Crypto Stuff

Shankar

May 18, 2013
Overview

- Encryption: plaintext + key \rightarrow ciphertext
- Decryption: plaintext \rightarrow ciphertext + same/related key
- Key is secret. It is the ONLY secret.
- Not secret: crypto algorithms, protocols, programs,
- Good crypto algorithm:
 - Given cyphertext, hard to get plaintext.
 - Given plaintext and ciphertext, hard to get key.
 - Hard: requires brute-force search of key-space (eg, 2^{128} keys)
- Types of cryptographic functions:
 - Secret-key: DES, AES, ... // aka symmetric, ordinary
 - Hash (of cryptographic kind): MD5, SHA-1, ...
 - Public-key: RSA, DH, DSS, Fiat-Shamir, ... // aka asymmetric
Secret-key (symmetric/ordinary) crypto

- Same key for encryption and decryption
- Ciphertext about the same length as plaintext.
- Achieve confidentiality, integrity, authentication.

- A and B share secret key K and are separated by insecure channel/storage.

Confidentiality:
- A sends $\text{enc}(\text{plaintext}, K)$
- B receives and $\text{dec}(\text{ciphertext}, K)$

Integrity:
- MAC (aka checksum): fragment of $\text{enc}(\text{plaintext}, K)$
- A sends $[\text{plaintext}, \text{MAC}]$
- B receives and verifies MAC

Authentication:
- A sends random number r_A to B, and expects $\text{enc}(r_A, K)$ back
- B sends random number r_B to A, and expects $\text{enc}(r_B, K)$ back
(Cryptographic) Hash functions

- $H(.)$: <arbitrary-length msg> \rightarrow <fixed-length hash>
- Easy to compute $H(msg)$ from msg
- Hard to find msg_1 and msg_2 such that $H(msg_1) = H(msg_2)$

- Keyed-hash: Hash msg along with a shared secret K eg, $H(msg|K)$ // “|” denotes concatenation

- Keyed-hashing provides all the capabilities of secret-key crypto.
- Integrity
 - $MAC = H(msg|K)$
- Confidentiality
 - Get pad C_0, C_1, \cdots where C_0 random and $C_{i+1} = H(C_i|K)$
 - encryption of $[M_0, M_1 \cdots]$ is $[C_0, M_1 \oplus C_1, M_2 \oplus C_2, \cdots]$
Public-key (asymmetric) crypto

- Each principal has two related keys:
 - private key (not shared)
 - public key (shared with world)
 - text encrypted with one can only be decrypted with the other

- Confidentiality
 - B transmits text encrypted with pubkey_A.
 - A decrypts using privkey_A.

- Integrity and digital signature (non-repudiation)
 - A sends encryption of text with privkey_A
 - Anyone with pubkey_A can decrypt and be assured that A generated it

- Public-key crypto is orders slower than ordinary crypto
 - To sign msg: sign the hash of msg
 - To encrypt msg:
 - generate secret-key K,
 - send [encryptn msg with K, encryptn K with public key]
Secret-Key Crypto

- Consider fixed-length message of k bits for now (eg, 64, 128)
- Fixed-size key of j bits (eg, 128, 256)
- Encryption $S: k$-bit msg + j-bit key $\rightarrow k$-bit output
- S: 1-1 mapping of msgs to outputs, o/w cannot decrypt
- S must be “random”, o/w not secure
 - Msgs and keys that differ only slightly should map to outputs that differ greatly (in approx $k/2$ bits)
- Large enough key length j so that searching 2^j hard

- Clearly, S cannot be a “simple” function, eg, $msg \oplus key$
Simple solution

- “Substitution table”: random permutation of k-bit strings
- Table is $2^k \times k$ bits
- Entries obtained via physical-world randomness (e.g., coin toss)
- $S(i)$ is ith row of table
- Pro: S is perfectly random
- Con: Table is itself the key! Too large to be practical

Want a compact deterministic algorithm.

