Shared integer service

Informal description: A service consisting of an integer, say \(v \), that can be accessed via a function \(f(x) \), where \(x \) is a non-zero integer (positive or negative). Multiple calls (by different threads) can be simultaneously ongoing. The call adds \(x \) to \(v \) and returns the new value of \(x \) only if non-negative, blocking if the value is negative (until another thread makes \(v \) non-negative).

Regarding progress, a blocked thread eventually returns if \(v \) is continuously non-negative.

Service program B1

Here is a service program that formalizes the above informal description in a straightforward way.

```plaintext
service B1() {
    int v ← 0
    return mysid

    input f(int x):
        // input part
        ic {x ≠ 0} // abort if ic does not hold
        // output part
        output (y) // return any y that satisfies the oc
        oc {y = v+x ≥ 0}
        v ← v+x
        return y

    progress assumption:
    ((thread t at oc) and (v + t.x ≥ 0)) leads-to
    ((t not at oc) or (v + t.x < 0))
}
```

This formalization of the informal English description is not conducive to parallelism in implementations. It requires an implementation to funnel all inputs to one location.

Question: Can the update to \(v \) be done in the input part. If so, would it be the same service?
Service program B2

We now come up with a service program that perhaps allows implementations with more parallelism. Specifically, we will adopt the notion of serializability (from database literature):

- Let the **global history** at any point be the sequence of calls and returns so far.
- For any user, let its **local history** be the sequence of its calls and its returns.
- A global history is **serial** if each return is immediately preceded by its call and each value returned is the sum of all previous call values. (Note: this allows a suffix of ongoing calls.)
- The global history is **serializable** if it can be reordered to a sequence that is serial and preserves each user’s local history. (Equivalently, the global history is a merge of all its local histories.)
- The service can return any value such that the global history is serializable.

Now to cast the above as a service program.

Introduce a global history variable \(gh \) that is a sequence of call and return entries. A **call entry** is a tuple \([\text{CALL}, x, j]\), where \(\text{CALL} \) is a constant, \(x \) is the parameter of the call, and \(j \) is the caller’s tid (thread id). A **return entry** is a tuple \([\text{RET}, y, j]\), where \(\text{RET} \) is a constant, \(y \) is the value returned, and \(j \) is the caller’s tid.

```plaintext
service B2() {
    constants CALL, RET
    type Hstry = “sequence of call entries and return entries”
    // helper functions
    bool serial(Hstry α) (“return true iff α is serial”)
    Seq H(Tid j, Hstry α) (“return j’s local history of α”)
    bool valid1(Hstry α) (“return true iff α is serializable”)
    // variable: global history
    Hstry gh ← []
    return mysid

    input f(int x):
        // input part
        ic {x ≠ 0}
        gh.append([CALL, x, mytid])
    // output part
    output(int y)
        oc {valid1(gh ◦ [[RET,y,mytid]]) and y ≥ 0} // ◦: concatenation
        gh.append([RET, y, mytid])
    return y

    progress assumption:
        // t.oc is the output condition for thread t
        ((thread t at oc) and (t.oc)) leads-to ((t not at oc) or (not t.oc))
    }
```

Question: Is B2 more general than B1? Can you come up with an io sequence that B2 can generate but B1 cannot?
Service program B3

Service B2 allows a value to be returned only if all values that are used to make that value have already returned. This makes sense when the operations are database transactions, because until a transaction ends (commits), the service must allow for the possibility that it will abort. So if transaction p reads from transaction q, then the service cannot end p before ending q (otherwise, q may abort after p’s return).

But in our service, the operations are simple additions; there are no aborts. So it is ok to return a value p even if that value depends on a value q that has not yet been returned provided q will eventually be returned (without any help from the environment). This is accomodated in the following service program.

```plaintext
service B3() {
    // as in B2()
    CALL, RET, Hstry, serial(...) [...], lh(...) [...]
    Hstry gh ← []
    return mysid

    bool valid2(Hstry α) {
        "return true iff α can be extended with returns to a sequence that is serializable"
        
        input f(int x):
            // input part
            ic {x ≠ 0}
            gh.append([CALL, x, mytid])
        
        output(int y)
            oc {valid2(gh ◦ [[RET, y, mytid]]) and y ≥ 0}
            gh.append([RET, y, mytid])
            return y

    progress assumption:
        // t.oc is the output condition for thread t
        ((thread t at oc) and (t.oc)) leads-to ((t not at oc) or (not t.oc))
    }
```
Implementation A1

Here is a program A1() intended to implement B1, B2 and/or B3.

```
program A1() {
    int v ← 0
    return mysid

    input f(int x):
    a1: await (v + x ⩾ 0)
        v ← v+x
        return v

    progress assumption:
        weak fairness for all threads
}
```

Note: \texttt{await} (B) S means do S only if B holds, and do it atomically with the evaluation of B. Here, B is a predicate (no side effect), and S is a non-blocking update.
Does A_1 implement B_1

Because A_1 and B_1 are almost identical, this obviously holds, but we’ll go through the steps anyway.

