Like MD4 except four passes and different mangler functions

m SHA-1: 32-bit word oriented
= Message of size upto 2% bits — 160-bit digest
= Like MD5 except five passes, different mangler functions,
at each stage, 512-bit msg chunk — 5 x 512-bit chunk

Public-Key Crypto

m Prinicpal has a key-pair: [public key, private key]
= private key: secret shared with no other
= public key: disclosed to every one
= text encrypted with one key can be decrypted only with the
other key

m Public-key crypto algorithms and typical usage
= RSA, ECC: encryption and digital signatures
= ElGamal, DSS: digital signatures
= Diffie-Hellman: establishment of a shared secret
= Zero-knowledge proof systems: authentication

m Public-key algorithms involve
= Prime numbers
= Modulo-n addition, multiplication, exponentiation
u A brief review follows.

Prime numbers

m Integer p is prime iff it is exactly divisible only by itself and 1.

m gcd(p, g): greatest common denominator of integers p and ¢
= Largest integer that divides both exactly.

m p and q are relatively prime iff gcd(p,q) =1

m Infinitely many primes, but they thin out as numbers get larger

= 25 primes less than 100

= Pr[random 10-digit number is a prime] = 1/23

= Pr[random 100-digit number is a prime] = 1/230

= Pr[random k-digit number is a prime] = 1/(10-In k)

Modulo-n arithmetic

mZ,={01,--,n—1}

m Modulo-n operation: integers — Z,
m x mod-n, for any integer x (including negative)
=y in Z, st x = y + k-n for some integer k
= non-negative remainder of x/n
m Examples
= 3 mod-10 =3 // 3=3+010
= 23 mod-10 = 3 /] 23 =3+210
e —27mod-10=3 // =27 =3+ (—3)-10
Note: mod-n of negative number is non-negative

Modulo-n addition

m (a+ b) mod-n, for any integers a and b

m Examples
= (3+7) mod-10 = 10 mod-10 = 0
= (3—7)mod-10 = —4 mod-10 = 6

m Additive-inverse-mod-n of x
=y st (x+y)mod-n=0
= Denoted —x mod-n
= Exists for every x
= Easily computed: (n — x) mod-n

Modulo-n multiplication

m (a-b) mod-n, for any integers a and b

m Examples
= (3:7) mod-10 = 21 mod-10 = 1
= 8(—7) mod-10 = —56 mod-10 = 4

m Multiplicative-inverse-mod-n of x
=y st (xy)modn=1
= Denoted x~! mod-n
= Exists iff ged(x,n) =1 // x relatively prime to n
= Euclid’s algorithm computes
= ged(x, n)
s u, v st ged(x,n)=ux+vn
s if ged(x, n) = 1:
u=x"! mod-n
v = n"! mod-x

Modulo-n exponentiation

m (a®) mod-n, for any integers aand b >0
m Examples

= 3> mod-10 = 9

= 3> mod-10 = 27 mod-10 = 7

= (—3)® mod-10 = —27 mod-10 = 3

m Exponentiative-inverse-mod-n of x
=y st (x¥)mod-n=1
= Exists iff ged(x,n) =1
= Easy to compute if prime factors of n are known. Otherwise not.

Euler's Theorem

mZ={x: xinZ, gcd(x,n)=1}
 Zio: {0,1,2,3,4,5,6,7,8,9}
- 750 {1,3,7,9)

m ¢(n): number of elements in Z

m Euler’s Totient Function

n—1 if n prime
é(n) = (p—1)-p*t if n=p? p prime, a>0
o(p) - ¢(q) ifn=p-qandgcd(p,q)=1

oY)+ p(p) if n=pt- pif

m Euler's Theorem

If n=p-q, where p and g are distinct primes then
ak¢(mM+l — 3 mod-n for all ain Z, and any k > 0.

RSA

m RSA: Rivest, Shamir, Adleman

m Key size variable and much longer than secret keys
= usually greater than 512 bits (100 decimal digits)

m Plaintext block size variable but smaller than key

m Ciphertext block of key length.

m Orders slower than secret-key algorithms (eg, AES)
= So not used for data encryption

RSA: Generating [public key, private key] pair

m Choose two large primes, p and g // p and g remain secret
mlLet n=pgq

m Choose e relatively prime to ¢(n) /] ¢o(n)=(p—1)(qg—1)
m Public key = [e, n] // disclosed to the world
m Find d, mult-inverse-mod-¢(i) of e /] e:d =1 mod-¢(n)

m Private key = [d, n] // do not share

RSA: Encryption and Signing

m Encryption of msg m usin public key
= ciphertext ¢ « m® mod-n
m Decryption of ciphertext ¢ using private key
= plaintext m « ¢? mod-n
m Works because m®? = m
m Signing message m using private key
= signature s + m? mod-n
m Verifying signature s using public key
= plaintext m « s® mod-n

m Works because m®? = m

Why is m®? equal to m

m m®-d = m' mod-¢(n) // because e-d mod-¢(n) = 1
= mi+ke(") for some k // definition of mod
=m // Euler's theorem, m in Z,,

// nis product of distinct primes p and g

Why is RSA secure

m Only known way to obtain m from x = m® mod-¢(n)
is by x? mod-¢(n) where d = e~! mod-¢(n)
m Only known way to obtain ¢(n) is with p and ¢
m Factoring number is hard, so hard to obtain p and g given n

Efficient modulo exponentation

m Need to get m® mod-n for large (eg, 100-digit) numbers m, e, n
= 3-digit example: 123%* mod-678
m Naive: Multiply m by itself e times, then take mod n.
= e multiplications of increasingly larger numbers
= 123% is approx 100 digits // 54-log;, 123
m Better: Multiply m with itself, take mod n; repeat e times.