Approach: mix small-size tables and global permutations
Secret-Key Crypto (cont)

- **Practical approach**
 - \(p \): reasonably small divisor of \(k \) (eg, \(p = 8 \))
 - \(2^p \times p \) substitution tables // aka “S-boxes”
 - \(k \)-bit permutation functions

1. Divide \(k \)-bit string into \(p \)-bit strings
2. Apply S-boxes to \(p \)-bit strings // localized scrambling
3. Concatenate the resulting \(p \)-bit outputs // \(k \)-bit string
4. Apply permutation to get \(k \)-bit string // propagate scrambling
 - Repeat 1-4 for \(n \) rounds (with 4’s output as 1’s input)
 - \(n \) should be large enough to get good scrambling
 - Each output bit is “influenced” by all input bits

- Decryption, ie, reversing, is no more expensive.
 - Often can be done with the same algorithm/hardware.
Old standard no longer being used: 56-bit keys, 64-bit text
DES encryption

a1: \(L_0 | R_0 \leftarrow \text{perm}(pt) \)
a2: for \(n = 0, \ldots, 15 \)
a3: \(L_{n+1} \leftarrow R_n \)
a4: \(R_{n+1} \leftarrow \text{mnglr}_n(R_n, K_{n+1}) \oplus L_n \)
\quad \text{// yields } L_{16} | R_{16}
\quad \text{// key order: } K_1, \ldots, K_{16}

a5: \(L_{17} | R_{17} \leftarrow R_{16} | L_{16} \)
a6: \(ct \leftarrow \text{perm}^{-1}(R_{16} | L_{16}) \)

DES decryption

b1: \(R_{16} | L_{16} \leftarrow \text{perm}(ct) \)
\quad \text{//a6 bw}
b2: for \(n = 15, \ldots, 0 \)
\quad \text{//a2 bw}
b3: \(R_n \leftarrow L_{n+1} \)
\quad \text{//a3 bw}
b4: \(L_n \leftarrow \text{mnglr}_n(R_n, K_n) \oplus R_{n+1} \)
\quad \text{// sets } L_n \text{ to } X \text{ such that}
\quad \text{// yields } R_0 | L_0
\quad \text{// key order } K_{16}, \ldots, K_1

b5: \(L_0 | R_0 \leftarrow R_0 | L_0 \)
\quad \text{//a5 bw}
b6: \(pt \leftarrow \text{perm}^{-1}(L_0 | R_0) \)
\quad \text{//a1 bw}
Multiple Encryption DES (EDE or 3DES)

- Makes DES more secure
 - Encryption: encrypt key1 \rightarrow decrypt key2 \rightarrow encrypt key1
 - Decryption: decrypt key1 \rightarrow encrypt key2 \rightarrow decrypt key1

- encrypt key1 \rightarrow encrypt key1 is not effective
 - Just equivalent to using another single key.

- encrypt key1 \rightarrow encrypt key2 is not so good

- Current standard encryption algorithm: AES
 - different sizes of keys (64, 128, ...)
 - different data block sizes (..., 64, 128, ...)
Encrypting Arbitrary-length Messages

- Encrypting large msg given k-bit block encryption
 - Pad message to multiple of block size:
 $$\text{msg} \rightarrow M_1, M_2, \cdots$$
 - Use block encryption repeatedly to get ciphertext
 $$M_1, M_2, \cdots \rightarrow C_1, C_2, \cdots$$
- Desired
 - $C_j \neq C_k$ even if $M_j = M_k$ \hspace{1cm} // like block encryption
 - Repeated encryptions of msg yield distinct $ctxt$ \hspace{1cm} // unlike block encryption
 - $\Delta \text{ctxt} \not\rightarrow$ predictable Δ plaintext \hspace{1cm} // really an integrity issue
- Various methods: ECB, CBC, CFB, OFB, CTR, others
ECB: Electronic Code Book

