This homework is concerned with the basics of assertional reasoning.
There are 3 simple problems, preceded by a sample problem and its solution.
Keep your answers brief, as in the example problem's solution.
You will get full marks: if an answer is not adequate or too long, I'll ask you to do it again.

The construct $\operatorname{sum}(f(j): j$ in α), where α is a set, sequence or bag, equals the sum of $f(j)$ where j ranges over α

- e.g.: $\operatorname{sum}(f(j): j$ in 1..7) equals $f(1)+f(2)+\cdots+f(7)$
- e.g.: $\operatorname{sum}(f(j): j$ in $1 . .0)$ equals 0

When answering a question of the form "Does program Z satisfy Inv P ", do the following:

- If you answer yes, give a predicate, say B, such that
- B satisfies the invariance induction rule (see proofrules.pdf), and
- $B \Rightarrow P$ holds.
- If you answer no, give a finite allowed evolution ending in a state where P does not hold.

When answering a question of the form "Does program Z satisfy P leads-to Q ", do the following:

- If you answer yes, give one or more leads-to assertions (each of the form X leads-to Y) such that
- each leads-to assertion holds via the weak-fair or strong-fair rule (see proofrules.pdf), and
- P leads-to Q follows from the closure (see proofrules.pdf) of the leads-to assertions
- If you answer no, give an allowed evolution of Z that satisfies Z 's progress assumption and does not satisfy P leads-to Q.

Sample Problem

```
program Z(int N) {
    int x\leftarrow0;
    int y}\leftarrow0\mathrm{ ;
    while (y<N)
    a1: \bulletx\leftarrowx+y + 1;
        y}\leftarrowy+1
    return;
    atomicity assumption {as given by the '\bullet'}
    progress assumption {weak fairness}
}
```

From the atomicity assumption, the following are atomic

- start-to-a1
- a1-to-a1
- a1-to-exit

Part a Does Z satisfy Inv A_{0}, where
$A_{0}: y=N \Rightarrow x=\operatorname{sum}(j: j$ in $1 . . N)$

Part b Does Z satisfy L_{0}, where
$L_{0}: y=0$ leads-to $\mathrm{y}=\mathrm{N}$

Sample Problem Solution

Part a
$B_{0}: x=\operatorname{sum}(\mathrm{j}: \mathrm{j}$ in $1 . . \mathrm{y})$
B_{0} satisfies the invariance induction rule and implies A_{0}

This part is not required for the answer.

Details on how B_{0} satisfies the invariance induction rule

- start-to-a1:
zeros x and y , which establishes B_{0}
- a1-to-a1, starting with y equal to, say, p:
B_{0}.lhs increases by $\mathrm{p}+1$; y increases from p to $\mathrm{p}+1$, adding $\mathrm{p}+1$ to the sum in B_{0}.rhs. So B_{0} is preserved.
- a1-to-exit, starting with y equal to $N-1$:
same as in a1-to-al.
Details on how $B_{0} \Rightarrow A_{0}$ holds

$$
\text { - } B_{0} \text { with } \mathrm{y}=\mathrm{N} \text { yields } \mathrm{x}=\operatorname{sum}(\mathrm{j}: \mathrm{j} \text { in } 1 . . \mathrm{N})
$$

Part b

L_{1} : (thread at a1) and $(y=j<N)$ leads-to (thread at al) and $(y=j+1)$
L_{1} holds via weak-fair rule. L_{0} follows from closure of L_{1}.

This part is not required for the answer.

Details on how L_{1} satisfies the weak-fair rule

- L_{1}.lhs (conjunct 1) implies that step start-to-a1 is enabled.
- Step a1-to-a1 establishes B_{0}.rhs from B_{0}.lhs
- Step a1-to-exit establishes B_{0}.rhs from B_{0}.lhs

Problem 1

```
program Z(int N) {
    // note: N can be O or negative // now explicit
    int x}\leftarrow0\mathrm{ ;
    // changed
    Tid[N] t;
    for (j in 0..N-1)
        t[j]}\leftarrow\operatorname{startThread(up(j));
    return;
    function up(j)
    a1: \bullet x \leftarrow x + j + 1;
        return;
    atomicity assumption {as given by the '\bullet's}
    progress assumption {weak fairness}
}
```

Part a Does Z satisfy Inv A_{0}, where
$A_{0}: \mathrm{x} \leq \operatorname{sum}(\mathrm{j}: \mathrm{j}$ in $1 . . \mathrm{N}$)

Part b Does Z satisfy L_{0}, where
L_{0} : true leads-to $\mathrm{x}=\operatorname{sum}(\mathrm{j}: \mathrm{j}$ in $1 . . \mathrm{N})$

By convention, sum(empty set) is 0 .

