Shared integer service

Informal description: A service consisting of an integer, say v, that can be accessed via a function f(x), where x is a non-zero integer (positive or negative). Multiple calls (by different threads) can be simultaneously ongoing. The call adds x to v and returns the new value of x only if non-negative, blocking if the value is negative (until another thread makes v non-negative).

Regarding progress, a blocked thread eventually returns if v is continuously non-negative.

Service program B1

Here is a service program that formalizes the above informal description in a straightforward way.

```
service B1() {
  int v \leftarrow 0
  return mysid
  input f(int x):
    // input part
    ic {x \neq 0}
                                                                                       // abort if ic does not hold
    // output part
                                                                               // return any y that satisfies the oc
    output (y)
      oc {y = y+x \ge 0}
      v \leftarrow v + x
      return y
  progress assumption:
    ((thread t at oc) and (v + t.x \geq 0)) leads-to
       ((t not at oc) or (v + t.x < 0))
}
```

This formalization of the informal English description is not conducive to parallelism in implementations. It requires an implementation to funnel all inputs to one location.

Question: Can the update to v be done in the input part. If so, would it be the same service?

Service program B2

We now come up with a service program that perhaps allows implementations with more parallelism. Specifically, we will adopt the notion of serializability (from database literature):

- Let the global history at any point be the sequence of calls and returns so far.
- For any user, let its **local history** be the sequence of its calls and its returns.
- A global history is **serial** if each return is immediately preceded by its call and each value returned is the sum of all previous call values. (Note: this allows a suffix of ongoing calls.)
- The global history is **serializable** if it can be reordered to a sequence that is serial and preserves each user's local history. (Equivalently, the global history is a merge of all its local histories.)
- The service can return any value such that the global history is serializable.

Now to cast the above as a service program.

Introduce a global history variable gh that is a sequence of call and return entries. A **call entry** is a tuple [CALL,x,j], where CALL is a constant, x is the parameter of the call, and j is the caller's tid (thread id). A **return entry** is a tuple [RET, y, j], where RET is a constant, y is the value returned, and j is the caller's tid.

```
service B2() {
  constants CALL,RET
  type Hstry = "sequence of call entries and return entries"
  // helper functions
  bool serial(Hstry \alpha) {"return true iff \alpha is serial"}
  Seq 1h(Tid j, Hstry \alpha) {"return j's local history of \alpha"}
  bool valid1(Hstry \alpha) {"return true iff \alpha is serializable"}
  // variable: global history
  Hstry gh \leftarrow []
  return mysid
  input f(int x):
    // input part
    ic {x \neq 0}
    gh.append([CALL,x,mytid])
    // output part
    output(int y)
      oc {valid1(gh \circ [[RET, y, mytid]]) and y \geq 0} // \circ: concatenation
      gh.append([RET,y,mytid])
      return y
  progress assumption:
    // t.oc is the output condition for thread t
    ((thread t at oc) and (t.oc)) leads-to ((t not at oc) or (not t.oc))
}
```


Service program B3

Service B2 allows a value to be returned only if all values that are used to make that value have already returned. This makes sense when the operations are database transactions, because until a transaction ends (commits), the service must allow for the possibility that it will abort. So if transaction p reads from transaction q, then the service cannot end p before ending q (otherwise, q may abort after p's return).

But in our service, the operations are simple additions; there are no aborts. So it is ok to return a value p even if that value depends on a value q that has not yet been returned provided q will eventually be returned (without any help from the environment). This is accomodated in the following service program.

```
service B3() {
  // as in B2()
  CALL, RET, Hstry, serial(.) {...}, 1h(...) {...}
  Hstry gh \leftarrow []
  return mysid
  bool valid2(Hstry \alpha) {
    "return true iff \alpha can be extended with returns
   to a sequence that is serializable")
  input f(int x):
    // input part
    ic {x \neq 0}
    gh.append([CALL,x,mytid])
    // output part
    output(int y)
      oc {valid2(gh \circ [[RET, y, mytid]]) and y \geq 0}
      gh.append([RET,y,mytid])
      return y
  progress assumption:
    // t.oc is the output condition for thread t
    ((thread t at oc) and (t.oc)) leads-to ((t not at oc) or (not t.oc))
}
```

Implementation A1

Here is a program A1() intended to implement B1, B2 and/or B3.

```
program A1() {
    int v \leftarrow 0
    return mysid
    input f(int x):
a1: await (v + x \ge 0)
    v \leftarrow v+x
    return v
    progress assumption:
    weak fairness for all threads
}
```

Note: await (B) S means do S only if B holds, and do it atomically with the evaluation of B. Here, B is a predicate (no side effect), and S is a non-blocking update.

Does A1 implement B1

Because A1 and B1 are almost identical, this obviously holds, but we'll go through the steps anyway.

In terms of evolutions, A1 implements B1 if

- (Safety) for every finite evolution x of A1 that is safe wrt B1
 - if A1 can output f at the end of x then $x \circ [f]$ is safe wrt B1
 - any step that A1 can do at the end of x is fault-free
 - for any input f, if $x \circ [f]$ is safe wrt B1 then A1 can accept f
- (Progress) for every evolution x of A1 that is safe wrt B1
 - if x satisfies A1's progress assumption, x is complete wrt B1

To state this in terms of programs A1 and B1, first define B1's inverse, say $\overline{B1}$.

```
service \overline{B1}(\operatorname{Sid} p) {<br/>int v \leftarrow 0<br/>return mysidoutput doF(int x):<br/>oc \{x \neq 0\}v \leftarrow p.f(x)<br/>ic \{y = v+x \ge 0\}v \leftarrow v+x
```

```
progress condition: "same as B1 progress assumption"
```

```
}
```

Next define a program, say Z, of an A1 system and a B1 system concurrently executing.

```
program Z() {
   Sid p \leftarrow startSystem(A1())
   Sid q \leftarrow startSystem(B1(p))
}
```

A1 implements B1 if (every evolution of) Z satisfies the following

- (Safety) if a thread is at doF. ic then doF. ic (i.e., its predicate) holds
- (Progress) q's progress condition

To express the above in terms of assertions, first identify code chunks of Z that can be treated as atomic.

