1. [10 points]

A website maintains an SQL table YY with a row for every user and columns NAME, PWD, AGE and others.

- To change its password, a user sends a GET request with path /chpw.php?a1=<name>&a2=<opwd>&a3=<npwd>. The server looks for an entry in YY with NAME=<name> and PWD=<opwd>; if found, it sets PWD field to <npwd>.

- To get a user’s age, a user sends a GET request with path /getage.php?a1=<name>. The server looks for an entry in YY with NAME=<name>; if found, it returns the entry’s AGE field.

The server does no additional checks on these operations.

Among the users are Ted and Bob (these are their NAME entries). Ted does not know Bob’s PWD value.

Give the path of a GET request that Ted can issue in order to change Bob’s password to fqr123.

Solution

Assume

```sql
chpw.php(name,opwd,npwd):
    UPDATE YY
    SET PWD="npwd" WHERE NAME="name" AND PWD="opwd"

getage.php(name):
    SELECT AGE FROM YY WHERE NAME="name"
```

Possible attack paths

- /chpw.php?a1=bob"/*&opwd=*/-&npwd=fqr123
 // SQL: UPDATE YY SET PWD="fqr123" WHERE NAME="bob"- ...

- getage.php?a1=bob;UPDATE+YY+SET+PWD="fqr123"+WHERE+NAME="Bob"
 // SQL: UPDATE YY SET PWD="fqr123" WHERE NAME="bob"

End of solution

2. [10 points]

This problem concerns a browser c1, website s1, and attacker website s2.

- c1 clicks http://s1/p1.html. In the response, s1 sets a cookie for domain s1.
- Then c1 clicks http://s2/p2.html.
- Then p1.html regularly issues POST requests to s1. Each POST request contains the cookie value in its data.

The server treats a request as valid if the cookie value (in the request header) matches the value in the data.

For each of the following cases, answer whether p2.html can send a POST request to s1 that the latter treats as valid. Write “YES” if it can, and “NO” if it cannot. (Below, “unguessable” is equivalent to “randomly generated”.)

<table>
<thead>
<tr>
<th>S1-cookie name</th>
<th>S1-cookie value</th>
<th>Your answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>guessable</td>
<td>guessable</td>
<td>YES</td>
</tr>
<tr>
<td>guessable</td>
<td>unguessable</td>
<td>NO</td>
</tr>
<tr>
<td>unguessable</td>
<td>guessable</td>
<td>YES</td>
</tr>
<tr>
<td>unguessable</td>
<td>unguessable</td>
<td>NO</td>
</tr>
</tbody>
</table>

If s2 knows the cookie value, p2.html can have a form element that posts to s1 with the cookie value in its data. Client c1 includes the cookie in the header.
3. [20 points]
This problem concerns a browser c_1, a website s_1, and an attacker website s_2 that can also eavesdrop, intercept and send messages on the network link between c_1 and s_1. (Note: both https and http are used.)

- c_1 clicks $https://s_1/p_1.html$. In the response, s_1 sets a secure cookie for domain s_1.
- Then c_1 clicks $http://s_2/p_2.html$.
- Then $p_1.html$ regularly issues POST requests to $https://s_1$ and GET requests to $http://s_1$.
 Each POST request contains the cookie value in its data.
 s_1 accepts a POST request iff the value of the cookie (in the request header) matches the value in the data.

Part a Suppose s_1-cookie has a guessable name and an unguessable value. Can $p_2.html$ send a POST request to s_1 that the latter treats as valid. If yes, give the steps of the attack. If no, explain briefly.

Solution
Yes, an attack is doable.

Let $scname$ denote the cookie’s name; s_2 knows this because it’s guessable.

- s_2 eavesdrops and waits for c_1 to send an $http://s_1$ request (which is in an unencrypted TCP message).
- s_2 intercepts this http request and sends (in a TCP message) an http response to c_1 that sets cookie $scname$ to a value, say $scval$ (using response header $Set-Cookie: scname=scval$).
- c_1 receives the http response and sets $scname$’s value to $scval$ (even though it received $scval$ the Set-cookie header over http).
- $p_2.html$ learns of $scval$; eg, it periodically queries s_2.
- $p_2.html$ can now use a form to construct a POST request to $https://s_1$ with $scval$ in its data. c_1 will attach the cookie in the header.

Grading
5 pts max: if you say s_2 can obtain cookie name/value by eavesdropping.
7 pts: if you say s_2 cannot obtain cookie name/value by eavesdropping because it is only sent via $https$.
Lose points for incorrect/irrelevant claims.

End of solution

Part b Same as part a but now suppose s_1-cookie has an unguessable name and a guessable value.

Solution
Yes, an attack is doable.

Let $scval$ denote the cookie’s value; s_2 knows this because it is guessable.
$p_2.html$ can use a form to construct a POST request to $https://s_1$ with $scval$ in its data. c_1 will attach the cookie in the header. (Note that $scname$ is not needed in the data.)

Grading
5 pts max: if you say s_2 can obtain cookie name/value by eavesdropping.
Lose points for incorrect/irrelevant claims.

End of solution