Conventions

- $1(P)$, for a predicate P, denotes the indicator function of P, i.e., 1 if P holds and 0 otherwise.
- $X_{i, j}$ denotes $\left(X_{i}\right.$ and $\left.X_{j}\right)$
- $X_{i . . j}$ denotes $\left(X_{i}\right.$ and X_{i+1} and \cdots and $\left.X_{j}\right)$
- X satisfies invariance rule means
- initialization establishes X
- every atomic rule unconditionally preserves X
- X satisfies invariance rule given Y means
- Inv Y holds
- initialization establishes Y
- every atomic rule unconditionally establishes $Y \Rightarrow X$ starting from Y and X

Part a

Define the following predicates:

```
\(B_{0}: \alpha 01+\alpha 10+1\) (done) \(=1\)
\(B_{1}\) : union(s0.bg, s1.bg, \(\alpha 01, \alpha 10\) ) \(=\) union( \(\mathrm{B} 0, \mathrm{~B} 1\) )
\(B_{2}\) : s1.bg.size \(=\mathrm{B} 1\). size
\(B_{3}\) : s0.bg.size \(+\alpha 01+\alpha 10=\) B0.size
\(B_{4}: \alpha 10 \neq[] \Rightarrow \alpha 01\).head \(\leq \min (s 1 . \mathrm{bg}) \quad / /\) is it ok to write \(B_{4}\) as: \(\alpha 10\). head \(=\mathrm{q} \Rightarrow \mathrm{q} \leq \min (\mathrm{s} 1 . \mathrm{bg})\)
\(B_{5}\) : (done \(\left.\Rightarrow \max (\mathrm{s} 0 . \mathrm{bg})\right) \leq \min (\mathrm{s} 1 . \mathrm{bg})\)
```

$B_{0 . .5}$ satisfies the invariance rule and implies A_{0}

More detail on how $B_{0 . .5}$ satisfies invariance rule

Each of B_{0}, B_{1}, B_{2} and B_{3} (individually) satisfies the invariance rule.
B_{4} satisfies the invariance rule given Inv B_{0}. (Where is B_{0} used?)
B_{5} satisfies the invariance rule given $\operatorname{Inv} B_{4}$.

More detail on how $B_{0 . .5}$ implies A_{0}
$B_{0 . .3}$ and done imply s0.bg.size $=\mathrm{B} 0$. size, s1.bg.size $=\mathrm{B} 1$.size, and $\alpha 01$ and $\alpha 10$ are empty.
This and B_{5} imply A_{0}.

Part b

Consider the following function:
$G: \operatorname{sum}(u n i o n(s 0 . b g, \alpha 01, \alpha 10)$)
$/ /$ sum of integers in $\mathrm{s} 0 . \mathrm{bg}, \alpha 01$ and $\alpha 10$
The following hold:

$L_{1}:(G=k$ and $\alpha 01 \neq[])$	leads-to $(\alpha 10 \neq[]$ and $(G<k$ or $\alpha 10$.head $\geq \max (\mathrm{s} 0 . \mathrm{bg})))$	// via s1.receive
$L_{2}:(G=k$ and $\alpha 10 \neq[])$	leads-to $((G=k$ and $\alpha 01 \neq[])$ or done)	// via s0.receive
$L_{3}:(\alpha 10 \neq[]$ and $\alpha 10$. head $\geq \max (\mathrm{s} 0 . \mathrm{g}))$	leads-to done	// via s0.receive
$C_{0}: \operatorname{Inv} G \geq 0$		

So G is almost there; just need to augment it to handle L_{2} and L_{3} For brevity, define

$$
H: \alpha 10 \neq[] \text { and } \alpha 10 . \text { head } \geq \max (\mathrm{sog} \mathrm{~g})
$$

The following function works

$$
F:[G-1(H), \alpha 10 . \text { size }]
$$