- Encryption: $M_1, M_2, \cdots \rightarrow C_1, C_2, \cdots$

- Obvious approach: encrypt each block independently

- Encryption: $C_i = \text{enc}_K(M_i)$

- Decryption: $M_i = \text{dec}_K(C_i)$

- Not good: repeated blocks get same cipherblock
CBC: Cipher Block Chaining

- **Encryption:** $M_1, M_2, \ldots \rightarrow C_1, C_2, \ldots$
- **Use** C_{i-1} **as a “random” pad to** M_i **before encrypting.**
 - $C_0 \leftarrow \text{random IV}$
 - $C_i \leftarrow \text{enc}_K (M_i \oplus C_{i-1})$
 - send C_0, C_1, C_2, \ldots

- **Decryption:** $C_1, C_2, \ldots \rightarrow M_1, M_2, \ldots$
 - $M_i \leftarrow \text{dec}_K (C_i \oplus C_{i-1})$, for $i = 1, 2, \ldots$

- **“Attacks” on integrity:**
 - $X \oplus C_n \rightarrow M_n \text{ garbled, } M_{n+1} \leftarrow \oplus X$, other M_i’s unchanged.
 - Can somewhat overcome with ordinary checksum (eg, CRC)
OFB: Output Feedback Mode

- Encryption: $M_1, M_2, \cdots \rightarrow C_1, C_2, \cdots$
- Generate pad B_0, B_1, \cdots:
 - B_0 is IV
 - $B_i \leftarrow \text{enc}_K(B_{i-1})$
- $C_i \leftarrow B_i \oplus M_i$
- One-time pad that can be generated in advance.
- Attacker with \langleplaintext, ciphertext\rangle can obtain B_i’s. Hence generate ciphertext for any plaintext

CFB: Cipher Feedback Mode

- Like OFB except that output C_{i-1} is used instead of B_i
 - C_0 is IV
 - $C_i \leftarrow M_i \oplus \text{enc}_K(C_{i-1})$
- Cannot generate one-time pad in advance.
MACs from encryption

- MAC: message authentication code, aka cryptographic checksum
- Provides integrity

- Encrypting msg (using CBC, CFB, OFB) does not provide integrity
 - Modified ciphertext yields plaintext that a human or program may find fishy
 - But not a MAC

- MAC is usually generated by hash functions

- Standard way to generate MAC with an encryption function
 - residue(msg): last block in CBC encryption of msg
 - MAC = [IV, residue (msg)]
Confidentiality and Integrity with Encryption

- Send $\text{enc}(\text{msg}) \mid \text{residue}(\text{msg})$ // not ok
 - Just repeats the last cipherblock
- $\text{enc}(\text{msg} \mid \text{residue}(\text{msg}))$ // not ok
 - Last block is $\text{enc}(0)$ // \oplus of last cipherblock with itself
- $\text{enc}(\text{msg} \mid \text{ordinary_checksum}(\text{msg}))$ // not ok
 - Almost works. Subtle attacks are known.
- $\text{enc}_{\text{Key2}}(\text{msg} \mid \text{residue}_{\text{Key1}}(\text{msg}))$ // ok
 - But twice the work.
 - Key2 can be related to Key2 (eg, $\text{Key1} = \text{Key2} + 1$)
- $\text{encrypt}(\text{msg} \mid \text{weak_crypto_checksum}(\text{msg}))$ // probably ok
- Offset Codebook Mode (OCB)
Hashes, aka Message Digests

- Hash function \(H \): arbitrary message \(\rightarrow k \)-bit hash
 - Not 1-1: msg space \(\gg \) hash space (= \(2^k \))
 - Want: hard to find any two \(msg_1, msg_2 \) st \(H(msg_1) = H(msg_2) \)
 - This is stronger than collision for a given \(msg_1 \)

- Assuming \(H \) is random, how large should \(k \) be?
- \(Pr(\text{collision in } N \text{ random messages}) \approx N^2/K \)
 - \(N \) random messages, \(m_1, m_2, \cdots, m_N \)
 - \(Pr[\text{collision}] = Pr[H(m_1) = H(m_2) \text{ or } H(m_1) = H(m_3) \text{ or } \cdots] = (N(N - 1)/2)(1/K) \)

