414-513 (Shankar)

Exam 2 SOLUTION Page 1121

3 problems. 40 points. 25 minutes

Closed book. Closed notes. No electronic device. Write your name above.

Assume the Ubuntu environment when answering these questions.

1. [20 points]

int func(int arg)

This program is compiled without Stack Guard, and executed
such that variable j1 is allocated at address 0x00000100.

‘ Tong j2; Below, “draw the stack layout” means indicate, in the provided
char buf[16]: drawing, the contents of the stack from address 0x100 to the top
FILE *badfile: of stack, and give the addresses of the contents at the side.

2 As usual, grow the stack downward.
badfile = fopen("badfile", "r"); -
fread(buf, sizeof(char), 40, badfile): (a) Draw the stack layout when control comes to sl (i.e., the next
return argl: instruction to be executed is func(jl)).

3

j1 0x100 e 4 pts total.

int main(int argc, char *xargv) e —1 for incorrect address

{ baa 0x0e0 (eg, decimal instead of
Tong jl; hex)
char baal321; e —1 for having addresses
jl1 =4 increasing

sl: e —2 for extraneous values
func(jl); e (if no baa
return 1;

3

(b) Draw the stack layout when control comes to s2. (c) Supply the contents of file badfile so that when
control returns from func(), it starts executing at ad-
dress 0x00044444,

jl 0x100
0
baa <don’t care>

0x0e0

arg (=4) 0x0dc

saved eip 0x0d8

saved ebp 0x0d4

j2 0x0d0

buf 0x0cO

*padfil e 0x0bc

14 pts total

—1 for having addresses increasing

2 pts for each entry (content, address, order).
—1 for giving offsets but not addresses.

lose (more) points for (more) extraneous entries.

0x00044444 | 24
<don’t care>

e 2 pts total
e | pt for address
e | pt for content




414-513 (Shankar) Exam 2 SOLUTION Page 2/2]

2. [10 points] Here are two files owned by root:
e /passwd.txt: text file that contains user passwords. Root has read-write-execute access. All other users have no
access.
e /chpwd: executable file that users can run to change their passwords. Root has read-write-execute access. All
other users have write-execute access. The setuid bit is set (so it is a set-root-uid file).

Does this configuration allow an ordinary (i.e., non-root) user to delete passwd.txt?
If no, explain briefly.
If yes, briefly give the steps of the attack.

Solution

Yes.

e User develops a program, say xx, that deletes file passwd.txt, e.g.,

— executable of C program along the following lines:
main() {
remove(/passwd.txt)
3

— bash script along the following lines:
##! /bin/bash
rm -f /passwd.txt

— shellcode (to get a root shell from which passwd.txt can be deleted).
e User writes xx into /chpwd (can do this because it has write access).

e User executes xx. This deletes /passwd.txt because it executes with root privilege.

Grading

e Max 3 points for attempting a buffer-overflow attack on original chpwd.
(You cannot assume that chpwd has such a vulnerability.)

e Max 3 points for some explanation as to why attack is not doable.

3. [10 points] For each of the following CPU instructions, indicate whether or not attempting to execute the instruc-
tion in user mode results in an (illegal instruction) exception.

Write “EX to indicate that it does result in an exception. Write “NX” otherwise.

e set kernel mode
Solution: EX

e add the contents of ebx to eax
Solution: NX

e int 0x80 // software interrupt 0x80
Solution: NX (does not cause an illegal instruction exception)

e push ebx
Solution: NX

e disable interrupts
Solution: EX

Grading: 2 pts for each.



