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Abstract

Many formal specification languages and associated tools have been developed for network protocols. Ulti-

mately, formal language specifications have to be compiled into a conventional programming language, and this

involves manual intervention (even with automated tools). This manual work is often error-prone because the

programmer is not familiar with the formal language. So our goal is to verify and test the ultimate implementation

of a network protocol, rather than an abstract representation of it.

We present a framework, called SeSF (Services and Systems Framework), in which implementations and

services are defined by programs in conventional languages, and mechanically tested against each other. SeSF is

a markup language that can be integrated with any conventional language. We integrate SeSF into Java, resulting

in what we call SeSFJava. We present a service-and-assertion checking harness for SeSFJava, called SeSFJava

harness, in which distributed SeSFJava programs can be executed, and the execution checked against services and

any other correctness assertions. The harness can test the final implementation of a concurrent system. We apply

present an application to a data transfer service and sliding window protocol implementation. SeSFJava and the

harness has been used in networking courses to specify, develop, and test TCP-like transport protocols and service.

Index Terms

Formal methods, software testing, protocol design, Java, computer networks.



2

I. INTRODUCTION

Many formal specification languages have been developed for network protocols, for example, SDL [1],

Estelle [2], [3], Lotos [4] and IOA [5]. Tools [6], [7], [8], [9], [10], [11], [12] have been devised to verify

and test the correctness of network protocols against their formal specifications. The formal specification,

or “service” as we shall refer to it, describes the desired external behavior of the protocol. Developers use

formal languages, as opposed to the conventional programming languages (e.g., C, C++, Java) because of

their formal semantics and mathematical elegance, which eases verification and testing of protocols. Yet

in order for these languages to be directly used in practical software development, the formal language

specification needs to be compiled to a conventional programming language at some point during the

development phase. The compilation is done either manually [13] or automatically [14], [15], [16],

[17], [18], [19]. Manual translation is prone to errors, often due to the programmer’s lack of expertise

with the formal language. Moreover, most automatic techniques involve manual intervention during the

compilation [20]. Fully automatic compilation brings concerns about the efficiency, code optimization,

readability and correctness of the generated code.

Ultimately, most network protocols have to be translated to conventional programming languages, and

most translations require manual intervention at some point during the translation. So, our goal is to verify

and test the actual implementation of a network protocol rather than a simplified abstract representation

of it. In order to achieve this goal, we have developed a framework, called SeSF (Services and Systems

Framework), that (1) allows definitions of implementations and services in conventional languages, (2)

formalizes the notion of an implementation satisfying its services, and (3) provides a means for mechanical

testing [21]. SeSF is an imperative, or procedural, version of the formalism in [22]. The main difference

between SeSF and most other formalisms [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33]

is that SeSF stays close to the programming world. Programming languages, and thus implementations,

make use of dynamic creation, naming and deletion of objects, processes and threads, complex I/O control

blocks such as network sockets, etc. SeSF explicitly captures such features.
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A. SeSF

Like most formalisms, SeSF provides a compositional methodology for the design and implementation

of concurrent systems. Compositionality means that the design and implementation of a concurrent system

can be broken up into the design and implementation of component concurrent systems. We refer to

implementations as systems and external behavior specifications as services. In SeSF, both systems and

services are specified by programs in conventional programming languages.

A system specification is intended for execution. Hence, its programs must satisfy the computational,

synchronization, and other constraints of the underlying platform– for example, accounting for whether

the platform has a single processor, a multi-processor with shared memory, or a set of loosely-coupled

message-passing processors.

The service specification states all (and only) the desired properties of the system’s execution, unen-

cumbered by internal structure and computational, implementation and synchronization issues. In most

formalisms, the service defines the permissible interactions between the system and its environment.

However, our interest is in layered compositionality. Here, a composite system consists of layers of

component systems, and services define the allowed sequences of interactions between layers.

Roughly speaking, a system satisfies its services above and below if the interactions it initiates are

allowed by the services, assuming the interactions initiated by the system’s environment are allowed by

the services. Our compositionality property is that, given a composite system consisting of layers of

component systems with services in between, if every component system in isolation satisfies its services,

then the composite system as a whole satisfies its services.

Because services are defined by conventional programming languages, they are executable. The adop-

tion of executable services, in general, and in SeSF in particular, has the following consequences. First,

the notion of a system satisfying a service is equivalent to the composite program of the system and

service satisfying certain correctness properties. Second, developers can test a concurrent system against

its service simply by executing the composite program of the system and the service, and checking whether
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those properties are satisfied.

Using conventional languages for specifying services, instead of a high-level specification language, has

certain advantages and disadvantages. One advantage is that the service specification language is familiar

to programmers, perhaps even the same language as that of implementation. This reduces the possibility of

the service specification being misunderstood by implementors. Another advantage is that it allows actual

implementations to be tested, rather than an abstract model. One disadvantage is that service specifications

become invariably larger in size, making mechanical verification infeasible, although we think that this is

not a big loss because mechanical verification is currently impractical for realistic systems (with parameters

and unbounded state). Another concern is that most programming languages suffer from inconsistencies

and ambiguities, and one has to avoid such constructs in service specifications. For example, Java has an

ambiguous memory model [34], [35], and different Java implementations have different memory models.

B. SeSFJava

SeSF is a markup language that can be integrated with any programming language. We choose to

integrate SeSF with Java, resulting in what we call SeSFJava. Java is chosen because of its relatively

precise semantics, popularity and built-in concurrency constructs. A SeSFJava program is a Java program

with SeSF tags inserted as Java comments. Hence, a SeSFJava program can be compiled and executed as

a Java program. But because of the SeSF tags, it can also be tested. We have developed a testing harness,

called SeSFJava harness, that can execute a distributed system of SeSFJava programs and check whether

the resulting execution satisfies the relevant services and any other desired correctness assertions (also

specified in SeSFJava).

