These material is from section 6.10 (Proof rules) of the text.

Hoare-triples

Hoare-triples express properties of program statements when they execute without interference from the environment. A Hoare-triple has the form $\{P\}$ S $\{Q\}$, where P and Q are predicates and S is a program statement. P and Q are referred to as the **precondition** and the **postcondition**, respectively, of the Hoare-triple.

- For S that is *non-blocking* and not preceded by an input assumption/condition: {P}S{Q} means that the execution of S starting from *any* state satisfying P always terminates (i.e., no infinite loop, no fault) in a state that satisfies Q, assuming that S's environment does not affect intermediate states of S's execution.
- For S that is *blocking* with guard B and action C (e.g., "await (B) C" or "oc {B} C"): {P}S{Q} means {P and B}C{Q}.
- For S that is preceded by input assumption/condition B: {P}S{Q} means {P and B}S{Q}.

Here are some examples of Hoare-triples. Next to each we indicate whether or not it is valid.

- {true} if $x \neq y$ then $x \leftarrow y+1$ {(x = y+1) or (x = y)} (valid) • {x = n} for i in 0..10 do $x \leftarrow x+i$ {x = n+55} (valid)
- {x = 3} x \leftarrow y+1 {x = 4}

(invalid; e.g., if y = 1 holds at start)

We say "S unconditionally establishes Q from P" to mean that $\{P\}$ S $\{Q\}$ holds.

We say "S unconditionally establishes Q" to mean that {true} S {Q} holds.

We say "S unconditionally preserves P" to mean that $\{P\}$ S $\{P\}$ holds.

Proof rules for safety assertions

Invariance induction rule 1

- Inv P holds for program M if the following hold:
 - for the initial atomic step e of M: {true} e {P}
 - for every non-initial atomic step e of M: $\{P\} e \{P\}$

We say "P satisfies the invariance induction rule" to mean it satifies the above conditions.

Invariance induction rule 2

Inv P holds for program M if the following hold for some predicate R:

- Inv R
- for the initial atomic step e of M: {true} $e \{R \Rightarrow P\}$
- for every non-initial atomic step e of M: $\{P \text{ and } R\} e \{R \Rightarrow P\}$

We say "P satisfies the invariance induction rule assuming Inv R" to mean it satisfies the above conditions.

Proof rules for progress assertions

For an atomic step e, let the predicate e.enabled mean that a thread is at e and e is unblocked (if it has a guard). Formally,

 $e.enabled = \begin{cases} thread at e & if e is nonblocking \\ (thread at e) and B & if e has guard B (e.g., oc{B}S) \end{cases}$

Weak-fair rule

P *leads-to* Q holds for program M if the following hold, where e is an atomic step of M subject to weak fairness:

- (P and not Q) \Rightarrow e.enabled

- {P and not Q} e {Q}
- for every non-initial atomic step f of M: {P and not Q} f {P or Q}

We say "P leads-to Q via weak-fair rule" to mean that P and Q satifies the above conditions.

Strong-fair rule

P *leads-to* Q holds for program M if the following hold, where e is an atomic step of M subject to strong fairness:

- (P and not Q and not e.enabled) *leads-to* (Q or e.enabled)
- {P and not Q} e {Q}
- for every non-initial atomic step f of M: {P and not Q} f {P or Q}

We say "P leads-to Q via strong-fair rule" to mean that P and Q satisfies the above conditions.

Closure rules

- P *leads-to* (Q1 or Q2) holds if the following hold:
 - P leads-to P1 or Q2
 - P1 leads-to Q1
- P leads-to Q holds if the following hold for some predicate R:
 - Inv R
 - (P and R) *leads-to* ($R \Rightarrow Q$)
- (P1 and P2) *leads-to* Q2 holds if the following hold for some predicate Q1:
 - P1 leads-to Q1
 - P2 unless Q2
 - Inv (Q1 \Rightarrow (not P2))
- P leads-to Q holds if, for some function F on a lower-bounded partial order (Z, \prec) , the following hold:
 - P leads-to (Q or forsome(x in Z: F(x)))
 - forall(x in Z:
 - F(x) *leads-to* (Q or forsome(w in Z: $w \prec x$ and F(w))))

[This is just induction over a well-founded order.]

We say P leads-to Q via closure of assertions L_1, \dots, L_n " to mean that the former follows by applying closure rules to the latter.