
Crypto Stu�

Shankar

May 18, 2013



Overview

Encryption: plaintext + key −→ ciphertext

Decryption: plaintext −→ ciphertext + same/related key

Key is secret. It is the ONLY secret.

Not secret: crypto algorithms, protocols, programs,

Good crypto algorithm:

Given cyphertext, hard to get plaintext.
Given plaintext and ciphertext, hard to get key.
Hard: requires brute-force search of key-space (eg, 2128 keys)

Types of cryptographic functions:

Secret-key: DES, AES, ... // aka symmetric, ordinary
Hash (of cryptographic kind): MD5, SHA-1, ...
Public-key: RSA, DH, DSS, Fiat-Shamir, ... // aka asymmetric



Secret-key (symmetric/ordinary) crypto

Same key for encryption and decryption

Ciphertext about the same length as plaintext.

Achieve con�dentiality, integrity, authentication.

A and B share secret key K and are separated by insecure
channel/storage.

Con�dentiality:

A sends enc(plaintext,K )
B receives and dec(ciphertext,K )

Integrity:

MAC (aka checksum): fragment of enc(plaintext,K )
A sends [plaintext,MAC ]
B receives and veri�es MAC

Authentication:

A sends random number rA to B , and expects enc(rA,K ) back
B sends random number rB to A, and expects enc(rB ,K ) back



(Cryptographic) Hash functions

H(.): <arbitrary-length msg> −→ <�xed-length hash>

Easy to compute H(msg) from msg

Hard to �nd msg1 and msg2 such that H(msg1) = H(msg2)

Keyed-hash: Hash msg along with a shared secret K
eg, H(msg |K ) // �|� denotes concatenation

Keyed-hashing provides all the capabilites of secret-key crypto.

Integrity

MAC = H(msg |K )

Con�dentiality

Get pad C0,C1, · · · where C0 random and Ci+1 = H(Ci |K )
encryption of [M0,M1 · · · ] is [C0, M1 ⊕ C1, M2 ⊕ C2, · · · ]



Public-key (asymmetric) crypto
Each principal has two related keys:
private key (not shared)
public key (shared with world)
text encrypted with one can only be decrypted with the other

Con�dentiality
B transmits text encrypted with pubkeyA.
A decrypts using privkeyA.

Integrity and digital signature (non-repudiation)
A sends encryption of text with privkeyA
Anyone with pubkeyA can decrypt and be assured that A
generated it

Public-key crypto is orders slower than ordinary crypto
To sign msg : sign the hash of msg
To encrypt msg :
- generate secret-key K ,
- send [encryptn msg with K , encryptn K with public key]



Secret-Key Crypto

Consider �xed-length message of k bits for now (eg, 64, 128)

Fixed-size key of j bits (eg, 128, 256)

Encryption S : k-bit msg + j-bit key −→ k-bit output

S : 1-1 mapping of msgs to outputs, o/w cannot decrypt

S must be �random�, o/w not secure

Msgs and keys that di�er only slightly should map to outputs
that di�er greatly (in approx k/2 bits)

Large enough key length j so that searching 2j hard

Clearly, S cannot be a �simple� function, eg, msg ⊕ key



Secret-Key Crypto (cont)

Simple solution

�Substitution table�: random permutation of k-bit strings
Table is 2k × k bits
Entries obtained via physical-world randomness (eg, coin toss)
S(i) is ith row of table
Pro: S is perfectly random
Con: Table is itself the key! Too large to be practical

Want a compact deterministic algorithm.

Approach: mix small-size tables and global permutations



Secret-Key Crypto (cont)

Practical approach

p: reasonably small divisor of k (eg, p = 8)
2p × p substitution tables // aka �S-boxes�
k-bit permutation functions

1. Divide k-bit string into p-bit strings
2. Apply S-boxes to p-bit strings // localized scrambling
3. Concatenate the resulting p-bit outputs // k-bit string
4. Apply permutation to get k-bit string // propagate scrambling

Repeat 1-4 for n rounds (with 4's output as 1's input)
n should be large enough to get good scrambling
Each output bit is �in�uenced� by all input bits

Decryption, ie, reversing, is no more expensive.

Often can be done with the same algorithm/hardware.



