CMSC 712 Shared integer service page 1/7

Shared integer service

Informal description: A service consisting of an integer, say v, that can be accessed via a function f(x), where x is
a non-zero integer (positive or negative). Multiple calls (by different threads) can be simultaneously ongoing. The call
adds x to v and returns the new value of x only if non-negative, blocking if the value is negative (until another thread
makes v non-negative).

Regarding progress, a blocked thread eventually returns if v is continuously non-negative.

Service program Bl

Here is a service program that formalizes the above informal description in a straightforward way.

service B1() {
intv < 0
return mysid

input f(int x):

// input part

ic Ix#03 // abort if ic does not hold

// output part

output (y) // return any y that satisfies the oc
oc {y = vix > 0}
Vo VX
return y

progress assumption:

((thread t at oc) and (v + t.x = 0)) leads-to
((t not at oc) or (v + t.x < 0))

This formalization of the informal English description is not conducive to parallelism in implementations. It requires
an implementation to funnel all inputs to one location.

Question: Can the update to v be done in the input part. If so, would it be the same service?



CMSC 712 Shared integer service page 2/7

Service program B2

We now come up with a service program that perhaps allows implementations with more parallelism. Specifically, we
will adopt the notion of serializability (from database literature):

* Let the global history at any point be the sequence of calls and returns so far.

* For any user, let its local history be the sequence of its calls and its returns.

* A global history is serial if each return is immediately preceded by its call and each value returned is the sum
of all previous call values. (Note: this allows a suffix of ongoing calls.)

* The global history is serializable if it can be reordered to a sequence that is serial and preserves each user’s
local history. (Equivalently, the global history is a merge of all its local histories.)

* The service can return any value such that the global history is serializable.

Now to cast the above as a service program.

Introduce a global history variable gh that is a sequence of call and return entries. A call entry is a tuple [CALL,x, j1,
where CALL is a constant, x is the parameter of the call, and j is the caller’s tid (thread id). A return entry is a tuple
[RET,y, j1, where RET is a constant, y is the value returned, and j is the caller’s tid.

service B2() {
constants CALL,RET
type Hstry = ‘‘sequence of call entries and return entries’’
// helper functions
bool serial(Hstry «) {‘‘return true iff « is serial’’}
Seq 1h(Tid j, Hstry a) {‘‘return j’s local history of o’’3
bool validl(Hstry «) {‘‘return true iff «v is serializable’’}
// variable: global history
Hstry gh < [1]
return mysid

input f(int x):

// input part

ic {x#03

gh.append(LCALL,x,mytid1)

// output part

output(int y)
oc {validl(gho [[RET,y,mytid11) and y=> 03} // o: concatenation
gh.append([RET,y,mytid])
return y

progress assumption:

// t.oc is the output condition for thread t
((thread t at oc) and (t.oc)) leads-to ((t not at oc) or (not t.oc))

Question: Is B2 more general than B1? Can you come up with an io sequence that B2 can generate but B1 cannot?



CMSC 712 Shared integer service page 3/7

Service program B3

Service B2 allows a value to be returned only if all values that are used to make that value have already returned. This
makes sense when the operations are database transactions, because until a transaction ends (commits), the service
must allow for the possibility that it will abort. So if transaction p reads from transaction ¢, then the service cannot
end p before ending ¢ (otherwise, ¢ may abort after p’s return).

But in our service, the operations are simple additions; there are no aborts. So it is ok to return a value p even if that
value depends on a value ¢ that has not yet been returned provided ¢ will eventually be returned (without any help
from the environment). This is accomodated in the following service program.

service B3() {
// as in B2()
CALL, RET, Hstry, serial(.) {...3, Th(.,.) {...3
Hstry gh < [1]
return mysid

bool valid2(Hstry a) {
“‘return true iff o can be extended with returns
to a sequence that is serializable’’ 3

input f(int x):

// input part

ic {x#0)

gh.append(LCALL,x,mytid1)

// output part

output(int y)
oc {valid2(gho [[RET,y,mytid]1]) and y=>03}
gh.append([RET,y,mytidl)
return y

progress assumption:
// t.oc is the output condition for thread t
((thread t at oc) and (t.oc)) Ieads-to ((t not at oc) or (not t.oc))



CMSC 712 Shared integer service page 4/7

Implementation Al

Here is a program AL() intended to implement B1, B2 and/or B3.

program A1() {
intv < 0
return mysid

input f(int x):
al: await (v +x = 0)
vV v
return v

progress assumption:
weak fairness for all threads

Note: await (B) S means do S only if B holds, and do it atomically with the evaluation of B. Here, B is a predicate (no
side effect), and S is a non-blocking update.