Problem 2

```
program Z(int N) \{
    int \(x \leftarrow 4\);
    t1 \(\leftarrow \operatorname{startThread(fn1());~}\)
    t2 \(\leftarrow \operatorname{startThread(fn2());~}\)
    t3 \(\leftarrow \operatorname{startThread(fn3());~}\)
    return;
    function fn1()
        repeat
    a1: • \(\mathrm{x} \leftarrow 1\);
b1: until • ( \(x=3\) );
        return;
    function fn2()
        repeat
    a2: • if \((x=1) \quad x \leftarrow 2\);
            else \(x \leftarrow 4\);
b2: until - ( \(x=3\) );
        return;
    function fn3()
        repeat
    a3: - if \((x=2) \quad x \leftarrow 3\);
                else \(x \leftarrow 4\);
b3: until - ( \(x=3\) );
        return;
    atomicity assumption \{as given by the ' \(\bullet\) 's\}
    progress assumption \{weak fairness\}
\}
```

Part a Does Z satisfy Inv A_{0}, where
$A_{0}:($ not (t1.alive or t2.alive or t3.alive) $) \Rightarrow \mathrm{x}=3$

Part b Does Z satisfy Inv A_{1}, where
A_{1} : (not t1.alive or not t2.alive or not t3.alive) $\Rightarrow \mathrm{x}=3$

Part c Does Z satisfy L_{0}, where

Problem 3

Consider the following distributed shortest-distance algorithm for a network of nodes and node-to-node fifo channels. There are N nodes, with ids $1, \cdots, N$. There are channels for a given subset E of node pairs, i.e., there is a channel from i to j iff $[i, j]$ is in E. The channel from i to j has a nonnegative cost $D[i, j]$. The graph of the nodes and channels may not be fully connected. For every node i that is reachable from node 1 , let $D[i]$ denote the shortest distance from 1 to i

Every node i has a variable dist[i], indicating the current estimate of the shortest distance from node 1 to node i. Node 1 starts the computation by sending on every outgoing channel $[1, j]$ the message $[D[1, j]]$. When node i receives a message [d], if d is less than dist[i] then node i sets dist[i] to d and sends on every outgoing channel $[i, j]$ the message $[d+D[i, j]]$.
The program below models the above within a single system. Variable $\alpha[\mathrm{i}, \mathrm{j}]$ has the sequence of messages in transit. Also, the activity is defined by rules, rather than explicity threads. Also, ∞ denotes "max int".

```
program Z(int N, E, D) \{
    ic \(\{N>0\) and
            (E subsetOf set([i,j]: \(i, j\) in \([1 . . N], i \neq j)\) )
        \}
    init:
        for ( \([i, j]\) in \(E\) )
            \(\alpha[\mathrm{i}, \mathrm{j}] \leftarrow[] ;\)
        \(\operatorname{dist[1..N]} \leftarrow \infty\);
        \(\operatorname{dist[1]} \leftarrow 0\);
        for ( \([1, j]\) in \(E\) )
            append \([D[1, j]]\) to \(\alpha[1, j]\);
    rule \(\operatorname{rcv}(i, j)\), for \([i, j]\) in \(E\) :
        await \((\alpha[i, j] \neq[])\)
            remove [d] from \(\alpha[i, j]\).head;
            if (d < dist[j])
                dist[j] \(\leftarrow d\);
                for ( \([j, k]\) in \(E\) )
                        append \([d+D[j, k]]\) to \(\alpha[j, k] . t a i 1\);
        return;
    atomicity assumption \{init, each rule\}
    progress assumption \{weak fairness\}
\}
```

Part a Does Z satisfy Inv A_{0}, where
$A_{0}:((\mathrm{i}$ in $2 . . \mathrm{N})$ and $\operatorname{dist}[\mathrm{i}] \neq \infty) \Rightarrow$ (there is a path from 1 to i of length dist[i]) // added i in $2 . . \mathrm{N}$

Part b Does Z satisfy L_{0}, where
$L_{0}:((\mathrm{i}$ in 2..N) and (i reachable from 1)) leads-to dist[i] $=\mathrm{D}[\mathrm{i}]$
// added i in 2..N

Part c Does Z satisfy L_{1}, where
$L_{1}:((\mathrm{in}$ in 2..N) and ([i,j] in E)) leads-to $\alpha[\mathrm{i}, \mathrm{j}]=\mathrm{D}[\mathrm{i}]$
// added i in 2.. N

