
5/29/2013 shankar authentication slide 1

Kerberos, SSL, IPsec

Shankar

May 28, 2013

5/29/2013 shankar authentication slide 2

Kerberos 4

5/29/2013 shankar authentication slide 3

Kerberos 4

Authentication in network (Realm)
• Realm has KDC and users (principals)
• Users: human (log in to worsktations)
 apps: NFS, rsh, etc

• Authentication: based on Needham-Schroeder protocol
• Attacker: can read and write messages in transit.
• Assumes DES and IPv4
• Uses timestamps: nodes need synchronized clocks

KDC has
• Master key for each user

• weak key for human; strong key for apps
• Secret-key KKDC not shared with any user

• to encrypt database (master keys), TGTs
• Database: changes only when user’s master key changes

• mitigates KDC from becoming bottleneck

5/29/2013 shankar authentication slide 4

Kerberos 4

When a human user logs in

• KDC authenticates user based on user’s master key

• KDC gives user credentials encrypted with user’s master key

• Session key: for current login session
// user’s master key not used after login

• Ticket Granting Ticket (TGT) encrypted by KKDC:

� for user to obtain further tickets from KDC

For human user to access an app

• User sends KDC enc([request,TGT,timestamp], session key)

• KDC returns credentials encrypted with session key

• session key to talk to app

• ticket encrypted with app’s master key (app is not human)

• user sends app [request, ticket]

5/29/2013 shankar authentication slide 5

K4: Login handshake

user A (has pw)
at workstation

KDC (has A: KA)

start login
send [“A needs TGT”]

receive msg, retrieve KA
generate session key SA
tgtA � enc([A, SA], KKDC)
crdA � enc([SA, tgtA], KA)
send [crdA]

receive msg
get KA from pw
extract SA,tgtA from crdA
forget pw;
 // use SA henceforth

finish login

5/29/2013 shankar authentication slide 6

K4: Accessing remote app B
(LATER IN THE SESSION)

user A at workstation

rlogin B
send [A,B, tgtA, enc(ts,SA)]
// SA(ts): authenticator

rcv msg, gen sess key K
get SA from tgtA
get ts and verify
find B’s master key KB

tktB ← enc([A,K], KB)
crdB = enc([B,K,tktB] , SA)
 // credential
send [crdB] to A

receive msg
extract K, tktB
send [A,B,tktB, enc(ts,K)]

receive msg
end

B

receive msg from A
extract K, ts
send [B,A, enc(ts+1, K)]

5/29/2013 shankar authentication slide 7

K4: Replicated KDCs for performance

• One master KDC and several secondary KDCs

• Each secondary KDC has read-only copy of KDC database

• Additions/deletions/changes to master keys always
done at master KDC

• Secondary KDCs can generate session keys, TGTs, etc.

• Master disseminates KDC database to secondary KDCs
with integrity protection
(master keys already encrypted with KKDC)

5/29/2013 shankar authentication slide 8

K4: Authentication across multiple realms

• Possible only if their KDCs share a key.
• Principal id = [name, instance, realm], each 40 chars max

A in realm X KDC X KDC Y B in realm Y

send [A.X, B.Y] to X

receive msg
send [cred.Y] to A

receive msg
send [A.X, B.Y, cred.Y] to Y

receive msg
send [cred.B] to A

receive msg
send [A, B, cred.B]
 receive msg

5/29/2013 shankar authentication slide 9

K4:Key version number

• If A has tkt to B, and B changes its master key,
 then ticket no longer valid

• To handle this (w/o A asking KDC for a new ticket):

• Apps remember old master keys up to expiry time
(approx 21 hrs)

• In tickets, the key is sent along with version number

• Human users need not remember old passwords

5/29/2013 shankar authentication slide 10

K4: Network layer address in tickets

• Ticket has IPv4 address of the user given the ticket

• Received ticket is not accepted if ticket sender’s IP
address does not match

• So if B is to impersonate A, it must also spoof the IP
address of A (easy to do)

• Prevents delegation

• A cannot have B at another IP address do work on
behalf of A (unless B spoofs IP address of A !)

5/29/2013 shankar authentication slide 11

K4: Encryption/Integrity of data

• After authentication, data exchange can be any of
• clear
• encrypted
• integrity-protected
• encrypted and integrity-protected

• Choice is up to the application (performance vs security)

• K4 uses adhoc integrity protection (not so safe)

5/29/2013 shankar authentication slide 12

Kerberos 5

5/29/2013 shankar authentication slide 13

Kerberos 5

• More general than Kerberos 4

• Message formats defined using ASN.1 and BER

• So allows for addresses of different formats, etc.
• Occupies more octets

• Names: [NAME, REALM]

• Arbitrary content, length // allows “.”, “@”,…
• Allows X.500 names // country/org/name/…

• Allows choice of crypto algorithms

• Uses proper integrity protection

5/29/2013 shankar authentication slide 14

K5: Delegation of Rights

• User A can ask KDC for a TGT with

• network addresses different from A’s address
(for use by a principal at another address on behalf of A)

• no address (for use by any principal at any address)

• User A can give a tgt/tkt to B with specific constraints

• TGT/tkt has “app” field copied by KDC to any derived tkt

• A’s TGT can be forwardable:

• A can use it to get a TGT (for B) with different address.