- Want searching through \(\sqrt{2^k} \) to be hard
 - So \(k = 128 \) assumes searching through \(2^{64} \) is hard
Keyed Hash: Hash \((\text{msg} + \text{secret key})\)

- **Keyed-hash** \(H_K(\text{msg})\):
 - hash \(H\) applied to some merge of message \(\text{msg}\) and key \(K\)
 - Equivalent to secret-key encryption

- **Encryption**: \(M_1, M_2, \cdots \rightarrow C_0, C_1, C_2, \cdots\)
 - Generate pad: \(B_i \leftarrow H_K(B_{i-1})\) where \(B_0\) is IV
 - \(C_i \leftarrow B_i \oplus M_i\)
 - Transmit IV and \(C_1, C_2, \cdots\)
 - Decryption identical

- **Encryption with plaintext mixed into pad is similar**
 - \(B_i \leftarrow H_K(C_{i-1})\) where \(C_0\) is IV
 - \(C_i \leftarrow B_i \oplus M_i\)

- **Authentication**:
 - \(A\) sends random \(r_A\) and expects to get \(H_K(r_A)\)
 - \(B\) sends random \(r_B\) and expects to get \(H_K(r_B)\)
Keyed hash: How to merge msg and key K

- $H(K|msg)$ NOT OK
 - Because usually $H(msg_1|msg_2)$ is $H(H(msg_1))$
 - So given msg and $H_K(msg)$, attacker can append any m to msg and get $H_K(msg|m)$ by $H(H_K(msg))$

- OK
 - $H(msg|K)$
 - half the bits of $H(K|msg)$
 - $H(K|msg|K)$

- HMAC standard
 - Any hash function H (eg, MD2, MD4, SHA-1) and any key size
 - $paddedKey \leftarrow$ pad key with 0’s to 512 bits
 - if key is larger than 512 bits, first hash key and then pad
 - $h1 \leftarrow H(msg|paddedKey \oplus [\text{string of } 36_{16} \text{ octets}])$
 - MAC: $H(h1|paddedKey \oplus [\text{string of } 5C_{16} \text{ octets}])$
MD4: Message Digest 4

- MD4: 128-bit hash, 32-bit architecture
- Step 1: Pad msg to multiple of 512 bits
 - \(pmsg \leftarrow msg | \text{one 1| p 0's} \) (64-bit encoding of \(p \)) // \(p \) in 1..512
- Step 2: Process \(pmsg \) in 512-bit chunks to get hash \(md \)
 - treat 128-bit \(md \) as 4 words: \(d_0, d_1, d_2, d_3 \)
 - initialize to 0123...89abcdedef...10
- For each successive 512-bit chunk of \(pmsg \):
 - treat 512-bit chunk as 16 words: \(m_0, m_1, \ldots, m_{15} \)
 - \(e_0..e_3 \leftarrow d_0..d_3 \) // save for later
 - pass 1 using mangler \(H1 \) and permutation \(J \)
 // for \(i = 0, \ldots, 15 \): \(d_{J(i)} \leftarrow H1(i, d_0, d_1, d_2, d_3, m_i) \)
 - pass 2: same but with mangler \(H2 \)
 - pass 3: same but with mangler \(H3 \)
 - \(d_0..d_3 \leftarrow d_0..d_3 \oplus e_0..e_3 \)
 - \(md \leftarrow d_0..d_3 \)
More Hash Functions

- **MD2**: octet-oriented
 - Message of arbitrary number of octets \rightarrow 128-bit digest
 - Like MD4 except
 - Step 1: pad to multiple of 16 octets
 - Step 2: append 16-octet checksum (not cryptographic)
 - Step 3: do 18 passes over msg in 16-octet chunks