- initial step: A1.main; B1.main.
- call step: from q.doF(x) (including thread creation) to p.a1
- return step: from p.a1 to end p.doF(x) (including thread termination)

Then it suffices if Z satisfies the following assertions:

 $P_1: Inv ((thrd t at p.al) and (p.v+t.x \ge 0)) \Rightarrow (q.v+t.x \ge 0)$ $P_2: ((thrd t at p.al) and (q.v+t.x \ge 0)) leads-to ((thrd t not at p.al) or (q.v+t.x<0))$

For an assertional proof of P_1 , we need to come up with a predicate that implies P_1 's predicate, is established by the initial step, and unconditionally preserved by every other step (i.e., call step and return step). Here is such a predicate:

 $Q_1: p.v = q.v$

 P_2 follows from Inv Q_1 and p's progress assumption (weak fairness). (We will see proof rules for progress later.)

Does A1 implement B3

We proceed as before, defining programs $\overline{B3}$ (B3's inverse) and Z.

```
service \overline{B3}(\text{Sid p}) {
  // as in B3()
  CALL, RET, Hstry, serial(.) {...}, 1h(.,.) {...}
  Hstry gh \leftarrow []
  return mysid
  output doF(int x):
    oc {x \neq 0}
                                                               // create a thread to execute output part when oc holds
                                                                   // output part ends at "\leftarrow ", input part begins there
    y \leftarrow p.f(x)
    ic {valid2(gh \circ [[RET,y,mytid]]) and y \geq 0}
    gh.append([RET,y,mytid])
  progress condition: "same as B3 progress assumption"
}
program Z() {
  Sid p \leftarrow startSystem(A1())
  Sid q \leftarrow startSystem(\overline{B3}(p))
}
Atomic steps:
```

- initial step: A1.main; B1.main.
- call step: from q.doF(x) (including thread creation) to p.a1
- return step: from p.a1 to end p.doF(x) (including thread termination)

It suffices if Z satisfies the following assertions:

```
\begin{array}{l} P_1: \mbox{ Inv ((thrd t at p.al) and (y = p.v+t.x \geq 0)) \Rightarrow} \\ (valid2(q.gh \circ [[RET, y, t]]) \mbox{ and } y \geq 0) \\ P_2: ((t at p.al) \mbox{ and } (p.v+t.x \geq 0) \mbox{ and } valid2(q.gh \circ [[RET, p.v+t.x, t]])) \mbox{ leads-to} \\ ((t not at p.al) \mbox{ or not } ((p.v+t.x \geq 0) \mbox{ and } valid2(q.gh \circ [[RET, p.v+t.x, t]]))) \end{array}
```

Proving *P*₁

The key to proving P_1 is to identify a serial order that A1 enforces. The natural candidate is the order in which A1 updates v. Augment A1 with *auxiliary* variable sh and function ongng as follows:

- sh: serial history
 - initialize sh to empty
 - do "sh ← sh ∘ [[CALL, x, mytid], [RET, v, mytid]]" just before "return v"
- ongng: subsequence of call entries in gh whose calls are still ongoing

For an assertional proof of P_1 , the conjunction of the following is an "adequate" predicate.

 $\begin{array}{l} Q_1: \mbox{ serial(sh \circ \mbox{ ongng})} \\ Q_2: \mbox{ forall(Tid t: } lh(t,sh \circ \mbox{ ongng}) = lh(t,gh)) \\ Q_3: \mbox{ sh = [] or } sh.last.value = v \geq 0 \end{array}$

Note: $Q_1 - Q_2$ imply valid2(gh)

page 7/7

Here are more details about how $Q_1 - Q_3$ is adequate.

Initial step:

- empties gh and sh, and zeroes v
- establishes Q_1, Q_2, Q_3

Call step doF(x) by thread t:

- no change to sh
- appends [CALL,x,t] to gh (and hence to output of ongng)
- establishes Q_1 given Q_1 , i.e. unconditionally preserves Q_1
- unconditionally preserves Q_2
- unconditionally preserves Q₃

Return step doF(x) by thread t:

- appends [CALL,x,t], [RET, v+x,t] to sh
- adds x to v; appends [RET, v,t] to gh (which removes [CALL, x,t] from ongng)
- establishes Q_1 given Q_1 and Q_3 (why is Q_3 needed?)
- unconditionally preserves Q_2
- unconditionally establishes Q_3

Proving P_2

Does it suffice to prove that Z satisfies the following?

 P_3 : ((t at p.a1) and (p.v+t.x \geq 0) *leads-to* ((t not at p.a1) or not ((p.v+t.x \geq 0))))

If so, we are done because P_3 follows from A_1 's progress assumption.

// Hoare-triple: $\{Q_1\}$ call step $\{Q_1\}$

// special case: nothing in Q_3 changes

 $\label{eq:q1} \begin{array}{l} \textit{$// \{Q_1,Q_3\}$ return step $\{Q_1\}$} \\ \textit{$//$ step affects Q_2 only for thread t$} \\ \textit{$//$ $\{true\}$ return step $\{Q_3\}$} \end{array}$