CMSC 712 Shared integer service page 5/7

Does Al implement B1

Because Al and B1 are almost identical, this obviously holds, but we’ll go through the steps anyway.
In terms of evolutions, A1 implements Bl if

 (Safety) for every finite evolution = of Al that is safe wrt B1
— if Al can output f at the end of z then z o [f] is safe wrt B
— any step that Al can do at the end of z is fault-free
— for any input f, if z o [f] is safe wrt B1 then Al can accept f
* (Progress) for every evolution x of Al that is safe wrt Bl
— if x satisfies Al’s progress assumption, x is complete wrt B1

To state this in terms of programs Al and B1, first define B1’s inverse, say B1.

service B1(Sid p) {
intv < 0
return mysid

output doF(int x):

oc (x#03} // create a thread to execute output part when oc holds
y < p.f(x) // output part ends at ‘‘ <=7, input part begins there
ic {y = vix = 03 // thread aborts if not ic, else executes input part and ends
Vo VX

progress condition: ‘‘same as Bl progress assumption’’
3

Next define a program, say Z, of an Al system and a B1 system concurrently executing.

program Z() {
Sid p « startSystem(A1())
Sid q « startSystem(B1(p))
3

Al implements Bl if (every evolution of) Z satisfies the following
* (Safety) if a thread is at doF. ic then doF.ic (i.e., its predicate) holds
* (Progress) q’s progress condition

To express the above in terms of assertions, first identify code chunks of Z that can be treated as atomic.
* initial step: Al.main; Bl.main.
e call step: from q.doF(x) (including thread creation) to p.al
* return step: from p.al to end p.doF(x) (including thread termination)
Then it suffices if Z satisfies the following assertions:
Py : Inv ((thrd t at p.al) and (p.v+t.x = 0)) = (q.v+t.x = 0)
Py : ((thrd t at p.al) and (q.v+t.x = 0)) leads-to ((thrd t not at p.al) or (q.v+t.x<0))

For an assertional proof of P;, we need to come up with a predicate that implies P;’s predicate, is established by the
initial step, and unconditionally preserved by every other step (i.e., call step and return step). Here is such a predicate:

Q1: p.v = q.v

P, follows from Inv (1 and p’s progress assumption (weak fairness). (We will see proof rules for progress later.)



CMSC 712 Shared integer service page 6/7

Does Al implement B3

We proceed as before, defining programs B3 (B3’s inverse) and Z.

service B3(Sid p) {
// as in B3()
CALL, RET, Hstry, serial(.) {...3, Th(.,.) (...3
Hstry gh < [1]
return mysid

output doF(int x):
oc {x#03 // create a thread to execute output part when oc holds
y < p.f(x) // output part ends at *“ < ’, input part begins there
ic {valid2(gho [[RET,y,mytid11) and y=>03
gh.append([RET,y,mytid1)

progress condition: ‘‘same as B3 progress assumption’’
3

program Z() {
Sid p < startSystem(Al())
Sid q + startSystem(B3(p))
3

Atomic steps:
* initial step: Al.main; Bl.main.
e call step: from q.doF(x) (including thread creation) to p.al
e return step: from p.al to end p.doF(x) (including thread termination)

It suffices if Z satisfies the following assertions:

P, : Inv ((thrd t at p.al) and (y = p.v+t.x = 0)) =
(valid2(q.gho [[RET, y, t11) and y > 0)
Py . ((t at p.al) and (p.v+t.x = 0) and valid2(q.gho [LRET, p.v+t.x, t11)) leads-to
((t not at p.al) or not ((p.v+t.x = 0) and valid2(q.gho L[LRET, p.v+t.x, t11)))

Proving P;

The key to proving P is to identify a serial order that Al enforces. The natural candidate is the order in which Al
updates v. Augment Al with auxiliary variable sh and function ongng as follows:
* sh: serial history
— initialize sh to empty
— do “sh ¢ sho[[CALL,x,mytid1, [RET,v,mytid11” just before “return v”
* ongng: subsequence of call entries in gh whose calls are still ongoing

For an assertional proof of P;, the conjunction of the following is an “adequate” predicate.

(21 : serial(shoongng)
Q2 : forall(Tid t: 1h(t, sho ongng) = Th(t, gh))
@3 : sh=1[1 or sh.last.value =v >0

Note: QQ1—Q)2 imply valid2(gh)



CMSC 712 Shared integer service

page 7/7

Here are more details about how (Q1—Q)3 is adequate.
Initial step:

* empties gh and sh, and zeroes v

* establishes @1, @2, Q3
Call step doF(x) by thread t:

* no change to sh

* appends [CALL,x,t] to gh (and hence to output of ongng)

* establishes ()1 given @)1, i.e. unconditionally preserves 1
* unconditionally preserves (o

* unconditionally preserves (03

Return step doF(x) by thread t:
e appends [CALL,x,t], [RET,v+x,t] to sh

// Hoare-triple: {Q1} call step {Q1}

/I special case: nothing in (3 changes

* adds x to v; appends [RET,v,t] to gh (which removes [CALL,x,t] from ongng)

* establishes ()1 given @1 and QY3 (why is Q3 needed?)
* unconditionally preserves Q2
* unconditionally establishes Q3

Proving P,

Does it suffice to prove that Z satisfies the following?

Ps: ((t at p.al) and (p.v+t.x = 0) leads-to
((t not at p.al) or not ((p.v+t.x = 0))))

If so, we are done because P5 follows from A;’s progress assumption.

/1{Q1,Qs3} return step {Q1}
/I step affects 2 only for thread t

// {true} return step {Qs}



