1. Distributed “laxlock” service

Informal description: A “laxlock” is like a lock except that it can be held simultaneously by up to N threads, where N is a positive integer parameter. So you can view it as a collection of N “tokens”. A thread calls `acq()` to acquire a token and `rel()` to release the token it holds. For convenience, we say a thread is “hungry” if it is in `acq()`, “eating” if it holds a permit, and “thinking” otherwise.

A distributed laxlock is one that can be accessed at different addresses. A thread can acquire a token from one address and release it at another.

Service program: Define a distributed laxlock service with addresses 0 and 1. At each address j, there are input functions $v_j.acq()$ and $v_j.rel()$, where v_j is the sid of the local access system. A skeleton is provided below:

```c
service Laxlock(int N) {
    ic [N≥1]
    ...
    Map v ← map([0,sid()], [1,sid()])
    return v

    v[0..1].acq() {
        ic [...]
        ...
        oc [...]
        ...
    }

    v[0..1].rel() {
        ic [...]
        ...
        oc [...]
        ...
    }

    progress assumption [...] // should imply weak fairness at each address, but using only leads-to assertions
}
```

To do:

Supply the missing parts (indicated by “...”).
2. A distributed laxlock implementation attempt

The program below is an attempt at implementing a distributed laxlock. Roughly speaking, the available tokens are divided between the addresses. A local thread attempts to balance the numbers of tokens across addresses.

The goal of this exercise is to get you to do an assertional proof of safety. The program has a global “auxiliary” variable, eating, indicating the set of eating threads. We would not need this if we had the desired-service program.

For your analysis, use the effective atomicity indicated by the ●’s (it is the same as that provided by the awaits).

```plaintext
program LaxDist(N) {
  Bag eating ← []
  Map v
    v[0] ← startSystem(Lax(0))
    v[1] ← startSystem(Lax(1))
  w ← startSystem(Adjuster(v[0], v[1]))
} // LaxDist

program Adjuster(Sid v0, Sid v1) {
  int bal ← 0
  int y ← 0
  t ← startThread(f())

  function f():
    while (true)
      [bal, y] ← v0.adjust(bal, y)
      [bal, y] ← v1.adjust(bal, y)
    // sleep a bit

  atomicity assumption { }
  progress assumption {wfair for all threads}
} // Adjuster

program Lax(0..1 i) {
  int x ← if (i = 0) N else 0
  return mysid

  input mysid.acq():
    ia {mytid not in eating}
    ● await (x > 0)
    x ← eating.add(mytid)
    return

  input mysid.rel():
    ia {mytid in eating}
    ● await (true)
    x ++
    eating.remove(mytid)
    return

  input mysid.adjust(int bal, int y):
    ● await (true)
    x ← x + bal
    if (x ≥ y + 2)
      tmp ← (x − y)/2 // integer division
      x ← x − tmp
      return [tmp, x]
    else
      return [0, x]

  atomicity assumption {await}
  progress assumption {wfair for all threads}
} // Lax

To do:

Does LaxDist(N) satisfy Inv P, where

P : eating.size ≤ N

If you answer yes, give a predicate, say B, such that

- B is established by the initial step.
- B is unconditionally preserved by every other atomic step.
- B ⇒ P holds.

If you answer no, give a finite allowed evolution ending in a state where P does not hold.

Don’t give any other explanations.