SeSFJava harness is able to handle general Java programs (e.g., unbounded-state programs) and general

safety and progress assertions (e.g., invariant and leads-to assertions). It tests the implementation on

its actual platform, without altering the program to run on a simplified platform (e.g., over TCP/IP

network sockets rather than a thread-based emulation). It helps the programmer check systems during the

development phase; we are not concerned with black-box testing.
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C. Data Transfer Application

SeSFJava and the harness has been used in several applications, including TCP-like transport protocols

involving both data transfer and connection management [36]. Preliminary versions of SeSFJava and

the harness have been used in defining and testing transport protocol projects in computer network

courses [37], [38]. Here, for space reasons, we will present an example involving only the data transfer

part of the transport protocol application, specifically, a sliding window protocol that provides reliable

flow-controlled data transfer from a source to a sink over unreliable channels that can lose, reorder

and duplicate messages in transit subject to a maximum message lifetime. See fig. 1. SW SourceUser

passes data to SW Source. SW Source buffers the data (in a send window) and transfers it to SW Sink,

resending until it is acknowledged by SW Sink. SW Sink buffers data received out of sequence (in a

receive window) and delivers data in sequence to SW SinkUser. The sliding window protocol here has

modulo-N sequence numbers and variable receive window for flow control [39], and is significantly more

complex than stop-and-wait or go-back-N protocols. We assume fixed size messages, for space reasons.

SW Source, SW Sink, and the unreliable channels make up the SW Sys composite system. SW SourceUser

and SW SinkUser make up the composite system using the service. DT specifies the data transfer service,

that is, the signature of the interactions between the systems on either side, as well as the permissible

sequences of these interactions.

D. Paper Organization

Section II describes SeSF. Section III introduces SeSFJava and SeSFJava harness. Section IV concludes.

II. SESF OVERVIEW

SeSF is a framework for compositional design and implementation of concurrent systems. It formalizes

the notions of processes, systems, services, system satisfying services, and compositionality. It uses

temporal logic to specify safety and progress assertions.



6

DT data transfer
service

unreliable channels

loss, reorder and duplicate

Application
Layer

Layer
Transport

SW_Sink

SW_SinkUser

xc deliverData

xc sendData xc readyToAccept

SW_SourceUser

SW_Sys composite system

SW_Source

xc ackData

Fig. 1. Data transfer service and protocol system

A. Systems

In SeSF, a system is a collection of processes that execute system programs. We refer to atomically

executed statements as events. A system program consists of a header, declarations, externally-controlled

events (initiated by the environment), locally-controlled events (initiated by the system), and progress

assumptions. The header indicates the system program’s name and any parameters and their types. The

declarations define constants, types, variables, constructors and functions, as in any procedural language.

Fig. 2 and 3 illustrate the system programs for SW Source and SW Sink systems, respectively.

The externally-controlled events, denoted xc-events, are functions that can be called by the environ-

ment (e.g., xc-event readyToAccept in fig. 3). The header of an xc-event indicates the event’s signature,

consisting of return type (which can be void), the event name, and event input parameters (if any) and

their types. The enabling condition is a predicate in the program variables and parameters. An event call

is enabled if the event’s enabling condition holds for the parameters (if any) of the call. The action is the

code that is executed when the event is called. It is the caller’s responsibility to only make enabled event

calls. It is the callee’s responsibility to atomically execute the action if the call is enabled. The action has

no event calls, and returns a value if the return type is not void.

The locally-controlled events, denoted lc-events are the atomic statements in the code executed by the
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Description of sliding window protocol (source side):
At any time at the source, let sendBuf[0, 1, . . . , (ng − 1)] denote the sequence of data messages generated by
the source. Of these, sendBuf[0, 1, . . . , (ns−1)] have been sent, and sendBuf[0, 1, . . . , (na−1)] have been sent
and acknowledged. sendBuf[na, na + 1, . . . , ns] have been sent, but not yet acknowledged, and na ≤ ns ≤ ng

holds. The variable sw is the source’s estimate of the current receive window size of the sink, where is
sw ≤ constant SW. [na..(na + sw − 1)] constitutes the send window.

system-program SW Source { // system header
// Declarations
int ng, // number of data blocks generated by local user, initially 0.

ns, // number of data blocks sent at least once, initially 0.
na, // number of data blocks acknowledged, initially 0.
sw, // send window size, initially SW.
bufUsed; // occupied portion of buffer in bytes, initially 0;

Buffer sendBuf; // Send buffer of SW equally-sized data blocks.
// ‘‘remove sendBuf[0]’’ removes first data block from the top and adds empty at the end.

constant int bufSize; // buffer size is constant (SW ∗ message size).
SW SourceUser sourceuser; // reference to the user application for callback methods

xc-event void sendData(byte[] data) { //xc-event header
ec: bufUsed + data.length ≤ bufSize ∧ data.length 6= 0; // data.length is the number of bytes in array data;
ac: Divide data into messages;

tmp = number of data messages;
Store tmp messages in sendBuf; // sendBuf[ng..ng+tmp-1] = data[...];
ng = ng ⊕ tmp;
bufUsed + = data.length;

}

Thread DataSender {
while 〈 (1 ≤ ns 	 na < min (ng, na + sw) 	 na) { // each iteration is executed atomically

Send Data message (ns); // via unreliable channel
Reset timer of retransmission of ns;
ns = ns ⊕ 1;