DES

Old standard no longer being used: 56-bit keys, 64-bit text



DES (cont)

DES encryption

a1: L0 | R0 ← perm(pt)
a2: for n = 0, ..., 15
a3: Ln+1 ← Rn

a4: Rn+1 ←mnglrn(Rn,Kn+1)⊕Ln
// yields L16 | R16

a5: L17 | R17 ← R16 | L16
a6: ct ← perm−1(R16 | L16)

// key order: K1, · · · , K16

DES decryption

b1: R16 | L16 ← perm(ct) //a6 bw
b2: for n = 15, ..., 0 //a2 bw
b3: Rn ← Ln+1 //a3 bw
b4: Ln ←mnglrn(Rn,Kn)⊕Rn+1 //a4 bw

// sets Ln to X such that
// Rn+1 ←mnglrn(Rn,Kn)⊕X

// yields R0|L0
b5: L0|R0 ← R0|L0 //a5 bw
b6: pt← perm−1(L0|R0) //a1 bw

// key order K16, · · · , K1



Multiple Encryption DES (EDE or 3DES)

Makes DES more secure

Encryption: encrypt key1 → decrypt key2 → encrypt key1
Decryption: decrypt key1 → encrypt key2 → decrypt key1

encrypt key1 → encrypt key1 is not e�ective

Just equivalent to using another single key.

encrypt key1 → encrypt key2 is not so good

Current standard encryption algorithm: AES

di�erent sizes of keys (64, 128, ...)
di�erent data block sizes (..., 64, 128, ...)



Encrypting Arbitrary-length Messages

Encrypting large msg given k-bit block encryption

Pad message to multiple of block size:
msg −→ M1,M2, · · ·
Use block encryption repeatedly to get ciphertext
M1,M2, · · · −→ C1,C2, · · ·

Desired

Cj 6= Ck even if Mj = Mk // like block encryption
Repeated encryptions of msg yield distinct ctxt

// unlike block encryption
∆ ctxt /−→ predictable ∆ plaintext // really an integrity issue

Various methods: ECB, CBC, CFB, OFB, CTR, others



ECB: Electronic Code Book

Encryption: M1,M2, · · · −→ C1,C2, · · ·

Obvious approach: encrypt each block independently

Encryption: Ci = encK (Mi)

Decryption: Mi = decK (Ci)

Not good: repeated blocks get same cipherblock



CBC: Cipher Block Chaining

Encryption: M1,M2, · · · −→ C1,C2, · · ·
Use Ci−1 as a �random� pad to Mi before encrypting.

C0 ← random IV

Ci ← encK (Mi⊕Ci−1)

send C0,C1,C2, · · ·

Decryption: C1,C2, · · · −→ M1,M2, · · ·
Mi ← decK (Ci ⊕ Ci−1), for i = 1, 2, · · ·

�Attacks� on integrity:

X ⊕ Cn −→ Mn garbled, Mn+1←⊕ X , other Mi 's unchanged.
Can somewhat overcome with ordinary checksum (eg, CRC)



OFB: Output Feedback Mode

Encryption: M1,M2, · · · −→ C1,C2, · · ·
Generate pad B0,B1, · · · :
B0 is IV
Bi ← encK (Bi−1)

Ci ← Bi ⊕Mi

One-time pad that can be generated in advance.

Attacker with <plaintext, ciphertext> can obtain Bi 's.
Hence generate ciphertext for any plaintext

CFB: Cipher Feedback Mode

Like OFB except that output Ci−1 is used instead of Bi

C0 is IV
Ci ←Mi ⊕ encK (Ci−1)

Cannot generate one-time pad in advance.



MACs from encryption

MAC: message authentication code, aka cryptographic checksum

Provides integrity

Encrypting msg (using CBC, CFB, OFB) does not provide
integrity

Modi�ed ciphertext yields plaintext that
a human or program may �nd �shy
But not a MAC

MAC is usually generated by hash functions

Standard way to generate MAC with an encryption function

residue(msg): last block in CBC encryption of msg
MAC = [IV, residue (msg)]



Con�dentiality and Integrity with Encryption

Send enc(msg) | residue(msg)] // not ok

Just repeats the last cipherblock

enc(msg | residue(msg)) // not ok

Last block is enc(0) //⊕ of last cipherblock with itself

enc(msg | ordinary_checksum(msg)) // not ok

Almost works. Subtle attacks are known.

encKey2(msg | residueKey1(msg) // ok

But twice the work.
Key2 can be related to Key2 (eg, Key1 = Key2 + 1)

encrypt(msg | weak_crypto_checksum(msg)) // probably ok

O�set Codebook Mode (OCB)



Hashes, aka Message Digests

Hash function H: arbitrary message −→ k-bit hash

Not 1-1: msg space � hash space (= 2k)

Want: hard to �nd any two msg1, msg2 st H(msg1) = H(msg2)

This is stronger than collision for a given msg1

Assuming H is random, how large should k be?

