
CMSC 712 Hw 2 (sep 25) page 1/2

1. Distributed “laxlock” service

Informal description: A “laxlock” is like a lock except that it can be held simultaneously by upto N threads, where
N is a positive integer parameter. So you can view it as a collection of N “tokens”. A thread calls acq() to acquire a
token and rel() to release the token it holds. For convenience, we say a thread is “hungry” if it is in acq), “eating” if it
holds a permit, and “thinking” otherwise.

A distributed laxlock is one that can be accessed at different addresses. A thread can acquire a token from one address
and release it at another.

Service program: Define a distributed laxlock service with addresses 0 and 1, At each address j, there are input
functions vj.acq() and vj.rel(), where vj is the sid of the local access system. A skeleton is provided below:

service Laxlock(int N) {
ic {N≥ 1}
...
Map v ← map([0,sid()], [1,sid()])
return v

v[0..1 j].acq() {
ic {...}
...
oc {...}
...

}

v[0..1 j].rel() {
ic {...}
...
oc {...}
...

}

progress assumption {...} // should imply weak fairness at each address, but using only leads-to assertions
}

To do:

Supply the missing parts (indicated by “...”).



CMSC 712 Hw 2 (sep 25) page 2/2

2. A distributed laxlock implementation attempt

The program below is an attempt at implementing a distributed laxlock. Roughly speaking, the available tokens are
divided between the addresses. A local thread attempts to balance the numbers of tokens across addresses.

The goal of this exercise is to get you to do an assertional proof of safety. The program has a global “auxiliary”
variable, eating, indicating the set of eating threads. We would not need this if we had the desired-service program.

For your analysis, use the effective atomicity indicated by the •’s (it is the same as that provided by the awaits).

program LaxDist(N) {
Bag eating ← []
Map v
v[0] ← startSystem(Lax(0))
v[1] ← startSystem(Lax(1))
w ← startSystem(Adjuster(v[0], v[1]))

} // LaxDist

program Adjuster(Sid v0, Sid v1) {
int bal ← 0
int y ← 0
t ← startThread(f())

function f():
while (true)

[bal, y] ← v0.adjust(bal, y)
[bal, y] ← v1.adjust(bal, y)
// sleep a bit

atomicity assumption { }
progress assumption {wfair for all threads}

} // Adjuster

program Lax(0..1 i) {
int x ← if (i= 0) N else 0
return mysid

input mysid.acq():
ia {mytid not in eating}
• await (x > 0)

x−−
eating.add(mytid)
return

input mysid.rel():
ia {mytid in eating}
• await (true)

x + +
eating.remove(mytid)
return

input mysid.adjust(int bal, int y):
• await (true)

x ← x + bal
if (x≥ y + 2)
tmp ← (x−y)/2 // integer division
x ← x−tmp
return [tmp, x]

else
return [0, x]

atomicity assumption {await}
progress assumption {wfair for all threads}

} // Lax

To do:

Does LaxDist(N) satisfy Inv P , where

P : eating.size ≤ N

If you answer yes, give a predicate, say B, such that

• B is established by the initial step.
• B is unconditionally preserved by every other atomic step.
• B ⇒ P holds.

If you answer no, give a finite allowed evolution ending in a state where P does not hold.

Don’t give any other explanations.