} 〉
}

Thread Retransmission (int seqNo) {
while 〈 (0 ≤ seqNo 	 na < ns 	 na ∧ timeout fires) { // each iteration is executed atomically

Send Data message (seqNo); // via unreliable channel
Reset timer of retransmission of seqNo;

} 〉
}

Thread SourceReceiver {
while(true) {

Receive message ACK(seqNo, w); // Blocks till an ACK message is recieved with sequence number (seqNo)
// and window size (w)

〈
int tmp = seqNo 	 na; // number of newly acked messages
if (1 ≤ tmp ≤ (ns 	 na)) {

int ackedBytes = tmp ∗ message size;
remove first tmp messages from sendBuf;
na = na ⊕ tmp;
sw = w;
bufUsed − = ackedBytes;
sourceuser.ackData(ackedBytes); // output

} else if (tmp == 0)
sw = max(sw, w);

〉
}

}

progress-assumption default {
wfair(DataSender, Retransmission, SourceReceiver);

}
}

Fig. 2. SW Source: sliding window source system program
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Description of sliding window protocol (sink side):
At any time at the sink, recvBuf[0, . . . , (nr − 1)] have been received and forwarded in-sequence to sink’s
user. recvBuf[nr] has not yet been delivered to the user. recvBuf[nr, nr + 1, . . . , (nr + rw − 1)] may have
been received out-of-sequence, in which case, they are temporarily buffered, but are not passed to the user.
[nr..nr + rw − 1] constitutes the receive window. The variable rw is the current size of the receive window,
where rw ≤ constant RW.

system-program SW Sink { // system header
int allowedBytes, // number of the bytes that SW Sink is able to foist on user’s buffer.

rw, // receive window size.
nr; // number of data blocks delivered to the local user.

Buffer recvBuf; // buffer of RW equally-sized data blocks.
SW SinkUser sinkuser; // Reference to the user application for callback methods.

xc-event void readyToAccept(int n) { // xc-event header
ec: true; // not checked by system, no side effects
ac: allowedBytes = n; // no event calls, no blocking

}

Thread ModifyWindow {
while 〈 (rw < RW)

rw =rw + 1;
〉

}

Thread DataDelivery () {
while 〈 (recvBuf[0] 6= null ∧ allowedBytes ≥ 0) {

data = recvBuf[0];
allowedBytes − = data.length;
sinkuser.deliverData(data); // output
remove recvBuf[0];
nr = nr ⊕ 1;
rw − = 1;

} 〉

}

Thread SinkReceiver {
while (true) {

Receive message Data (cj, data); // Blocks until a Data message with sequence number (cj) and contents (data).
〈

int tmp = cj 	 nr;
if (0 ≤ tmp < rw)

recvBuf[tmp] = data;
Send ACK message ACK(nr, rw);

〉
}

}

progress-assumption default {
wfair(ModifyWindow, DataDelivery, SinkReceiver);

}
}

Fig. 3. SW Sink: sliding window sink system program

system. Atomically-executed code is indicated by enclosing it in angled brackets (e.g., see DataDelivery

thread in fig. 3; we use large-scale atomicity to keep the example small). An lc-event can make at most

one event call in any execution. A lc event is said to be enabled if a process is at the event and the event,

if it has a blocking condition, is not blocked.

Progress assumptions define the progress properties expected of the underlying platform in scheduling
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the processes, or equivalently, in executing its lc events. SeSF uses weak fairness and strong fairness [30].

Weak fairness of event e, denoted wfair(e), means that if event e is continuously enabled beyond a certain

point, it will eventually be executed. Strong fairness of event e, denoted sfair(e), means that if event e is

enabled infinitely often beyond a certain point, it will eventually be executed. Weak fairness of a thread

denotes weak fairness of all events that this thread encounters.

SeSF uses the nondeterministic interleaving model of concurrent execution, in which the simultaneous

execution of atomic statements is represented by the set of all possible sequential executions of atomic

statements.

An execution of a system is a sequence of event executions along with the states traversed, starting from

an initial state. A fault transition represents an event execution where an event encounters an undefined

operation or an unsafe call to an xc event. A faulty execution of a system is an execution that ends in

a fault transition. A fault-free execution of a system is an execution that contains no fault transitions; it

can be finite or infinite.

Sliding window protocol: We briefly comment on SW Sys in fig. 2 and 3. SW SourceUser creates

SW Source process and sets SW Source.sourceuser to refer to itself (for callback methods). Similarly,

SW SinkUser creates SW Sink process and sets SW Sink.sinkuser to refer to itself (for callback methods).

SW SourceUser sends an array of bytes via SW Source.sendData. SW Source divides the received array

into messages, and sends those messages to SW Sink. When SW Sink receives the data message, it replies

with an ACK message. If SW SinkUser has enough space (var SW Sink.allowedBytes), SW Sink delivers

the data message to its user; otherwise SW Sink waits for SW SinkUser to call SW Sink.readyToAccept

before delivering more data to the user. Whenever SW Source receives a new ACK (not a duplicate), it

calls SW SourceUser.ackData to inform the user that it has more empty space in the buffer.

B. Services

In SeSF, a service defines the acceptable sequences of interactions between systems in different layers.

A service is specified by a service program. A service program consists of service’s header, declarations,
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events and progress obligations. The header and declarations are similar to those of systems. Fig. 4

illustrates DT service program.