- **MD5**: 32-bit-word oriented
 - Message of arbitrary number of bits \rightarrow 128-bit digest
 - Like MD4 except four passes and different mangler functions

- **SHA-1**: 32-bit word oriented
 - Message of size up to 2^{64} bits \rightarrow 160-bit digest
 - Like MD5 except five passes, different mangler functions, at each stage, 512-bit msg chunk \rightarrow 5×512-bit chunk

...
Public-Key Crypto

- Principal has a key-pair: [public key, private key]
 - private key: secret shared with no other
 - public key: disclosed to everyone
 - text encrypted with one key can be decrypted only with the other key

- Public-key crypto algorithms and typical usage
 - RSA, ECC: encryption and digital signatures
 - ElGamal, DSS: digital signatures
 - Diffie-Hellman: establishment of a shared secret
 - Zero-knowledge proof systems: authentication

- Public-key algorithms involve
 - Prime numbers
 - Modulo-n addition, multiplication, exponentiation
 - A brief review follows.
Prime numbers

- Integer \(p \) is prime iff it is exactly divisible only by itself and 1.
- \(\gcd(p, q) \): greatest common denominator of integers \(p \) and \(q \)
 - Largest integer that divides both exactly.
- \(p \) and \(q \) are relatively prime iff \(\gcd(p, q) = 1 \)

- Infinitely many primes, but they thin out as numbers get larger
 - 25 primes less than 100
 - \(\text{Pr}[\text{random 10-digit number is a prime}] = 1/23 \)
 - \(\text{Pr}[\text{random 100-digit number is a prime}] = 1/230 \)
 - \(\text{Pr}[\text{random } k\text{-digit number is a prime}] = 1/(10 \cdot \ln k) \)
Modulo-n arithmetic

- \(Z_n = \{0, 1, \cdots, n - 1\} \)

- Modulo-\(n \) operation: integers \(\rightarrow \) \(Z_n \)

- \(x \ mod-n \), for any integer \(x \) (including negative)
 - \(= y \) in \(Z_n \) st \(x = y + k \cdot n \) for some integer \(k \)
 - \(= \) non-negative remainder of \(x/n \)

- Examples
 - \(3 \ mod-10 = 3 \) \hspace{1cm} // \ 3 = 3 + 0 \cdot 10 \\
 - \(23 \ mod-10 = 3 \) \hspace{1cm} // \ 23 = 3 + 2 \cdot 10 \\
 - \(-27 \ mod-10 = 3 \) \hspace{1cm} // \ -27 = 3 + (-3) \cdot 10 \\

 Note: \(mod-n \) of negative number is non-negative
Modulo-n addition

- $(a + b) \mod n$, for any integers a and b

 - Examples
 - $(3 + 7) \mod 10 = 10 \mod 10 = 0$
 - $(3 - 7) \mod 10 = -4 \mod 10 = 6$

- Additive-inverse-$\mod n$ of x
 - y s.t. $(x + y) \mod n = 0$
 - Denoted $-x \mod n$
 - Exists for every x
 - Easily computed: $(n - x) \mod n$
Modulo-\(n\) multiplication

- \((a\cdot b) \mod n\), for any integers \(a\) and \(b\)

- **Examples**
 - \((3\cdot7) \mod 10 = 21 \mod 10 = 1\)
 - \(8\cdot(-7) \mod 10 = -56 \mod 10 = 4\)

- **Multiplicative-inverse-mod-n of \(x\)**
 - \(y\) st \((x\cdot y) \mod n = 1\)
 - Denoted \(x^{-1} \mod n\)
 - Exists iff \(\gcd(x, n) = 1\) // \(x\) relatively prime to \(n\)
 - Euclid’s algorithm computes
 - \(\gcd(x, n)\)
 - \(u, v\) st \(\gcd(x, n) = u\cdot x + v\cdot n\)
 - if \(\gcd(x, n) = 1\):
 - \(u = x^{-1} \mod n\)
 - \(v = n^{-1} \mod x\)
Modulo-\(n\) exponentiation