In terms of evolutions, A_1 implements B_1 if

- **(Safety)** for every finite evolution x of A_1 that is safe wrt B_1
 - if A_1 can output f at the end of x then $x \circ [f]$ is safe wrt B_1
 - any step that A_1 can do at the end of x is fault-free
 - for any input f, if $x \circ [f]$ is safe wrt B_1 then A_1 can accept f

- **(Progress)** for every evolution x of A_1 that is safe wrt B_1
 - if x satisfies A_1’s progress assumption, x is complete wrt B_1

To state this in terms of programs A_1 and B_1, first define B_1’s inverse, say $\overline{B_1}$.

```
service $\overline{B_1}$(Sid p) {
  int v ← 0
  return mysid
}
```

```
output doF(int x):
  oc {x ≠ 0} // create a thread to execute output part when oc holds
  y ← p.f(x) // output part ends at ‘’, input part begins there
  ic {y = v+x ≥ 0} // thread aborts if not ic, else executes input part and ends
  v ← v+x
```

Progress condition: ‘‘same as B_1 progress assumption’’

Next define a program, say Z, of an A_1 system and a B_1 system concurrently executing.

```
program Z() {
  Sid p ← startSystem(A1())
  Sid q ← startSystem($\overline{B_1}$(p))
}
```

A_1 implements B_1 if (every evolution of) Z satisfies the following

- **(Safety)** if a thread is at doF.ic then doF.ic (i.e., its predicate) holds
- **(Progress)** q’s progress condition

To express the above in terms of assertions, first identify code chunks of Z that can be treated as atomic.

- initial step: A_1.main; B_1.main.
- call step: from q.doF(x) (including thread creation) to p.a1
- return step: from p.a1 to end p.doF(x) (including thread termination)

Then it suffices if Z satisfies the following assertions:

$P_1 : Inv ((thrd t at p.a1) and (p.v+t.x ≥ 0)) \Rightarrow (q.v+t.x ≥ 0)$

$P_2 : ((thrd t at p.a1) and (q.v+t.x ≥ 0)) \ leads-to ((thrd t not at p.a1) or (q.v+t.x < 0))$

For an assertional proof of P_1, we need to come up with a predicate that implies P_1’s predicate, is established by the initial step, and unconditionally preserved by every other step (i.e., call step and return step). Here is such a predicate:

$Q_1 : p.v = q.v$

P_2 follows from $Inv Q_1$ and p’s progress assumption (weak fairness). (We will see proof rules for progress later.)
Does A1 implement B3

We proceed as before, defining programs B3 (B3’s inverse) and Z.

```
service B3(Sid p) {
  // as in B3()
  CALL, RET, Hstry, serial(.) [...], lh(.) [...]
  Hstry gh ← []
  return mysid

  output doF(int x):
    oc {x ≠ 0} // create a thread to execute output part when oc holds
    y ← p.f(x) // output part ends at ‘←’, input part begins there
    ic {valid2(gh ◦ [[RET, y, mytid]]) and y ≥ 0}
    gh.append([[RET, y, mytid]])

    progress condition: ‘same as B3 progress assumption’
}

program Z() {
  Sid p ← startSystem(A1())
  Sid q ← startSystem(B3(p))
}
```

Atomic steps:
- call step: from q.doF(x) (including thread creation) to p.a1
- return step: from p.a1 to end p.doF(x) (including thread termination)

It suffices if Z satisfies the following assertions:

```
P1 : Inv ((thrd t at p.a1) and (y = p.v+t.x ≥ 0)) ⇒
  (valid2(q.gh ◦ [[RET, y, t]]) and y ≥ 0)
```

```
P2 : ((t at p.a1) and (p.v+t.x ≥ 0) and valid2(q.gh ◦ [[RET, p.v+t.x, t]]) leads-to
  ((t not at p.a1) or not ((p.v+t.x ≥ 0) and valid2(q.gh ◦ [[RET, p.v+t.x, t]])))
```

Proving P1

The key to proving P1 is to identify a serial order that A1 enforces. The natural candidate is the order in which A1 updates v. Augment A1 with auxiliary variable sh and function ongng as follows:

```
• sh: serial history
  - initialize sh to empty
  - do “sh ← sh ◦ [[CALL, x, mytid], [RET, v, mytid]]” just before “return v”
• ongng: subsequence of call entries in gh whose calls are still ongoing
```

For an assertional proof of P1, the conjunction of the following is an “adequate” predicate.

```
Q1 : serial(sh ◦ ongng)
Q2 : for all (Tid t: 1h(t, sh ◦ ongng) = 1h(t, gh))
Q3 : sh = [] or sh.last.value = v ≥ 0
```

Note: Q1–Q2 imply valid2(gh)
Here are more details about how Q_1–Q_3 is adequate.

Initial step:
- empties gh and sh, and zeroes v
- establishes Q_1, Q_2, Q_3

Call step $doF(x)$ by thread t:
- no change to sh
- appends $[CALL,x,t]$ to gh (and hence to output of ongng)
- establishes Q_1 given Q_1, i.e. unconditionally preserves Q_1 // Hoare-triple: $\{Q_1\}$ call step $\{Q_1\}$
- unconditionally preserves Q_2
- unconditionally preserves Q_3 // special case: nothing in Q_3 changes

Return step $doF(x)$ by thread t:
- appends $[CALL,x,t],[RET,v+t,x,t]$ to sh
- adds x to v; appends $[RET,v,t]$ to gh (which removes $[CALL,x,t]$ from ongng)
- establishes Q_1 given Q_1 and Q_3 (why is Q_3 needed?) // $\{Q_1,Q_3\}$ return step $\{Q_1\}$
- unconditionally preserves Q_2 // step affects Q_2 only for thread t
- unconditionally establishes Q_3 // $\{true\}$ return step $\{Q_3\}$

Proving P_2

Does it suffice to prove that Z satisfies the following?

$P_3 : ((t \text{ at } p.a_1) \land (p.v + t.x \geq 0) \text{ leads-to}
((t \text{ not at } p.a_1) \lor \neg ((p.v + t.x \geq 0))))$

If so, we are done because P_3 follows from A_1’s progress assumption.