Events are divided into downward events (dnw) and upward events (upw). Dnw events correspond

to xc events of the system below the service callable by the system above the service (e.g., dnw-event

sendData in fig. 4). Upw events correspond to xc events of the system above the service callable by the

system below the service (e.g., upw-event ackData in fig. 4). The event header indicates the event’s

signature, consisting of the type (upw or dnw), return type (which may be void), event name, and

parameters (if any) and their types. The event corresponds to an xc event with the same signature. The

system program that this xc event belongs to is stated in the event header.

The progress obligations of a service define the progress that is expected in executing upw events.

Progress obligations consist of fairness assertions (described above) and leadsto assertions. A leadsto

assertion has the form P leadsto Q, where P and Q are predicates (assertion allDataAcked in fig. 4).

Formally, P leadsto Q holds for an execution iff the execution is fault-free and for every state in the

execution that satisfies P, either that state satisfies Q or some later state satisfies Q. P leadsto Q holds

for a system iff it holds for every complete execution of the system, i.e., an execution that satisfies

the system’s fairness assumptions. Service programs should not impose any progress obligations on dnw

events.

The semantics of a service is similar to that of a system. An execution of a service is a sequence of

event executions along with the states traversed. A service should not have any faulty executions.

Data transfer service: We briefly comment on program DT. Dnw event DT.sendData corresponds

to SW SourceUser passing data to SW Source. The event appends the data to a stream (infinite ar-

ray), and is enabled if the data fits the available space (as advertised by prior calls of upw event

SW SourceUser.ackData). Upw event DT.deliverData corresponds to SW Sink passing data to SW SinkUser.

It is enabled if the data to be delivered is in sequence (with respect to the data sequence passed down by

SW SourceUser), and the SW SinkUser buffer has enough space. SW SinkUser can advertize its window
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service-program DT { // service program’s header
// Declarations
// Source side variables.
Stream srcHist; // source entity history in bytes
int srcBufSize // equals SW * message size.

srcBufUsed; // occupied portion of source buffer in bytes, always srcBufUsed ≤ srcBufSize.
int srcNumSent, // number of bytes accepted from source’s local user, initially zero.

srcNumAcked; // number of acked bytes (at source entity), initially 0.

// Sink side variables.
int sinkNumDelivered, // number of bytes delivered to sink user, initilly 0.

sinkBufAvail; // number of bytes that sink user can accept, initially (RW * message size);

// Events of source side:

// sends data from local user to source entity to be delivered to remote user.
dnw-event void SW Source.sendData(byte []data) { // dnw event header

ec: srcBufUsed + data.length <= srcBufSize ∧ data.length > 0;
ac: // data.length is number of bytes in data array

srcHist[srcNumSent .. srcNumSent + data.length - 1] = data[0..data.length];
srcNumSent + = data.length;
srcBufUsed + = data.length;

}

// notifies the entity user that n bytes have been acked by remote user.
upw event void SW SourceUser.ackData(int n) { // upw event header

ec: srcNumAcked + n <= srcNumSent;
ac: srcBufUsed = srcBufUsed − n;

srcNumAcked = srcNumAcked + n;
}

// Events of sink side

// informs sink entity that its user can accept cumulative amount of data (in bytes) equals to n.
dnw event void SW Sink.readyToAccept(long n) {

ec: true;
ac: sinkBufAvail = n;

}

// delivers data to local user, such that, data is delivered in sequence without loss or duplication.
upw event void SW SinkUser.deliverData(byte []data) {

ec: sinkNumDelivered + data.length <= srcNumSent ∧
data.length <= sinkBufAvail ∧ data.length > 0 ∧
correctData (data);

ac: sinkNumDelivered = sinkNumDelivered + data.length;
sinkBufAvail = sinkBufAvail − data.length;

}

boolean correctData (byte[] data){
dataSize = data.length;
return (srcHist[sinkNumDelivered .. sinkNumDelivered + dataSize] == data[0..dataSize]);

}

progress-obligation allDataAcked {
((srcNumAcked == n ) ∧ (sinkNumDelivered > n) leadsto (srcNumAcked == n))

}

progress-obligation dataDelivered {
((sinkNumDelivered == n) ∧ (srcNumSent > n) ∧ (sinkBufAvail > 0)) leadsto (sinkNumDelivered > n)

}

}

Fig. 4. DT: data transfer service program
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at any time (via dnw event DT.readyToAccept). Whenever DT.ackData is called, it checks whether the

data has been delivered to the user.

C. Assertions

SeSF uses assertions to specify properties of system executions. Assertions are divided into safety

and progress assertions. Progress assertions (wfair, sfair, leadsto assertions) have been described before.

Safety assertions, in particular, invariant assertions, are needed for reasoning about system executions. An

invariant assertion has the form inv(P), where P is a predicate. Formally, inv(P) holds for an execution iff

the execution is fault-free and every state in the execution satisfies P. For example, inv(na ≤ nr ≤ ns ≤ ng)

is an assertion that we need to establish for the SW Sys system. An assertion holds for a system iff it

holds for every execution of the system (and the system has no faulty executions).

D. Service Satisfaction

We now define what it means for a system to satisfy a service. Consider a system M that is encapsulated

by a service U above and a service V below. That is, every xc event of M visible to its environment

corresponds to a dnw event of U or a upw event of V, and every event that M calls in its environment

corresponds to a upw event of U or a dnw event of V. The inputs of M are all the possible calls of its

xc events. The outputs of M are the possible calls it can make to xc events in its environment. Typically

system M is itself a distributed system.

An execution σ of M is safe with respect to service S, abbreviated “safe wrt S”, if the sequence of

inputs and outputs in σ corresponds to that generated by some execution of S. An execution σ of M is

complete with respect to S, abbreviated “complete wrt S”, if the sequence of inputs and outputs in σ

corresponds to that generated by some execution of S that satisfies S’s progress obligations.