- \((a^b) \mod n, \text{ for any integers } a \text{ and } b > 0\)
- Examples
 - \(3^2 \mod 10 = 9\)
 - \(3^3 \mod 10 = 27 \mod 10 = 7\)
 - \((-3)^3 \mod 10 = -27 \mod 10 = 3\)

- Exponentiative-inverse-mod-\(n\) of \(x\)
 - \(y \text{ st } (x^y) \mod n = 1\)
 - Exists iff \(gcd(x, n) = 1\)
 - Easy to compute if prime factors of \(n\) are known. Otherwise not.
Euler’s Theorem

- \(Z_n^* = \{ x: x \text{ in } Z_n, \gcd(x, n) = 1 \} \)
- \(Z_{10} : \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \)
- \(Z_{10}^* : \{1, 3, 7, 9\} \)
- \(\phi(n): \text{ number of elements in } Z_n^* \)

Euler’s Totient Function

\[
\phi(n) = \begin{cases}
 n - 1 & \text{if } n \text{ prime} \\
 (p - 1) \cdot p^{a-1} & \text{if } n = p^a, p \text{ prime}, a > 0 \\
 \phi(p) \cdot \phi(q) & \text{if } n = p \cdot q \text{ and } \gcd(p, q) = 1 \\
 \phi(p_1^{a_1}) \cdots \phi(p_K^{a_K}) & \text{if } n = p_1^{a_1} \cdots p_K^{a_K}
\end{cases}
\]

Euler’s Theorem

If \(n = p \cdot q \), where \(p \) and \(q \) are distinct primes then
\[
a^{k \cdot \phi(n) + 1} = a \mod n \text{ for all } a \text{ in } Z_n \text{ and any } k > 0.
\]
RSA

- RSA: Rivest, Shamir, Adleman
- Key size variable and much longer than secret keys
 - usually greater than 512 bits (100 decimal digits)
- Plaintext block size variable but smaller than key
- Ciphertext block of key length.
- Orders slower than secret-key algorithms (eg, AES)
 - So not used for data encryption
RSA: Generating [public key, private key] pair

- Choose two large primes, \(p \) and \(q \) \hspace{1cm} // \(p \) and \(q \) remain secret
- Let \(n = p \cdot q \)
- Choose \(e \) relatively prime to \(\phi(n) \) \hspace{1cm} // \(\phi(n) = (p - 1) \cdot (q - 1) \)
- Public key = \([e, n]\) \hspace{1cm} // disclosed to the world
- Find \(d \), mult-inverse-mod-\(\phi(n) \) of \(e \) \hspace{1cm} // \(e \cdot d = 1 \) mod-\(\phi(n) \)
- Private key = \([d, n]\) \hspace{1cm} // do not share
RSA: Encryption and Signing

- Encryption of msg m using public key
 - ciphertext $c \leftarrow m^e \mod n$

- Decryption of ciphertext c using private key
 - plaintext $m \leftarrow c^d \mod n$
 - Works because $m^{e \cdot d} = m$

- Signing message m using private key
 - signature $s \leftarrow m^d \mod n$

- Verifying signature s using public key
 - plaintext $m \leftarrow s^e \mod n$
 - Works because $m^{e \cdot d} = m$
Why is \(m^e \cdot d \) equal to \(m \)

\[
\begin{align*}
m^e \cdot d &= m^1 \text{ mod-} \phi(n) \quad &\text{// because} \quad e \cdot d \text{ mod-} \phi(n) = 1 \\
&= m^{1+k \cdot \phi(n)} \quad \text{for some} \quad k \quad &\text{// definition of mod} \\
&= m \quad &\text{// Euler’s theorem,} \quad m \text{ in} \quad Z_n, \\
&\quad &\text{//} \quad n \text{ is product of distinct primes} \quad p \text{ and} \quad q
\end{align*}
\]

