
CMSC 712 Shared integer service page 1/7

Shared integer service

Informal description: A service consisting of an integer, say v, that can be accessed via a function f(x), where x is
a non-zero integer (positive or negative). Multiple calls (by different threads) can be simultaneously ongoing. The call
adds x to v and returns the new value of x only if non-negative, blocking if the value is negative (until another thread
makes v non-negative).

Regarding progress, a blocked thread eventually returns if v is continuously non-negative.

Service program B1

Here is a service program that formalizes the above informal description in a straightforward way.

service B1() {
int v ← 0
return mysid

input f(int x):
// input part
ic {x 6= 0} // abort if ic does not hold
// output part
output (y) // return any y that satisfies the oc
oc {y = v+x ≥ 0}
v ← v+x
return y

progress assumption:
((thread t at oc) and (v + t.x ≥ 0)) leads-to

((t not at oc) or (v + t.x < 0))
}

This formalization of the informal English description is not conducive to parallelism in implementations. It requires
an implementation to funnel all inputs to one location.

Question: Can the update to v be done in the input part. If so, would it be the same service?



CMSC 712 Shared integer service page 2/7

Service program B2

We now come up with a service program that perhaps allows implementations with more parallelism. Specifically, we
will adopt the notion of serializability (from database literature):

• Let the global history at any point be the sequence of calls and returns so far.
• For any user, let its local history be the sequence of its calls and its returns.
• A global history is serial if each return is immediately preceded by its call and each value returned is the sum

of all previous call values. (Note: this allows a suffix of ongoing calls.)
• The global history is serializable if it can be reordered to a sequence that is serial and preserves each user’s

local history. (Equivalently, the global history is a merge of all its local histories.)
• The service can return any value such that the global history is serializable.

Now to cast the above as a service program.

Introduce a global history variable gh that is a sequence of call and return entries. A call entry is a tuple [CALL,x,j],
where CALL is a constant, x is the parameter of the call, and j is the caller’s tid (thread id). A return entry is a tuple
[RET,y,j], where RET is a constant, y is the value returned, and j is the caller’s tid.

service B2() {
constants CALL,RET
type Hstry = ‘‘sequence of call entries and return entries’’
// helper functions
bool serial(Hstry α) {‘‘return true iff α is serial’’}
Seq lh(Tid j, Hstry α) {‘‘return j’s local history of α’’}
bool valid1(Hstry α) {‘‘return true iff α is serializable’’}
// variable: global history
Hstry gh ← []
return mysid

input f(int x):
// input part
ic {x 6= 0}
gh.append([CALL,x,mytid])
// output part
output(int y)

oc {valid1(gh ◦ [[RET,y,mytid]]) and y≥ 0} // ◦: concatenation
gh.append([RET,y,mytid])
return y

progress assumption:
// t.oc is the output condition for thread t
((thread t at oc) and (t.oc)) leads-to ((t not at oc) or (not t.oc))

}

Question: Is B2 more general than B1? Can you come up with an io sequence that B2 can generate but B1 cannot?



CMSC 712 Shared integer service page 3/7

Service program B3

Service B2 allows a value to be returned only if all values that are used to make that value have already returned. This
makes sense when the operations are database transactions, because until a transaction ends (commits), the service
must allow for the possibility that it will abort. So if transaction p reads from transaction q, then the service cannot
end p before ending q (otherwise, q may abort after p’s return).

But in our service, the operations are simple additions; there are no aborts. So it is ok to return a value p even if that
value depends on a value q that has not yet been returned provided q will eventually be returned (without any help
from the environment). This is accomodated in the following service program.

service B3() {
// as in B2()
CALL, RET, Hstry, serial(.) {...}, lh(.,.) {...}
Hstry gh ← []
return mysid

bool valid2(Hstry α) {
‘‘return true iff α can be extended with returns
to a sequence that is serializable’’}

input f(int x):
// input part
ic {x 6= 0}
gh.append([CALL,x,mytid])
// output part
output(int y)

oc {valid2(gh ◦ [[RET,y,mytid]]) and y≥ 0}
gh.append([RET,y,mytid])
return y

progress assumption:
// t.oc is the output condition for thread t
((thread t at oc) and (t.oc)) leads-to ((t not at oc) or (not t.oc))

}



CMSC 712 Shared integer service page 4/7

Implementation A1

Here is a program A1() intended to implement B1, B2 and/or B3.

program A1() {
int v ← 0
return mysid

input f(int x):
a1: await (v + x ≥ 0)

v ← v+x
return v

progress assumption:
weak fairness for all threads

}

Note: await (B) S means do S only if B holds, and do it atomically with the evaluation of B. Here, B is a predicate (no
side effect), and S is a non-blocking update.



CMSC 712 Shared integer service page 5/7

Does A1 implement B1

Because A1 and B1 are almost identical, this obviously holds, but we’ll go through the steps anyway.