Definition [22]: M satisfies U above and V below, or as we prefer say, M offers U uses V, iff for

every execution σ of M that is safe wrt U and V, (1) M is ready to accept every input that extends σ
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   ec: c1;
   ac: ac1;
}

dnw sendData(...){ dnw readyToAccept(...){
   ec: c3;
   ac: ac3;
}

upw deliverData(...){
   ec: c4;
   ac: ac4;
}

upw ackData(...){
   ec: c2;
   ac: ac2;
}

Thread sendData(...){
  while < (c1) {
     ac1;
     SW_Source.sendData(...);
  } >
}

Thread readyToAccept(...){
  while < (c3) {
    ac3;
    SW_Sink.readyToAccept(...);
  } >
}

xc deliverData(...){
   ec: true;
   ac: if (c4) ac4;
       else fault;}

   ec: true;
   ac: if (c2) ac2;
       else fault;}

xc ackData(...){

xc readyToAccept(...){
   ec: c6;
   ac: ac6;
}

xc sendData(...){
   ec: c5;
   ac: ac5;
}

xc sendData(...){
   ec: true;
   ac: if (c5) ac5;
       else fault;}

xc readyToAccept(...){
   ec: true;
   ac: if (c6) ac6;
       else fault;}

service DT system DT−wrt−{SW_Source, SW_Sink}

system SW_Source−wrt−DT

system SW_Sys*system SW_Sys

system Source system SW_Sink system SW_Sink−wrt−DT

Fig. 5. Program-version service satisfaction transformations

safely, (2) M does an output only if it extends σ safely wrt U or V, and (3) σ is complete wrt U assuming

that σ is complete wrt M and V.

This definition of service satisfaction provides compositionality. However, because it is stated in terms

of event traces, it does not lend itself to program verification or testing techniques. Accordingly, we use

an equivalent program-version of service satisfaction [21]. For space reasons, we present the program-

version satisfaction conditions for M offers U only.

We first modify M and U, so that they interact with each other (rather than M interacting with its

environment):

• Define the system M-wrt-U to be M with every output call e(x) changed to a call of the corresponding

service event in U.

• Define system U-wrt-M to be U with every upw-event changed to an xc event, every dnw-event

changed to an lc-event that also calls the corresponding xc event of M, and every progress assumption

set to null.

Program-version definition: Let M∗ be the composite system of M-wrt-U and U-wrt-M:
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• The safety condition for M offers U holds iff M∗ is fault-free.

• The progress condition for M offers U holds iff M∗ satisfies the progress obligations of U.

Fig. 5 illustrates the construction of SW Sys∗ of SW Source-wrt-DT, SW Sink-wrt-DT and DT-wrt-

{SW Source, SW Sink} from SW Sys and DT. (In particular, every output call in SW Source and SW Sink

is replaced by a call to the corresponding event of DT by appropriately modifying variables sourceuser

and sinkuser.)

The safety condition for SW Sys offers DT reduces to the following:

1) SW Sys∗ does not have undefined values or operations (division by zero, signature-inconsistent call,

type mismatch, etc.).

2) SW Sys∗ does not call a disabled event, which reduces to the following predicates being invariant:

• DT.sendData.ec ⇒ SW Source.sendData.ec

(This formalizes the constraint that SW Source.sendData should be enabled whenever its user

can call DT.sendData. The predicates below are similarly obtained.)

• DT.readyToAccept.ec ⇒ SW Sink.readyToAccept.ec

• SW Source is at sourceuser.ackData(· · · ) ⇒ DT.ackData.ec

• SW Sink is at sinkuser.deliverData(· · · ) ⇒ DT.deliverData.ec

The progress condition holds iff SW Sys∗ satisfies progress obligations allDataAcked and dataDelivered

assuming weak fairness of SW Sys’s threads.

Although we do not do so here, it would be straightforward to prove by assertional reasoning that these

conditions hold (e.g., as in [39]).

E. Service-and-Assertion Checking Harness

The program-based formulation of service satisfaction paves a way to mechanically test a system against

services. Consider a system M that is encapsulated by a service U above and a service V below. One can

test that M offers U uses V by (1) constructing the composite system M∗ of M-wrt-{U, V}, U-wrt-M and V-
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wrt-M, and (2) executing M∗ and checking whether the generated execution satisfies the program-version

conditions.

One of our goals is to test M∗ on the same platform as M. Otherwise, we would have to modify M’s

platform-dependent constructs, e.g., I/O, communication, synchronization, etc. Such modifications would

not only be very onerous, but they would most likely change M to a point that defeats the very purpose

of testing.

In practice, in order to check program-version conditions, we execute M∗ according to the interleaving

model, with the interactions between M-wrt-{U, V} and U-wrt-M and between M-wrt-{U, V} and V-wrt-

M being executed atomically. To do this, we introduce a serializer module that interacts with different

components of M∗ to allow one eventr at a time. We will elaborate on this in sec. III-C

Figure 6 gives the overall structure and operation of the SeSFJava harness. System and service program

files are fed to the preprocessor, which generates the composite system program, the assertion checker

(checks service and system assertions), and the “serializer and assertion checker” (SAC) module. The

composite system is executed under serializer control, which ensures atomicity of the interactions. Data

relevent to the assertion checking is sent to the assertion checker, system and service properties are

checked, and violations are recorded. Users can interact with the composite system during its execution

to view the results of evaluating assertions and/or to influence the flow of execution.

