
712-S14 (Shankar) Hw 2 Page 1/6

This homework is concerned with the basics of assertional reasoning.

There are 3 simple problems, preceded by a sample problem and its solution.

Keep your answers brief, as in the example problem’s solution.

You will get full marks: if an answer is not adequate or too long, I’ll ask you to do it again.

The construct sum(f(j): j in α), where α is a set, sequence or bag, equals the sum of f(j) where j ranges over α

• e.g.: sum(f(j): j in 1..7) equals f(1) + f(2) + · · · + f(7)
• e.g.: sum(f(j): j in 1..0) equals 0

When answering a question of the form “Does program Z satisfy Inv P ”, do the following:

• If you answer yes, give a predicate, say B, such that
– B satisfies the invariance induction rule (see proofrules.pdf), and
– B ⇒ P holds.

• If you answer no, give a finite allowed evolution ending in a state where P does not hold.

When answering a question of the form “Does program Z satisfy P leads-to Q”, do the following:

• If you answer yes, give one or more leads-to assertions (each of the form X leads-to Y ) such that
– each leads-to assertion holds via the weak-fair or strong-fair rule (see proofrules.pdf), and
– P leads-to Q follows from the closure (see proofrules.pdf) of the leads-to assertions

• If you answer no, give an allowed evolution of Z that satisfies Z’s progress assumption and does not satisfy
P leads-to Q.

proofrules.pdf
proofrules.pdf
proofrules.pdf


712-S14 (Shankar) Hw 2 Page 2/6

Sample Problem

program Z(int N) {
int x ← 0;
int y ← 0;
while (y < N)
a1: • x ← x + y + 1;

y ← y + 1;
return;

atomicity assumption {as given by the ‘•’}
progress assumption {weak fairness}

}

From the atomicity assumption, the following are atomic

- start-to-a1
- a1-to-a1
- a1-to-exit

Part a Does Z satisfy Inv A0, where

A0 : y = N ⇒ x = sum(j: j in 1..N)

Part b Does Z satisfy L0, where

L0 : y = 0 leads-to y = N



712-S14 (Shankar) Hw 2 Page 3/6

Sample Problem Solution

Part a

B0 : x = sum(j: j in 1..y)

B0 satisfies the invariance induction rule and implies A0

This part is not required for the answer.

Details on how B0 satisfies the invariance induction rule

- start-to-a1:
zeros x and y, which establishes B0

- a1-to-a1, starting with y equal to, say, p:
B0.lhs increases by p+1; y increases from p to p+1, adding p+1 to the sum in B0.rhs. So B0 is preserved.

- a1-to-exit, starting with y equal to N−1:
same as in a1-to-a1.

Details on how B0 ⇒ A0 holds

- B0 with y=N yields x = sum(j: j in 1..N).

Part b

L1 : (thread at a1) and (y = j < N) leads-to (thread at a1) and (y = j + 1)

L1 holds via weak-fair rule. L0 follows from closure of L1.

This part is not required for the answer.

Details on how L1 satisfies the weak-fair rule

- L1.lhs (conjunct 1) implies that step start-to-a1 is enabled.
- Step a1-to-a1 establishes B0.rhs from B0.lhs
- Step a1-to-exit establishes B0.rhs from B0.lhs



712-S14 (Shankar) Hw 2 Page 4/6

Problem 1

program Z(int N) {
// note: N can be 0 or negative // now explicit
int x ← 0; // changed
Tid[N] t;
for (j in 0..N−1)

t[j] ← startThread(up(j));
return;

function up(j)
a1: • x ← x + j + 1;

return;

atomicity assumption {as given by the ‘•’s}
progress assumption {weak fairness}

}

Part a Does Z satisfy Inv A0, where

A0 : x ≤ sum(j: j in 1..N)

Part b Does Z satisfy L0, where

L0 : true leads-to x = sum(j: j in 1..N)

By convention, sum(empty set) is 0.



712-S14 (Shankar) Hw 2 Page 5/6

Problem 2

program Z(int N) {
int x ← 4;
t1 ← startThread(fn1());
t2 ← startThread(fn2());
t3 ← startThread(fn3());
return;

function fn1()
repeat

a1: • x ← 1;
b1: until • (x = 3);

return;

function fn2()
repeat

a2: • if (x = 1) x ← 2;
else x ← 4;

b2: until • (x = 3);
return;

function fn3()
repeat

a3: • if (x = 2) x ← 3;
else x ← 4;

b3: until • (x = 3);
return;

atomicity assumption {as given by the ‘•’s}
progress assumption {weak fairness}

}

Part a Does Z satisfy Inv A0, where

A0 : (not (t1.alive or t2.alive or t3.alive)) ⇒ x = 3

Part b Does Z satisfy Inv A1, where

A1 : (not t1.alive or not t2.alive or not t3.alive) ⇒ x = 3

Part c Does Z satisfy L0, where

L0 : ((t1 at a1) and (t2 at a2) and (t3 at a3)) leads-to not (t1.alive or t2.alive or t3.alive)



712-S14 (Shankar) Hw 2 Page 6/6

Problem 3

Consider the following distributed shortest-distance algorithm for a network of nodes and node-to-node fifo channels.
There are N nodes, with ids 1, · · ·, N. There are channels for a given subset E of node pairs, i.e., there is a channel from
i to j iff [i,j] is in E. The channel from i to j has a nonnegative cost D[i,j]. The graph of the nodes and channels
may not be fully connected. For every node i that is reachable from node 1, let D[i] denote the shortest distance from
1 to i

Every node i has a variable dist[i], indicating the current estimate of the shortest distance from node 1 to node
i. Node 1 starts the computation by sending on every outgoing channel [1,j] the message [D[1,j]]. When node i
receives a message [d], if d is less than dist[i] then node i sets dist[i] to d and sends on every outgoing channel
[i,j] the message [d + D[i,j]].

The program below models the above within a single system. Variable α[i,j] has the sequence of messages in transit.
Also, the activity is defined by rules, rather than explicity threads. Also,∞ denotes “max int”.

program Z(int N, E, D) {
ic {N > 0 and

(E subsetOf set([i,j]: i,j in [1..N], i 6= j))
}

init:
for ([i,j] in E)

α[i,j] ← [];
dist[1..N] ← ∞;
dist[1] ← 0;
for ([1,j] in E)

append [D[1,j]] to α[1,j];

rule rcv(i,j), for [i,j] in E:
await (α[i,j] 6= [])

remove [d] from α[i,j].head;
if (d < dist[j])

dist[j] ← d;
for ([j,k] in E)

append [d + D[j,k]] to α[j,k].tail;
return;

atomicity assumption {init, each rule}
progress assumption {weak fairness}

}

Part a Does Z satisfy Inv A0, where

A0 : ((i in 2..N) and dist[i] 6= ∞) ⇒ (there is a path from 1 to i of length dist[i]) // added i in 2..N

Part b Does Z satisfy L0, where

L0 : ((i in 2..N) and (i reachable from 1)) leads-to dist[i] = D[i] // added i in 2..N

Part c Does Z satisfy L1, where

L1 : ((in in 2..N) and ([i,j] in E)) leads-to α[i,j] = D[i] // added i in 2..N