• A also says whether derived TGT is itself forwardable

• A’s TGT can be proxiable:

• A can use it to get tkt (for B) with different address

• Ticket lifetime

5/29/2013 shankar authentication slide 15

K5: TGT/TKT Lifetime

• Fields:

• start-time: when ticket becomes valid

• end-time: when ticket expires (but can be renewed)

• auth-time: when A first logged in (from initial login TGT)

• renew-till: latest time for ticket to be renewed.

• Allows unlimited duration subject to renewing (e.g., daily)

• exchange tgt/tkt at KDC for a new (renewed) tgt/tkt

• tgt/tkt has to be renewed before expiry

• Allows postdated tickets (e.g, for batch jobs).

5/29/2013 shankar authentication slide 16

K5: Keys

• KDC remembers old master keys of human users also

• because tgts/tickets are renewable and can be postdated.

• For each principal B, KDC stores

• key: B’s master key encryped with KKDC (current or past)

• p_kvno: version number of B’s master key

• k_kvno: version number of KKDC used to encrypt

• max_life, max_renewable_life: for tickets issued to B

• expiration: when this entry expires

• mod_date/mod_name: when entry last modified, by who

• flags: preauthentication?, forwardable?, proxiable?, …

• …

• Human user master key derived from pw and realm name.

• So weak protection from key exposure across realms

5/29/2013 shankar authentication slide 17

K5: Authentication Chains

• Allows KDC chains of authentication (unlike V4)

• Example: KDCs A, B, C, where

� A-B share key, B-C share key, but A,C do not.

� K5 allows C to accept tkt sent by A and generated by B

• Each ticket inclues all the intermediate KDCs

• receiving KDC can reject tkt if it has suspect intermediary

5/29/2013 shankar authentication slide 18

K5: Evading off-line password guessing

• K4 allows off-line password guessing:

• KDC does not authenticate login requet before issuing TGT

• So B can spoof A, get a TGT for A,
do off-line dictionary attack on TGT

• In K5

• Login req must contain KA{timestamp};
so above attack not possible

• KDC also does not honor requests for tickets to human
users by others

� Prevents logged-in B asking KDC for a tkt (to delegate)
to A, on which it can do off-line password guessing.

5/29/2013 shankar authentication slide 19

K5: Key inside authenticator

• Suppose A and B share a session key K generated by KDC

• A and B can have another (simultaneous) session using a
different key.

• This can be done without involving the KDC:

• A makes up a key for this second session
and gives that to B encryped by K

5/29/2013 shankar authentication slide 20

K5: Double TGT Authentication

• Allows A to access server B that has session key, say SB, but
not master key KB

• Needed for X windows:
• X server manages display on workstation screen
• X clients (eg, xterm) run on local or remote workstations
• X client (A) needs tkt to X server (B) to display on screen

• No good for A to get from KDC a (regular) tkt encrypted KB
• Instead

• A gets TGTB from B
sends [“A to B”, TGTA, TGTB] to KDC

• KDC
• extracts SB from TGTB (encrypted with KKDC)
• creates session key KAB,
• generates tktB encrypted with SB (ie, enc([‘A’, KAB], SB)
and sends to A

5/29/2013 shankar authentication slide 21

K5: X windows

B at workstation/X server C (may be B’s workstation)

login to X server (B,pw)

• request TGTB from KDC
• obtain [SB, TGTB] from KDC
• forget B’s passwd
• start serving B (eg, keybd, mouse)

request X client at C (eg, xterm)

• X client starts
• has info to display at B’s screen
• get TGTB from X server
• ask KDC for tkt encrypted by SB
• present tkt to X server
and info to display

• X server displays client’s info

5/29/2013 shankar authentication slide 22

Security with TCP/IP

5/29/2013 shankar authentication slide 23

TCP/IP + Security

• TCP/IP stack without security

apps apps
TCP UDP … TCP UDP …

IP LRD channel IP

• TCP provides apps with

• connection establishment
• reliable data transfer

• Want to extend this to handle attackers

• network attackers: passive / active
• endpoint attackers: send messages with arbitrary fields
• authentication: extends connection establishment
• confidentiality, integrity: extends reliable data transfer

5/29/2013 shankar authentication slide 24

Natural solution: Secure TCP

apps apps

TCP UDP
Secure
TCP

… TCP UDP
Secure
TCP

…

IP
LRD/attacker

channel
IP

STCP (Secure TCP) like TCP except

• 3-way connection establishment includes
• client id, server id, authentication secret

• data transfer is tcp-like except
• IP header is in clear
• secure-tcp header encrypted
• secure-tcp payload encrypted