III. SESFJAVA BY EXAMPLE

This section introduces SeSFJava and the SeSFJava harness using the data transfer example. We consider

the configuration of fig. 1, with applications SW SourceUser and SW SinkUser, and the associated transport

entities SW Source and SW Sink. For space reasons, we will not talk about the application level of this

example. The following subsections describe the composite system SW Sys, the DT service, and testing

SW Sys against DT.
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Fig. 6. SeSFJava harness: operation overview

A. SeSFJava System Programs

A SeSFJava system program is a Java program with a specific structure indicated by SeSFJava tags

inserted in the program. SeSFJava tags are special cases of Java comments; specifically, they have the

prefix “//#”, where the “//” denotes the start of a Java comment. Thus, a SeSFJava program can be treated

just like a Java program; it can be compiled and executed by any Java platform without any modifications.

In the case of testing, the SeSFJava harness preprocesses the SeSFJava tags and produces modified Java

files.

Consider SW Source system program (figure 7). It has different kinds of SeSF tags:

• Tags of the form “//# system program” precede and identify the system program, in this case, the

system program class SW Source.

• Tags of the form “//# xc event;” precede and identify the xc events of the program. There is one xc

event, namely sendData(data), corresponding to the user passing data to be sent to the sink.

• Tags of the form “//# ec: <predicate>” specify the enabling condition of the associated event.

Enabling conditions must always evaluate to true or false; they should not, for example, throw an

exception.
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//# system program;
class SW Source{

//# HarnessInterface harness = ...;
SW SourceUser sourceuser; /// Callback reference
NetworkSocket nSocket;
Vector sendBuf = new Vector ();
int bufSize = 32*1024,

bufUsed, ns, na, ng, sw; // = 0
Object lock = new Object(); // lock objec
. . .

int moduloNSub (int a, int b){
return (a - b) % N + ((a - b) < 0 ? N : 0;

}

//# xc event;
public void sendData(byte[] data) {

//# ec: bufUsed + data.length <= bufSize && data.length !=0;
//# breakpoint(...);
synchronized(lock){

. . .

bufUsed += data.length;
}

}

void sendDataMsg(int j) {
synchronized(lock){

if (!sendBuf.isEmpty() &&
moduloNSub(j, na) < moduloNSub(ng, na) &&
moduloNSub(j, na) ¡ sw){

// construct data message and send it via
// network socket.
// Reset the timer.
. . .

}
}

}
}

// Thread is a class the continuously imerTask exe-
cutes method run.

class DataSender extends Thread {
. . .

public void run() {
while (true){

//# breakpoint(...);
synchronized(lock){

. . .

sendDataMsg(ns);
}
. . .

}
}

}

// TimerTask is class that executes method run
// whenever its timer fires.
class Retransmission extends TimerTask {

. . .

public void run() {
//# breakpoint(...);
sendDataMsg(j); // retransmit j
//# breakpoint(...);

}
}

class SourceReceiver extends Thread {
. . . ;
public void run(){

while (true){
//# breakpoint(...);
// get ACK message with (seqNo, w)
. . .

synchronized(lock){
int tmp = moduloNSub(seqNo, na);
if (tmp >= 1 && tmp <= moduloNSub(ns, na)){

. . .

sourceuser.ackData(ackedBytes);
} else if (tmp == 0)

sw = sw > w ? sw : w;
}
//# breakpoint(...);
. . . ;

}
}

}

//# progress assumption default {
//# beginAssertion {
//# wfair(DataSender.isAlive()) &&
//# wfair(DataDelivery.isAlive() &&
//# wfair(SourceReceiver.isAlive);
//# }
//# }

}

Fig. 7. SeSFJava SW Source system program (file SW Source.java)

• Tags involving harness (e.g., “//# harness”, “//# breakpoint”, etc.) are relevant for testing and will be

explained later.

The JVM should, supposedly, ensure weak fairness for all created threads. SW Sink system program

(figure 8) is organized in a similar fashion. It has one xc event: readyToAccept(n).

Fairness assertions require special handling. Consider wfair(X), where X is a thread. A finite execution
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//# system program;
class SW Sink {

//# HarnessInterface harness = ...;
SW SinkUser sinkuser;
NetworkSocket nSocket;
Vector recvBuf = new Vector();
int rw, nr,

allowedBytes = 32 ∗ 1024;
int RW = . . .;
Object lock = new Object();
. . .

//# xc event;
public void readyToAccept(long n) {

//# ec: true;
allowedBytes = n;

}

class ModifyWindow extends TimerTask {
public void run (){

//# breakpoint(...);
synchronized(lock){
if (rw < RW)

rw =rw + 1;
}

}
}

class DataDelivery extends Thread {
. . .

public void run() {
while (true) {

//# breakpoint(...);
synchronized(lock){

if (recvBuf.elementAt(0) ! = null &&
allowedBytes > 0) {
. . .

dtsink.deliverData(delData);
}

}
}

}

class SinkReceiver extends Thread {
. . .

public void run() {
while (true) {

// receive data message with (seqNo, data)
. . .

//# breakpoint(...);
synchronized(lock){

int tmp =(seqNo − 1 − nr) % Constants.N ;
tmp = tmp < 0 ? tmp + Constants.N : tmp;
if (((seqNo − nr − 1) % Constants.N >= 0)

&& tmp < rw && data.length ! = 0 &&
recvBuf.elementAt(tmp) == null) {
recvBuf.set(tmp, data); // recvBuf[tmp] = data;
// SendACK
. . .