In terms of evolutions, A1 implements B1 if

• (Safety) for every finite evolution x of A1 that is safe wrt B1
– if A1 can output f at the end of x then x ◦ [f ] is safe wrt B1
– any step that A1 can do at the end of x is fault-free
– for any input f , if x ◦ [f ] is safe wrt B1 then A1 can accept f

• (Progress) for every evolution x of A1 that is safe wrt B1
– if x satisfies A1’s progress assumption, x is complete wrt B1

To state this in terms of programs A1 and B1, first define B1’s inverse, say B1.

service B1(Sid p) {
int v ← 0
return mysid

output doF(int x):
oc {x 6= 0} // create a thread to execute output part when oc holds
y ← p.f(x) // output part ends at ‘‘← ’’, input part begins there
ic {y = v+x ≥ 0} // thread aborts if not ic, else executes input part and ends
v ← v+x

progress condition: ‘‘same as B1 progress assumption’’
}

Next define a program, say Z, of an A1 system and a B1 system concurrently executing.

program Z() {
Sid p ← startSystem(A1())
Sid q ← startSystem(B1(p))

}

A1 implements B1 if (every evolution of) Z satisfies the following

• (Safety) if a thread is at doF.ic then doF.ic (i.e., its predicate) holds
• (Progress) q’s progress condition

To express the above in terms of assertions, first identify code chunks of Z that can be treated as atomic.

• initial step: A1.main; B1.main.
• call step: from q.doF(x) (including thread creation) to p.a1
• return step: from p.a1 to end p.doF(x) (including thread termination)

Then it suffices if Z satisfies the following assertions:

P1 : Inv ((thrd t at p.a1) and (p.v + t.x ≥ 0)) ⇒ (q.v + t.x ≥ 0)
P2 : ((thrd t at p.a1) and (q.v + t.x ≥ 0)) leads-to ((thrd t not at p.a1) or (q.v + t.x< 0))

For an assertional proof of P1, we need to come up with a predicate that implies P1’s predicate, is established by the
initial step, and unconditionally preserved by every other step (i.e., call step and return step). Here is such a predicate:

Q1 : p.v = q.v

P2 follows from Inv Q1 and p’s progress assumption (weak fairness). (We will see proof rules for progress later.)



CMSC 712 Shared integer service page 6/7

Does A1 implement B3

We proceed as before, defining programs B3 (B3’s inverse) and Z.

service B3(Sid p) {
// as in B3()
CALL, RET, Hstry, serial(.) {...}, lh(.,.) {...}
Hstry gh ← []
return mysid

output doF(int x):
oc {x 6= 0} // create a thread to execute output part when oc holds
y ← p.f(x) // output part ends at ‘‘← ’’, input part begins there
ic {valid2(gh ◦ [[RET,y,mytid]]) and y≥ 0}
gh.append([RET,y,mytid])

progress condition: ‘‘same as B3 progress assumption’’
}

program Z() {
Sid p ← startSystem(A1())
Sid q ← startSystem(B3(p))

}

Atomic steps:

• initial step: A1.main; B1.main.
• call step: from q.doF(x) (including thread creation) to p.a1
• return step: from p.a1 to end p.doF(x) (including thread termination)

It suffices if Z satisfies the following assertions:

P1 : Inv ((thrd t at p.a1) and (y = p.v + t.x ≥ 0)) ⇒
(valid2(q.gh ◦ [[RET, y, t]]) and y ≥ 0)

P2 : ((t at p.a1) and (p.v + t.x ≥ 0) and valid2(q.gh ◦ [[RET, p.v + t.x, t]])) leads-to
((t not at p.a1) or not ((p.v + t.x ≥ 0) and valid2(q.gh ◦ [[RET, p.v + t.x, t]])))

Proving P1

The key to proving P1 is to identify a serial order that A1 enforces. The natural candidate is the order in which A1
updates v. Augment A1 with auxiliary variable sh and function ongng as follows:

• sh: serial history
– initialize sh to empty
– do “sh ← sh ◦ [[CALL,x,mytid], [RET,v,mytid]]” just before “return v”

• ongng: subsequence of call entries in gh whose calls are still ongoing

For an assertional proof of P1, the conjunction of the following is an “adequate” predicate.

Q1 : serial(sh ◦ ongng)
Q2 : forall(Tid t: lh(t, sh ◦ ongng) = lh(t, gh))
Q3 : sh = [] or sh.last.value = v ≥ 0

Note: Q1–Q2 imply valid2(gh)



CMSC 712 Shared integer service page 7/7

Here are more details about how Q1–Q3 is adequate.

Initial step:

• empties gh and sh, and zeroes v
• establishes Q1, Q2, Q3

Call step doF(x) by thread t:

• no change to sh
• appends [CALL,x,t] to gh (and hence to output of ongng)
• establishes Q1 given Q1, i.e. unconditionally preserves Q1 // Hoare-triple: {Q1} call step {Q1}
• unconditionally preserves Q2

• unconditionally preserves Q3 // special case: nothing in Q3 changes

Return step doF(x) by thread t:

• appends [CALL,x,t], [RET,v+x,t] to sh
• adds x to v; appends [RET,v,t] to gh (which removes [CALL,x,t] from ongng)
• establishes Q1 given Q1 and Q3 (why is Q3 needed?) // {Q1, Q3} return step {Q1}
• unconditionally preserves Q2 // step affects Q2 only for thread t
• unconditionally establishes Q3 // {true} return step {Q3}

Proving P2

Does it suffice to prove that Z satisfies the following?

P3 : ((t at p.a1) and (p.v + t.x ≥ 0) leads-to
((t not at p.a1) or not ((p.v + t.x ≥ 0))))

If so, we are done because P3 follows from A1’s progress assumption.