5/29/2013 shankar authentication slide 25

Reality

Implementors did not want

• modifications to TCP (which is in OS kernel)

• another protocol like TCP in OS kernel or over UDP

• another protocol like TCP in app space (eg, over UDP)

Instead we now have two partial solutions

• SSL (Secure Sockets Layer): above TCP

• IPsec: above IP and below transport layer (TCP, UDP)

5/29/2013 shankar authentication slide 26

SSL

5/29/2013 shankar authentication slide 27

SSL

• When A connects to B

• TCP A and TCP B establish a connection

• SSL A and SSL B authenticate over TCP
� using A public key and B public key, or
� using B public key and A password (typical)

• During data transfer:
• SSL encrypts outgoing / decrypts incoming

• TCP messages have TCP header in clear
• Easy DOS attack: Rogue packet attack

apps apps

SSL

SSL

TCP UDP … TCP UDP …

IP LRD/attacker channel IP

5/29/2013 shankar authentication slide 28

SSL

client A ssl A ssl B server B tcp A tcp B

plain text plain text
disconnect

tcp conn est
handshake

auth handshake using K
establish session key(s)
u ing K

5/29/2013 shankar authentication slide 29

 SSL

• SSL A: generate RA

send [B, ciphers supported, random RA]

• SSL B: choose cipher, generates RB

send [B, cipher chosen, certB, random RB]

• SSL A: generate S // pre-master secret

K ← f(S,RA,RB) // master secret
send [encP(S, pubB), hash1(handshake,K)]

• SSL B: send [hash2(handshake)]

• SSL A: if hash2 verifies, B authenticated

send [enc(pw, K-derived-key)]

• SSL B: if pw verifies, A authenticated

A can also use certA for authenticating itself to B

5/29/2013 shankar authentication slide 30

SSL

• S: pre-master secret
• K: master secret

• K = f(S, RA, RB)
• Keys for data encryption/integrity obtained from K, RA, RB

• A’s write (transmit) key = B’s read (receive) key
• B’s write (transmit) key = A’s read (receive) key

• A does two public-key crypto operations

• verifying certB
• calcluating {S}B

• To minimize this, S can be reused across different sessions
• motivated by http 1.0 (opens many A-B tcp sessions)
• session id

5/29/2013 shankar authentication slide 31

SSL

ssl A

[B, ciphers, RA] →
ssl A

← [B, session-id = X, certB, cipher, RB] initial

session

new session later on

[x,y,B, session-id = X, ciphers, RA] →

← [B, session-id = X, certB, cipher, RA,
keyed hash of handshake]

if ssl A still
has X:S,

can reuse it

[x,y, keyed hash of handshake] →

5/29/2013 shankar authentication slide 32

IPsec

5/29/2013 shankar authentication slide 33

IPsec

• IPsec sits above IP and below TCP, UDP, …

• IP packet: [IP hdr, IPsec hdr, TP hdr, TP payload]

 ←−−−−- IP payload −−−−−−−→

 ←− IPsec payload →

• TP is IP: “tunnel” mode // often used to tunnel IP traffic

• TP is not IP: “transport” mode

apps apps

TCP UDP … TCP UDP …

IPsec IPsec

IP LRD/attacker channel IP

5/29/2013 shankar authentication slide 34

IPsec: generic header

• IP hdr

• sender ip addr, rcvr ip addr
• hop count // mutable
• next protocol id: TCP, UDP, IP, IPsec (AH or ESP), …

• IPsec header (generic):
• SPI (security parameter index): identiifies IPsec
connection (SA)

• sequence number: of IPsec packet (for replay attacks)
• IV (for encryption/integrity)
• authentication data (integrity check)
• next protocol id: (TCP, UDP, IP, …)

5/29/2013 shankar authentication slide 35

IPsec: Security association

• IPsec SA (security association): IPsec connection
• An SA is one-way, so need two SAs for bi-directional flow

• IPsec entity in a node has
• Security policy database (control path)
� for <ip addr, port, etc>:

• crypto or not? type, integrity/encryp, …
• SA (security association) database (data path)
� outgoing: for remote ip addr:

• SPI, crypto key/alg, sequence number
� incoming: for SPI:

• crypto key/algo, expected seq number, …

5/29/2013 shankar authentication slide 36

IPsec: AH and ESP

• IPsec headers are in two flavors

• AH hdr:

• SPI, sequence number, auth data, next protocol id

• integrity only but on enclosing IP
<payload + “immutable” header>

• not compatible with NAT, firewalls

• ESP hdr:

• SPI, seq number, IV, auth data, next protocol id

• integrity and/or encryption on enclosing IP payload

• compatible with NAT, firewalls

5/29/2013 shankar authentication slide 37

IPsec: IKE

• For an IPsec SA to operate,
its parameters (integrity/encryp, key, …) must be set
in the (SA database of the) end-points of the SA

• Can be done manually by end-point administrators
or dynamically using IKE

• IKE runs over UDP, has two phases, and is an UGLY MESS