Pr(collision in N random messages) ≈ N2/K

N random messages, m1,m2, · · · ,mN

Pr [collision]
= Pr [H(m1) = H(m2) or H(m1) = H(m3) or · · · ]
= (N(N − 1)/2)(1/K )

Want searching through
√
2k to be hard

So k = 128 assumes searching through 264 is hard



Keyed Hash: Hash (msg + secret key)

Keyed-hash HK (msg):

hash H applied to some merge of message msg and key K

Equivalent to secret-key encryption

Encryption: M1,M2, · · · −→ C0,C1,C2, · · ·
Generate pad: Bi ← HK (Bi−1) where B0 is IV
Ci ← Bi ⊕Mi

Transmit IV and C1,C2, · · ·
Decryption identical

Encryption with plaintext mixed into pad is similar

Bi ← HK (Ci−1) where C0 is IV
Ci ← Bi ⊕Mi

Authentication:

A sends random rA and expects to get HK (rA)
B sends random rB and expects to get HK (rB)



Keyed hash: How to merge msg and key K

H(K |msg) NOT OK

Because usually H(msg1|msg2) is H(H(msg1))
So given msg and HK (msg), attacker can append any m to msg
and get HK (msg |m) by H(HK (msg))

OK

H(msg |K )
half the bits of H(K |msg)
H(K |msg |K )

HMAC standard

Any hash function H (eg, MD2, MD4, SHA-1) and any key size
paddedKey ← pad key with 0's to 512 bits
if key is larger than 512 bits, �rst hash key and then pad
h1← H(msg |paddedKey⊕ [string of 3616 octets])
MAC: H(h1|paddedKey⊕ [string of 5C16 octets])



MD4: Message Digest 4

MD4: 128-bit hash, 32-bit architecture

Step 1: Pad msg to multiple of 512 bits

pmsg ←msg |one 1| p 0's| (64-bit encodng of p) // p in 1..512

Step 2: Process pmsg in 512-bit chunks to get hash md

treat 128-bit md as 4 words: d0, d1, d2, d3
initialize to 01|23|...|89|ab|cd|ef|fe|dc|...|10

For each successive 512-bit chunk of pmsg :

treat 512-bit chunk as 16 words: m0,m1, · · · ,m15

e0..e3 ← d0..d3 // save for later
pass 1 using mangler H1 and permutation J

// for i = 0, ..., 15: dJ(i) ← H1(i , d0, d1, d2, d3,mi)
pass 2: same but with mangler H2
pass 3: same but with mangler H3
d0..d3 ← d0..d3 ⊕ e0..e3

md ← d0..d3



More Hash Functions

MD2: octet-oriented

message of arbitrary number of octets −→ 128-bit digest

Like MD4 except
Step 1: pad to multiple of 16 octets
Step 2: append 16-octet checksum (not cryptographic)
Step 3: do 18 passes over msg in 16-octet chunks

MD5: 32-bit-word oriented
Message of arbitrary number of bits −→ 128-bit digest
Like MD4 except four passes and di�erent mangler functions

SHA-1: 32-bit word oriented
Message of size upto 264 bits −→ 160-bit digest
Like MD5 except �ve passes, di�erent mangler functions,
at each stage, 512-bit msg chunk −→ 5× 512-bit chunk

· · ·



Public-Key Crypto

Prinicpal has a key-pair: [public key, private key]

private key: secret shared with no other
public key: disclosed to every one
text encrypted with one key can be decrypted only with the
other key

Public-key crypto algorithms and typical usage

RSA, ECC: encryption and digital signatures
ElGamal, DSS: digital signatures
Di�e-Hellman: establishment of a shared secret
Zero-knowledge proof systems: authentication

Public-key algorithms involve

Prime numbers
Modulo-n addition, multiplication, exponentiation
A brief review follows.



Prime numbers

Integer p is prime i� it is exactly divisible only by itself and 1.

gcd(p, q): greatest common denominator of integers p and q

Largest integer that divides both exactly.

p and q are relatively prime i� gcd(p, q) = 1

In�nitely many primes, but they thin out as numbers get larger

25 primes less than 100
Pr[random 10-digit number is a prime] = 1/23
Pr[ random 100-digit number is a prime] = 1/230
Pr[random k-digit number is a prime] = 1/(10· ln k)



Modulo-n arithmetic

Zn = {0, 1, · · · , n − 1}

Modulo-n operation: integers −→ Zn

x mod-n, for any integer x (including negative)

= y in Zn st x = y + k ·n for some integer k

= non-negative remainder of x/n

Examples

3 mod-10 = 3 // 3 = 3 + 0·10
23 mod-10 = 3 // 23 = 3 + 2·10
−27 mod-10 = 3 // −27 = 3 + (−3)·10
Note: mod-n of negative number is non-negative