Why is RSA secure

\[
\begin{align*}
\text{\quad • Only known way to obtain} \quad m \text{ from} \quad x = m^e \text{ mod-} \phi(n) \\
\text{\quad is by} \quad x^d \text{ mod-} \phi(n) \quad \text{where} \quad d = e^{-1} \text{ mod-} \phi(n) \\
\text{\quad • Only known way to obtain} \quad \phi(n) \text{ is with} \quad p \text{ and} \quad q \\
\text{\quad • Factoring number is hard, so hard to obtain} \quad p \text{ and} \quad q \quad \text{given} \quad n
\end{align*}
\]
Efficient modulo exponentation

- Need to get $m^e \mod n$ for large (eg, 100-digit) numbers m, e, n
 - 3-digit example: $123^{54} \mod 678$
- Naive: Multiply m by itself e times, then take mod n.
 - e multiplications of increasingly larger numbers
 - 123^{54} is approx 100 digits $\quad // \quad 54 \cdot \log_{10} 123$
- Better: Multiply m with itself, take mod n; repeat e times.
 - e multiplications and divisions of large numbers.
- Much better: Exploit $m^{2x} = m^x \cdot m^x$ and $m^{2x+1} = m^{2x} \cdot m$.
 - $\log e$ multiplications.
Modulo_Exponentiation(m, e, n)

- $(x_0, x_1, \cdots, x_k) \leftarrow e$ in binary
- initially $y \leftarrow m; \quad j \leftarrow 0$
- while $j < k$
 - // loop invariant: $y = m^{(x_0, \cdots, x_j)} \mod n$
 - $y \leftarrow y \cdot y \mod n$; // $y = m^{(x_0, \cdots, x_j, 0)} \mod n$
 - if $x_{j+1} = 1$
 - $y \leftarrow y \cdot m \mod n$ // $y = m^{(x_0, \cdots, x_j, 1)} \mod n$
 - $j \leftarrow j + 1$
- // $y = m^e \mod n$
Example: $123^{54} \pmod{678}$

- 54 in binary is $(1101110)_2$
- $123^{(1)} \pmod{678} = 123$
- $123^{(10)} \pmod{678} = 123 \cdot 123 \pmod{678} = 15129 \pmod{678} = 213$
- $123^{(11)} \pmod{678} = 213 \cdot 123 \pmod{678} = 26199 \pmod{678} = 435$
- $123^{(110)} \pmod{678} = 435 \cdot 435 \pmod{678} = 1889225 \pmod{678} = 63$
- $123^{(1100)} \pmod{678} = 63 \cdot 63 \pmod{678} = 3969 \pmod{678} = 579$
- $123^{(1101)} \pmod{678} = 579 \cdot 123 \pmod{678} = 71217 \pmod{678} = 27$
- $123^{(11010)} \pmod{678} = 27 \cdot 27 \pmod{678} = 729 \pmod{678} = 51$
- $123^{(11011)} \pmod{678} = 51 \cdot 123 \pmod{678} = 6273 \pmod{678} = 171$
- $123^{(110110)} \pmod{678} = 171 \cdot 171 \pmod{678} = 29241 \pmod{678} = 87$
Generating RSA keys has two parts

- Finding big primes p and q
- Finding e relatively prime to $\phi(p \cdot q)$ \hspace{1cm} // = (p - 1) \cdot (q - 1)$
 - Given e, easy to obtain $d = e^{-1} \mod \phi(n)$

Finding big prime n

- Choose random n and test for prime. If not prime, retry.
- No practical deterministic test.
- Simple probabilistic test
 - Generate random n and random a in $1..n$
 - Pass if $a^{n-1} = 1 \mod n$ \hspace{1cm} // converse to Euler’s theorem
 - Prob failure is low \hspace{1cm} // -10^{-13} for 100-digit n
 - Can improve by trying different a’s.
 - But Carmichael numbers: 561, 1105, 1729, 2465, 2821, 6601, …
- Miller-Rabin probabilistic test: better and handles Carmichael
Finding e