= e multiplications and divisions of large numbers.

2x+1 2x

m Much better: Exploit m®** = m*-m* and m = m* - m.

= log e multiplications.

Modulo Exponentiation(m, e, n)

m (xo, X1, - ,Xk) <« ein binary /] x0=1
minitially y < m; j<0 /]y =m®
m while j < k

= // loop invariant: y = m*%%9) mod-n

= y«y-y mod-n, /]y = mo %9 mod-n

u |f)(j+1 - 1

y <y - m mod-n /] y = m®=2%1) mod-n
=jj+1 /] y = mboX) mod-n

m// y=m® mod-n

Example: 123°* mod-678

m 54 in binary is (1101110),

m 123V mod-678 = 123

m 123019 mod-678 = 123-123 mod-678 = 15129 mod-678 = 213

m 12311 mod-678 = 213-123 mod-678 = 26199 mod-678 = 435

m 123119 mod-678 = 435-435 mod-678 = 1889225 mod-678 = 63
m 123(1199) 10d-678 = 63-63 mod-678 = 3969 mod-678 = 579

m 12301190 m0d-678 = 579-123 mod-678 = 71217 mod-678 = 27
m 123(11010) }6d-678 = 27-27 mod-678 = 729 mod-678 = 51

m 123(11011) m0d-678 = 51-123 mod-678 = 6273 mod-678 = 171

m 123(110110) 116d-678 = 171-171 mod-678 = 29241 mod-678 = 87

Generating RSA keys has two parts
m Finding big primes p and g

m Finding e relatively prime to ¢(p-q) /] =(p-1)(g—1)
= Given e, easy to obtain d = e~! mod-¢(n)

Finding big prime n
m Choose random n and test for prime. If not prime, retry.
m No practical deterministic test.

m Simple probabilistic test

= Generate random n and random ain 1..n

= Pass if a"! =1 mod-n // converse to Euler's theorem
= Prob failure is low // —107*3 for 100-digit n
= Can improve by trying different a's.

= But Carmichael numbers: 561,1105, 1729, 2465, 2821, 6601, - - -

m Miller-Rabin probabilistic test: better and handles Carmichael

Finding e

m Approach 1

= Choose random primes p and g as described above
= Choose e at random until e relatively prime to ¢(p.q)

m Approach 2

= Fix e st m® easy to compute (i.e., few 1's in binary)
= Choose random primes p and g st e relatively prime to ¢(p.q)

Approach 2 with e = 3

m m° requires 2 multiplications

m Need pad for small m:

= If m < n'/3 then m® mod-n=m?

= Attacker gets m by (me®)/3
m Need different pads if m is sent to 3 principals
with public keys [3, m], [3, m], [3, n3]:
= Attacker has m® mod-n;, m® mod-n,, m® mod-ns
= CRT yields mz mod-n;-ny-na,
which equals m® because m < ny, my, ns.

Approach 2 with e = 2%0 + 1 = 65537

m m°® requires 17 multiplications

m No need for pad since unlikely that m®®" < n

m Need different pads if m sent to 65537 recipients with same e.
Unlikely.

Public Key Cryptography Standard (PKCS)

m Standard encoding of information to be signed/encrypted in RSA

m Takes care of

= encrypting guessable messages
= signing smooth numbers
= multiple encryptions of same message with e = 3

m Encryption (fields are octets)

msb | 0 | 2 | > eight random non-zero octets | 0 | data |Isb

Note that the data is usually small (key, hash, etc)

m Signing (fields are octets)

msb 0

1

> eight octets of 96

digest type and
digest (in ASN.1)

sb

Basic Diffie-Helman

m Share key over open channel using public prime p and g (< p)

A B

choose random S,4

Ta« g4 mod-p

send T4 choose random Sg
Ts « g°8 mod-p
Kg « T:B mod-p
send Tg

Ka « T3* mod-p

m Ky = Kg = g°°8 mod-p // shared key
m Hard to get g°4°8 mod-p from T, and Tp

m DH by itself does not provide authentication

Diffie-Helman with Published Numbers

m Let a set of principals share public DH parameters p and g
m Let every principal X generate random Sx and Tx = g% mod-p

= Sx: X's private key // held secret
= [X,g,p, Tx]: X's public key // made public

m Assume PKI (public-key infrastructure) that publishes
[X,g,p, Tx] for every principal X.

m Then any two principals X, Y share key g°x*¥ mod-p

Authenticated Diffie-Helman

m DH that incorporates a pre-shared key to provide authentication.
m Authenticated DH when A and B share a secret key K
= Encrypt (messages of) basic DH exchange with K
= A sends enck (g mod-p)
= B sends enck(g®® mod-p)
= shared key: g°4°8 mod-p
= Following basic DH exchange, exchange keyed-hashes of shared
DH key and sender names.

m Authenticated DH when A and B have each other’s public key.

= Encrypt basic DH exchange with receiver’s public key.
= Sign basic DH exchange with sender’s private key.

Why DH given pre-shared secret

m Get strong key (g°4°8 mod-p) even if pre-shared secret is weak

m Perfect-forward secrecy:

= Suppose A and B forget S5 and Sg after their session
= Then session data is safe even if pre-shared secret later exposed