Modulo-n addition

(a + b) mod-n, for any integers a and b

Examples

(3 + 7) mod-10 = 10 mod-10 = 0
(3− 7) mod-10 = − 4 mod-10 = 6

Additive-inverse-mod-n of x

y st (x + y) mod-n = 0
Denoted −x mod-n
Exists for every x
Easily computed: (n − x) mod-n



Modulo-n multiplication

(a·b) mod-n, for any integers a and b

Examples

(3·7) mod-10 = 21 mod-10 = 1
8·(−7) mod-10 = − 56 mod-10 = 4

Multiplicative-inverse-mod-n of x

y st (x ·y) mod-n = 1
Denoted x−1 mod-n
Exists i� gcd(x , n) = 1 // x relatively prime to n
Euclid's algorithm computes

gcd(x , n)
u, v st gcd(x , n) = u·x + v ·n
if gcd(x , n) = 1:
u = x−1 mod-n
v = n−1 mod-x



Modulo-n exponentiation

(ab) mod-n, for any integers a and b > 0

Examples

32 mod-10 = 9
33 mod-10 = 27 mod-10 = 7
(−3)3 mod-10 = − 27 mod-10 = 3

Exponentiative-inverse-mod-n of x

y st (xy ) mod-n = 1
Exists i� gcd(x , n) = 1
Easy to compute if prime factors of n are known. Otherwise not.



Euler's Theorem

Z ∗n = {x : x in Zn, gcd(x , n) = 1}
Z10 : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Z ∗
10

: {1, 3, 7, 9}
φ(n): number of elements in Z ∗n

Euler's Totient Function

φ(n) =


n − 1 if n prime

(p − 1)·pa−1 if n = pa, p prime, a > 0

φ(p) · φ(q) if n = p · q and gcd(p, q) = 1

φ(pa1
1

) · · ·φ(paKK ) if n = pa1
1
· · · paKK

Euler's Theorem

If n = p · q, where p and q are distinct primes then
ak·φ(n)+1 = a mod-n for all a in Zn and any k > 0.



RSA

RSA: Rivest, Shamir, Adleman

Key size variable and much longer than secret keys

usually greater than 512 bits (100 decimal digits)

Plaintext block size variable but smaller than key

Ciphertext block of key length.

Orders slower than secret-key algorithms (eg, AES)

So not used for data encryption



RSA: Generating [public key, private key] pair

Choose two large primes, p and q // p and q remain secret

Let n = p·q
Choose e relatively prime to φ(n) // φ(n) = (p − 1)·(q − 1)

Public key = [e, n] // disclosed to the world

Find d , mult-inverse-mod-φ(i) of e // e·d = 1 mod-φ(n)

Private key = [d , n] // do not share



RSA: Encryption and Signing

Encryption of msg m usin public key

ciphertext c ←me mod-n

Decryption of ciphertext c using private key

plaintext m ← cd mod-n

Works because me·d = m

Signing message m using private key

signature s ←md mod-n

Verifying signature s using public key

plaintext m ← se mod-n

Works because me·d = m



Why is me·d equal to m

me ·d = m1 mod-φ(n) // because e·d mod-φ(n) = 1
= m1+k·φ(n) for some k // de�nition of mod
= m // Euler's theorem, m in Zn,

// n is product of distinct primes p and q

Why is RSA secure

Only known way to obtain m from x = me mod-φ(n)
is by xd mod-φ(n) where d = e−1 mod-φ(n)

Only known way to obtain φ(n) is with p and q

Factoring number is hard, so hard to obtain p and q given n



E�cient modulo exponentation

Need to get me mod-n for large (eg, 100-digit) numbers m, e, n

3-digit example: 12354 mod-678

Naive: Multiply m by itself e times, then take mod n.

e multiplications of increasingly larger numbers
12354 is approx 100 digits // 54· log

10
123

Better: Multiply m with itself, take mod n; repeat e times.

e multiplications and divisions of large numbers.

Much better: Exploit m2x = mx ·mx and m2x+1 = m2x ·m.

log e multiplications.