}
. . .

deliverDataToUser();
}

}
}

}

//# progress assumption default {
//# beginAssertion {
//# wfair(ModifyWindow.isAlive()) &&
//# wfair(DataDelivery.isAlive() &&
//# wfair(SW SinkReceiver.isAlive);
//# }
//# }

}

Fig. 8. SeSFJava SW Sink system program (files SW Sink.java)

σ satisfies wfair(X) if X is alive and is at a statement that is not blocked. The natural way to check whether

this holds is to look into the JVM or operating system, but this is usually not feasible. Alternatively, one

can capture this condition using appropriate system predicate. If X is not at a blockable statement, then it

suffices to check whether the Java system function X.isAlive() returns true at the end of σ (meaning that

the thread’s control pointer is in the thread’s run method). (See default assertions in fig. 2 and 3.)

B. SeSFJava Service Programs

The DT service program (figure 9) defines the permissible interactions between sliding window system

programs (offerer of the service) and the user system (user of the service). It has different kinds of SeSF

tags:



19

import java.io.*;
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

//# service program;
class DT extends UnicastRemoteObject implements DTInterface {

// Source side variables.
ByteArrayOutputStream srcHist = new ByteArrayOutputStream ();
int srcBufSize = 32 *1024, // assume that SW * message size == 32KB

srcBufUsed;
long srcNumSent, srcNumAcked; = 0;

// Sink side variables.
long sinkNumDelivered, // = 0

sinkBufAvail = 32 ∗ 1024 ; // assume that RW * message size == 32KB

DT() throws RemoteException {
try {

Naming.rebind(”DT”, this);
} catch (Exception e) { throw new RemoteException(); }

}

// Events of source side
//# dnw event: SW Source;
public synchronized void sendData(byte []data) throws RemoteException {

//# ec: srcBufUsed + data.length <= srcBufSize && data.length > 0;
srcHist.write(data, 0, data.length);
srcNumSent + = data.length;
srcBufUsed + = data.length;

}

//# upw event: SW SourceUser;
public synchronized void ackData(int n) throws RemoteException {

//# ec: srcNumAcked + n <= srcNumSent;
srcBufUsed = srcBufUsed − n;
srcNumAcked = srcNumAcked + n;

}

// Events of sink side
//# dnw event: SW Sink;
public synchronized void readyToAccept(long n) throws RemoteException {

//# ec: true;
sinkBufAvail = n;

}

//# upw event: SW SinkUser;
public synchronized void deliverData(byte []data) throws RemoteException {

//# ec: sinkNumDelivered + data.length <= srcNumSent &&
//# data.length <= sinkBufAvail && data.length > 0 &&
//# correctData (data);
sinkNumDelivered = sinkNumDelivered + data.length;
sinkBufAvail = sinkBufAvail − data.length;

}

boolean correctData (byte[] data){
byte[] srcData = srcHist.toByteArray();
for (int i = 0; i < data.length; i++)

if (srcData[((int) sinkNumDelivered) + i] != data[i])
return false;

return true;
}

//# progress obligation allDataAcked {
//# beginAssertion {
//# (srcNumAcked < sinkNumDelivered) leadsto (srcNumAcked == sinkNumDelivered)
//# }
//# }

//# progress obligation dataDelivered {
//# beginAssertion {
//# ((sinkNumDelivered <= srcNumSent) && (sinkkBufAvail > 0))
//# leadsto ((srcNumAcked == sinkNumDelivered) ‖ (sinkBufAvail == 0)
//# }
//# }

}

Fig. 9. Data transfer service program (file DT.java)
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import java.rmi.Remote;
import java.rmi.RemoteException;

public interface DTInterface extends Remote {
void sendData(byte []data) throws RemoteException;
void ackData(int n) throws RemoteException;

void readyToAccept(long n) throws RemoteException;
void deliverData(byte []data) throws RemoteException;

}

Fig. 10. DTInterface interface (file DTInterface.java)

• Tags of the form “//# service program” precede and identity the service program, in this case, the

system program class DT.

• Each service event is preceded by a tag indicating the system of the corresponding xc event. So the tag

//#dnw : SW Source; preceding event sendData indicates that dnw event DT.sendData is mapped

to xc event SW Source.sendData, and they both have the same signature. Note that no event creates

threads or processes. The signature of each service event is the same as that of the corresponding xc

event.

• Tags of the form “//# progress obligation” define the progress obligations required for DT service.

Interface DTInterface (figure 10) defines the headers of all the methods available in DT.

There is a a difference between assertion allDataAcked in SeSF (fig. 4) and the assertion allDataAcked

in SeSFJava (fig. 9). We cannot apply SeSF.allDataAcked to SeSFJava.allDataAcked because we have to

check for every integer value of n, which is infeasible. So, we find an assertion that models the same

constraint. Since checking runtime execution is finite, SeSFJava.allDataAcked can be used instead of

SeSF.allDataAcked.

C. Service And Assertion Checking Harness

To test SW Sys against DT, we (1) create a Harness process to control the execution, (2) construct

composite system SW Sys∗′ of SW Source-wrt-DT′ (a version of SW Source-wrt-DT that interacts with

the harness), SW Sink-wrt-DT′ (a version of SW Sink-wrt-DT that interacts with the harness), and DT-

wrt-{SW Source, SW Sink}′ (a version of DT-wrt-{SW Source, SW Sink} that interacts with the harness),
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import java.rmi.Remote;
import java.rmi.RemoteException;
interface HarnessInterface {

void lock() throws RemoteException;
void unlock() throws RemoteException;
void printlnLog (String str ) throws RemoteException;
void printLog (String str ) throws RemoteException;
void exitSystem() throws RemoteException;
void checkAssertions(boolean debugInfo) throws RemoteException;
void breakpoint(String name, int mode) throws RemoteException;

}

Fig. 11. HarnessInterface interface (file HarnessInterface.java)

(3) execute SW Sys∗′ along with the Harness, and (4) check whether the generated execution becomes

faulty.

