Conventions

- 1(P), for a predicate P, denotes the *indicator* function of P, i.e., 1 if P holds and 0 otherwise.
- $X_{i,j}$ denotes $(X_i \text{ and } X_j)$
- $X_{i..j}$ denotes $(X_i \text{ and } X_{i+1} \text{ and } \cdots \text{ and } X_j)$
- X satisfies invariance rule means
 - initialization establishes X
 - every atomic rule unconditionally preserves X
- X satisfies invariance rule given Y means
 - Inv Y holds
 - initialization establishes Y
 - every atomic rule unconditionally establishes $Y \Rightarrow X$ starting from Y and X

Part a

Define the following predicates:

 $B_{0..5}$ satisfies the invariance rule and implies A_0

More detail on how $B_{0..5}$ satisfies invariance rule

Each of B_0 , B_1 , B_2 and B_3 (individually) satisfies the invariance rule. B_4 satisfies the invariance rule given Inv B_0 . (Where is B_0 used?) B_5 satisfies the invariance rule given Inv B_4 .

More detail on how $B_{0..5}$ implies A_0

 $B_{0..3}$ and done imply s0.bg.size = B0.size, s1.bg.size = B1.size, and α 01 and α 10 are empty. This and B_5 imply A_0 .

Part b

Consider the following function:

G: sum(union(s0.bg, α 01, α 10))

// sum of integers in s0.bg, α 01 and α 10

The following hold:

 $\begin{array}{ll} L_1: (G = k \text{ and } \alpha 01 \neq \llbracket]) & \textit{leads-to} & (\alpha 10 \neq \llbracket] \text{ and } (G < k \text{ or } \alpha 10.\texttt{head} \geq \texttt{max}(\texttt{s0.bg}))) & \textit{// via s1.receive} \\ L_2: (G = k \text{ and } \alpha 10 \neq \llbracket]) & \textit{leads-to} & ((G = k \text{ and } \alpha 01 \neq \llbracket]) \text{ or done}) & \textit{// via s0.receive} \\ L_3: (\alpha 10 \neq \llbracket] \text{ and } \alpha 10.\texttt{head} \geq \texttt{max}(\texttt{s0.g})) & \textit{leads-to} & \textit{done} & \textit{// via s0.receive} \\ C_0: & \textit{Inv} G \geq 0 & \textit{// via s0.receive} \end{array}$

So G is almost there; just need to augment it to handle L_2 and L_3 For brevity, define

 $H: \ \alpha 10 \, \neq$ [] and $\alpha 10. \rm head \, \geq \rm max(s0.g)$

The following function works

 $F: [G -1(H), \alpha 10.size]$

// exactly one of the terms equals 1 and the others equal 0 // the elements of B0 and B1 are preserved

// is it ok to write B_4 as: α 10.head = q \Rightarrow q \leq min(s1.bg)