Modulo_Exponentiation(m, e, n)

(x0, x1, · · · , xk) ← e in binary // x0 = 1

initially y ←m; j ← 0 // y = mx0

while j < k

// loop invariant: y = m(x0,··· ,xj) mod-n

y ← y · y mod-n; // y = m(x0,··· ,xj ,0) mod-n
if xj+1 = 1

y ← y ·m mod-n // y = m(x0,··· ,xj ,1) mod-n
j ← j + 1 // y = m(x0,··· ,xj ) mod-n

// y = me mod-n



Example: 12354 mod-678

54 in binary is (1101110)2

123(1) mod-678 = 123

123(10) mod-678 = 123·123 mod-678 = 15129 mod-678 = 213

123(11) mod-678 = 213·123 mod-678 = 26199 mod-678 = 435

123(110) mod-678 = 435·435 mod-678 = 1889225 mod-678 = 63

123(1100) mod-678 = 63·63 mod-678 = 3969 mod-678 = 579

123(1101) mod-678 = 579·123 mod-678 = 71217 mod-678 = 27

123(11010) mod-678 = 27·27 mod-678 = 729 mod-678 = 51

123(11011) mod-678 = 51·123 mod-678 = 6273 mod-678 = 171

123(110110) mod-678 = 171·171 mod-678 = 29241 mod-678 = 87



Generating RSA keys has two parts

Finding big primes p and q

Finding e relatively prime to φ(p·q) // = (p − 1)·(q − 1)

Given e, easy to obtain d = e−1 mod-φ(n)

Finding big prime n

Choose random n and test for prime. If not prime, retry.

No practical deterministic test.

Simple probabilistic test

Generate random n and random a in 1..n
Pass if an−1 = 1 mod-n // converse to Euler's theorem
Prob failure is low // −10−13 for 100-digit n
Can improve by trying di�erent a's.
But Carmichael numbers: 561, 1105, 1729, 2465, 2821, 6601, · · ·

Miller-Rabin probabilistic test: better and handles Carmichael



Finding e

Approach 1

Choose random primes p and q as described above
Choose e at random until e relatively prime to φ(p.q)

Approach 2

Fix e st me easy to compute (i.e., few 1's in binary)
Choose random primes p and q st e relatively prime to φ(p.q)



Approach 2 with e = 3

m3 requires 2 multiplications

Need pad for small m:

If m < n1/3 then m3 mod-n = m3

Attacker gets m by (me)1/3

Need di�erent pads if m is sent to 3 principals
with public keys [3, n1], [3, n2], [3, n3]:

Attacker has m3 mod-n1, m3 mod-n2, m3 mod-n3
CRT yields m3 mod-n1·n2·n3,
which equals m3 because m < n1, n2, n3.



Approach 2 with e = 216 + 1 = 65537

me requires 17 multiplications

No need for pad since unlikely that m65537 < n

Need di�erent pads if m sent to 65537 recipients with same e.
Unlikely.



Public Key Cryptography Standard (PKCS)

Standard encoding of information to be signed/encrypted in RSA

Takes care of

encrypting guessable messages
signing smooth numbers
multiple encryptions of same message with e = 3
· · ·

Encryption (�elds are octets)
msb 0 2 ≥ eight random non-zero octets 0 data lsb
Note that the data is usually small (key, hash, etc)

Signing (�elds are octets)

msb
0 1 ≥ eight octets of 9F16 0 digest type and

digest (in ASN.1)
lsb



Basic Di�e-Helman

Share key over open channel using public prime p and g (< p)

A B

choose random SA
TA ← gSA mod-p
send TA choose random SB

TB ← gSB mod-p
KB ← T SB

A mod-p
send TB

KA ← T SA
B mod-p

KA = KB = gSA·SB mod-p // shared key

Hard to get gSA·SB mod-p from TA and TB

DH by itself does not provide authentication



Di�e-Helman with Published Numbers

Let a set of principals share public DH parameters p and g

Let every principal X generate random SX and TX = gSX mod-p

SX : X 's private key // held secret
[X , g , p,TX ]: X 's public key // made public

Assume PKI (public-key infrastructure) that publishes
[X , g , p,TX ] for every principal X .

Then any two principals X , Y share key gSX ·SY mod-p



Authenticated Di�e-Helman

DH that incorporates a pre-shared key to provide authentication.

Authenticated DH when A and B share a secret key K

Encrypt (messages of) basic DH exchange with K

A sends encK (gSA mod-p)
B sends encK (gSB mod-p)
shared key: gSA·SB mod-p

Following basic DH exchange, exchange keyed-hashes of shared
DH key and sender names.

Authenticated DH when A and B have each other's public key.

Encrypt basic DH exchange with receiver's public key.
Sign basic DH exchange with sender's private key.



Why DH given pre-shared secret

Get strong key (gSA·SB mod-p) even if pre-shared secret is weak

Perfect-forward secrecy:

Suppose A and B forget SA and SB after their session
Then session data is safe even if pre-shared secret later exposed