- Approach 1
 - Choose random primes p and q as described above
 - Choose e at random until e relatively prime to $\phi(p,q)$

- Approach 2
 - Fix e st m^e easy to compute (i.e., few 1’s in binary)
 - Choose random primes p and q st e relatively prime to $\phi(p,q)$
Approach 2 with $e = 3$

- m^3 requires 2 multiplications
- Need pad for small m:
 - If $m < n^{1/3}$ then $m^3 \mod n = m^3$
 - Attacker gets m by $(m^e)^{1/3}$
- Need different pads if m is sent to 3 principals with public keys $[3, n_1]$, $[3, n_2]$, $[3, n_3]$:
 - Attacker has $m^3 \mod n_1$, $m^3 \mod n_2$, $m^3 \mod n_3$
 - CRT yields $m_3 \mod n_1 \cdot n_2 \cdot n_3$, which equals m^3 because $m < n_1, n_2, n_3$.
Approach 2 with $e = 2^{16} + 1 = 65537$

- m^e requires 17 multiplications
- No need for pad since unlikely that $m^{65537} < n$
- Need different pads if m sent to 65537 recipients with same e. Unlikely.
Public Key Cryptography Standard (PKCS)

- Standard encoding of information to be signed/encrypted in RSA
- Takes care of
 - encrypting guessable messages
 - signing smooth numbers
 - multiple encryptions of same message with $e = 3$
 - ...

- Encryption (fields are octets)

 | msb | 0 | 2 | ≥ eight random non-zero octets | 0 | data | lsb |

 Note that the data is usually small (key, hash, etc)

- Signing (fields are octets)

 | msb | 0 | 1 | ≥ eight octets of $9F_{16}$ | 0 | digest type and digest (in ASN.1) | lsb |
Basic Diffie-Helman

- Share key over open channel using public prime p and $g (< p)$

A
- choose random S_A
- $T_A \leftarrow g^{S_A} \mod p$
- send T_A

B
- choose random S_B
- $T_B \leftarrow g^{S_B} \mod p$
- $K_B \leftarrow T_A^{S_B} \mod p$
- send T_B

$K_A \leftarrow T_B^{S_A} \mod p$

- $K_A = K_B = g^{S_A \cdot S_B} \mod p$ \hspace{1cm} // shared key

- Hard to get $g^{S_A \cdot S_B} \mod p$ from T_A and T_B

- DH by itself does not provide authentication
Diffie-Helman with Published Numbers

- Let a set of principals share public DH parameters p and g
- Let every principal X generate random S_X and $T_X = g^{S_X} \mod p$
 - S_X: X’s private key // held secret
 - $[X, g, p, T_X]$: X’s public key // made public

- Assume PKI (public-key infrastructure) that publishes $[X, g, p, T_X]$ for every principal X.
- Then any two principals X, Y share key $g^{S_X \cdot S_Y} \mod p$
Authenticated Diffie-Helman

- DH that incorporates a pre-shared key to provide authentication.
- Authenticated DH when A and B share a secret key K
 - Encrypt (messages of) basic DH exchange with K
 - A sends $\text{enc}_K(g^{SA} \text{ mod-} p)$
 - B sends $\text{enc}_K(g^{SB} \text{ mod-} p)$
 - shared key: $g^{SA \cdot SB} \text{ mod-} p$
 - Following basic DH exchange, exchange keyed-hashes of shared DH key and sender names.

- Authenticated DH when A and B have each other’s public key.
 - Encrypt basic DH exchange with receiver’s public key.
 - Sign basic DH exchange with sender’s private key.
Why DH given pre-shared secret

- Get strong key \((g^{S_A \cdot S_B} \mod p)\) even if pre-shared secret is weak

- Perfect-forward secrecy:
 - Suppose \(A\) and \(B\) forget \(S_A\) and \(S_B\) after their session
 - Then session data is safe even if pre-shared secret later exposed