The harness is a process that resides on an arbitrary machine. In our example, the Harness is bound

to an RMI (Remote Method Invocation in Java) port, namely “DTHarness”. The harness has interface

HarnessInterface (figure 11).

The first step is to construct composite system SW Sys∗′ (figure 12). Section II-D described how to get

SW Source-wrt-DT, SW Sink-wrt-DT and DT-wrt-{SW Source, SW Sink}. In addition to those modifi-

cation, we need these components to connect to the harness. This leads to the following modifications:

• Construct SW Source-wrt-DT′, referred to as SW Source′, from SW Source-wrt-DT as follows:

– Tags //#HarnessInterface harness = . . . ; indicate the location of the harness, i.e., its RMI port.

– For every xc event, (1) insert a call to method checkAssertions which sends data necessary for

assertion checking to SAC module, and (2) log information to the log file.

– Insert breakpoints at locations specified by tag //#breakpoint. Breakpoints will be explained

later in this section.

• Similarly, construct SW Sink-wrt-DT′, referred to as SW Sink′, from SW Sink-wrt-DT.

• Construct DT-wrt-{SW Source, SW Sink}′, referred to as DT′, from DT-wrt-{SW Source, SW Sink}′

as follows:

– For every upw event, insert a call to method checkAssertions, and log information to log file.

– Every dnw event is changed to a thread that repeatedly checks the enabling condition of this
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dnw event, and executes its action whenever this condition holds.

• Construct SW Sys∗′ of SW Source′, SW Sink and DT′.

Harness

Checking framework

SW_Source−wrt−DT’ SW_Sink−wrt−DT’

DT−wrt−{SW_Source,SW_Sink}’

SW_Sys*’

DT−wrt−{SW_Source,SW_Sink}

Verification framework

SW_Sys*

SW_Sink−wrt−DTSW_Source−wrt−DT

Fig. 12. SW Sys∗ and SW Sys∗′ composite systems.

Once SW Sys∗′ is constructed, the next step is to obtain a testing platform on which it can be executed.

This is not trivial because the atomicity requirements of SW Sys∗′ are usually much more stringent than

those of SW Sys∗.

Let I refer to the platform on which SW Sys is intended to execute; that is, SW Sys’s programs involve

I-specific constructs for IO, communication, synchronization, concurrency, and so on. Because SW Sys′ is

obtained by a simple redirection of SW Sys’s output calls, SW Sys′ also must be executed on I. However,

I invariably cannot ensure atomicity of the interactions between SW Sys′ and other components in the

system (e.g., DT′). This is because DT, and hence DT′, would, for any nontrivial service, make use of

unreasonable atomicity. Thus I alone cannot serve as a testing platform.

We need to augment I so that SW Sys′-DT′ interactions are executed atomically. SAC (Serializer And

Checker) module, within the harness, is introduced to solve this problem. In order to conform to the

interleaving model, SAC ensures that only one thread is proceeding at a time. Every thread within the

composite system is associated with a lock. When the lock is released, the thread proceeds. When the

lock is revoked, the thread is paused. SeSFJava harness inserts breakpoints in SW Sys′ and DT′ such

that at any time, at most one thread of SW Sys∗′ runs and every other thread is paused at a breakpoint.

SAC module maintains relevant state for every process, such as whether the process is running, paused,

blocked, or about to be terminated. Each thread is responsible for sending its state to the SAC module.
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Breakpoints are inserted manually to indicate where the thread transitions take place.

The serializer-based approach is rather conservative (because it prevents parallel execution of processes).

However, it is simple and, as we shall see, easily provides the snapshots needed to check assertions.

Assertions are evaluated at checking locations, specifically, at the start of every event and at every

breakpoint. For example, the scheme to test if SW Source satisfies assertion inv(SW Source.sw >= 0)

is as follows. First, whenever SW Sys′ encounters a checking location, it sends SW Source.sw to the

Harness (via method checkAssertions). Second, whenever the harness receives this field, it checks whether

the predicate SW Source.sw >= 0 holds. If the predicate fails once, then the invariant does not hold.

After construction of SW Sys∗′, it is executed on the same platform as SW Sys∗ as follows:

1) SeSFJava Harness is started as a separate process, binds itself to RMI port “DTHarness”.

2) DT′ process is created, and looks up for harness’s port.

3) SW Sys′ process is created. It looks up for port “DTHarness” using RMI lookup command. So, both

systems are hooked up with the harness.

4) The developer can use the harness either in batch mode, leaving the harness to run for a while and

then analyzing the log file, or in interactive mode, influencing the flow of the execution manually.

IV. CONCLUSION

The work presented has three components: (1) integrating SeSF into Java, resulting in SeSFJava; (2)

developing a harness for checking systems against services and against safety and progress assertions,

where systems, services, and assertions are specified in SeSFJava; and (3) applying SeSFJava harness to

a data transfer protocol and service.

SeSFJava harness is able to handle general programs, general services, and general safety and progress

assertions. The harness can test systems on their actual platforms. It can handle both process-based

composite systems and thread-based composite systems. In the process-based case, the component

systems of the composite system are all separate processes, perhaps in different machines. In the thread-

based case, the component systems are all threads of a single process.
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Fig. 13. Configurations

SeSFJava harness can test various configurations of systems and services: M offers U (fig. 13(a)), M

offers U uses V (fig. 13(b)), a system MN with an internal service U (fig. 13(c)), or a general layered

system (fig. 13(d)).

Preliminary versions of SeSFJava and the harness have been used in computer network courses to define

TCP-like transport layer protocols.
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