
Using SeSFJava in Teaching Introductory Network Courses

Tamer Elsharnouby
Department of Computer Science,

University of Maryland,
College Park, MD 20742

sharno@cs.umd.edu

A. Udaya Shankar
Department of Computer Science,

University of Maryland,
College Park, MD 20742

shankar@cs.umd.edu

ABSTRACT
Networking course projects are usually described by an in-
formal specification and a collection of test cases. Students
often misunderstand the specification or oversimplify it to
fit just the test cases. Using formal methods eliminates
these misunderstandings and allows the students to test
their projects thoroughly, but at the expense of learning
a new language. SeSF (Services and Systems Framework) is
one way to overcome this obstacle. In SeSF, both implemen-
tations and services are defined by programs in conventional
languages, thereby, eliminating the need to teach the stu-
dents a new language. SeSF is a markup language that can
be integrated with any conventional language. The integra-
tion of SeSF and Java is called SeSFJava. SeSFJava provides
a technique to mechanically test whether student projects
conform to their corresponding specifications, thereby, pro-
viding the instructors with a technique for semi-automated
grading.

We present a four-phase transport protocol project, and
describe how SeSFJava is used in specifying, testing and
grading the different phases of this project. The use of
SeSF significantly (1) increased the percentage of students
who completed the projects, (2) reduced their email queries
about the specification, and (3) reduced the grading time.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; D.2.5 [Software Engineering]: Testing And
Debugging—distributed debugging, testing tools; F.4 [Theory
Of Computation]: Mathematical Logic And Formal Lan-
guages

General Terms: Des ign , Ver ifi cation .

1. INTRODUCTION
The goal of the programming assignments of the introduc-

tory networking senior-level course at University of Mary-
land is to teach the students the following:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’05, February 23–27, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-997-7/05/0002 ...$5.00.

• The role of network protocols.

• The different roles of the layers of the network and how
they stack above each other.

• How to enhance the performance of the network in the
face of changing network conditions.

• How to implement a distributed multi-threading ap-
plications, for example, client-server or peer-to-peer
applications.

In fall 1999, we introduced a three-phase project that
takes the above goals into account. The project was to
implement client and server TCP sockets. Phase I imple-
ments a data transfer protocol. Phase II implements con-
gestion control in order to enhance the performance of the
data transfer protocol. Phase III implements the connec-
tion management and the two-way data transfer protocols
of TCP/IP. All project specifications were described infor-
mally, and test cases were provided.

During the course, a number of problems emerged. Some
students misunderstood the specification or oversimplified it
to just fit the test cases provided with the project assign-
ment. Other students did not test their projects thoroughly
with various inputs. Others did not finish the project be-
cause they did not budget enough time, especially in phase
III which involved much more work than the other two
phases.

The teaching assistants (TAs) spent excessive time in test-
ing and grading the student projects.

These problems prompted us to integrate formal meth-
ods into the networks course. Formal methods, in theory,
removes all misunderstandings about the project specifica-
tions. It provides techniques to test the projects extensively,
which helps the students to discover more bugs. It permits
division of the project into more phases, for example, the
third phase can be divided into two phases: one that imple-
ments connection management, and another that puts ev-
erything together. Formal methods also provides a testing
harness on the actual platform.

But on the other hand, formal methods is not without
drawbacks. One drawback is that students have to learn a
new formal language, which paves the way to more misun-
derstandings by the students, because of their lack of ex-
pertise. Another drawback is that they have to learn new
techniques to test their implementation against the project
specifications. All these have to be learned under the tight
time constraints of the semester.

67

To overcome these drawbacks, we used a framework that
we have developed, called SeSF (Services and Systems
Framework), that (1) allows definitions in conventional lan-
guages of implementations and services of distributed sys-
tems, (2) formalizes the notion of an implementation satis-
fying its services, and (3) provides a means for mechanical
testing [9]. SeSF is an imperative, or procedural, version of
the formalism in [4]. The main difference between SeSF and
most other formalisms [4–7], is that SeSF stays close to the
programming world.

The remainder of the paper is organized as follows. Sec-
tion 2 describes an overview of SeSF. Section 3 describes
an overview of SeSFJava and SeSFJava Harness. Section 4
introduces the network project. Section 5 describes our ex-
perience with the students. Section 6 concludes.

2. SESF OVERVIEW
Like most formalisms, SeSF provides a compositional

methodology for the design and implementation of con-
current systems. Compositionality means that the design
and implementation of a concurrent system can be broken
up into the design and implementation of component con-
current systems. We refer to implementations as systems
and external behavior specifications as services. In SeSF,
both systems and services are specified by programs in con-
ventional programming languages.

A system specification is intended for execution. Hence,
its programs must satisfy the computational, synchroniza-
tion, and other constraints of the underlying platform – for
example, accounting for whether the platform has a single
processor, a multi-processor with shared memory, or a set
of loosely-coupled message-passing processors.

The service specification states all (and only) the desired
properties of the system’s execution, unencumbered by in-
ternal structure and computational, implementation and syn-
chronization issues. In most formalisms, the service defines
the permissible interactions between the system and its en-
vironment. However, our interest is in layered compo-
sitionality. Here, a composite system consists of layers
of component systems, and services define the allowed se-
quences of interactions between layers.

Roughly speaking, a system satisfies its services above
and below if the interactions it initiates are allowed by the
services, assuming the interactions initiated by the system’s
environment are allowed by the services. Our composition-
ality property is that, given a composite system consisting
of layers of component systems with services in between, if
every component system in isolation satisfies its services,
then the composite system as a whole satisfies its services.

Because services are defined by conventional program-
ming languages, they are executable. The adoption of
executable services, in general and in SeSF in particular,
has the following consequences. First, the notion of a sys-
tem satisfying a service is equivalent to the composite pro-
gram of the system and service satisfying certain correctness
properties. Second, developers can test a concurrent system
against its service simply by executing the composite pro-
gram of the system and the service, and checking whether
those properties are satisfied.

Using conventional languages for specifying services, in-
stead of a high-level specification language, has certain ad-
vantages and disadvantages. One advantage is that the ser-
vice specification language is familiar to programmers, per-

haps even the same language as that of implementation.
This reduces the possibility of the service specification being
misunderstood by implementors. Another advantage is that
it allows actual implementations to be tested, rather than
an abstract model. The main disadvantage is that most
programming languages suffer from inconsistencies and am-
biguities, and one has to avoid such constructs in service
specifications. For example, Java has an ambiguous mem-
ory model, and different Java implementations have different
memory models.

3. SESFJAVA OVERVIEW
SeSF is a markup language that can be integrated with

any programming language. SeSFJava [3] is the integration
of SeSF with Java. Java is chosen because of its relatively
precise semantics, popularity, and built-in concurrency con-
structs. A SeSFJava program is a Java program with SeSF
tags inserted as Java comments. Hence, a SeSFJava pro-
gram can be compiled and executed as a Java program. But
because of the SeSF tags, it can also be tested. We have de-
veloped a testing harness, called SeSFJava Harness, that
can execute a distributed system of SeSFJava programs and
check whether the resulting execution satisfies the relevant
services and any other desired correctness assertions (also
specified in SeSFJava).

SeSFJava Harness is able to handle general Java programs
(e.g., parameterized unbounded-state programs) and general
safety and progress assertions (e.g., parameterized invariant
and leads-to assertions). It tests the implementation on the
actual final platform, without altering the program to run
on a simplified platform (e.g., over TCP/IP network sockets
rather than a thread-based emulation). It helps the pro-
grammer check systems during the development phase; we
are not concerned with black-box testing.

To test a system against its service, we execute the ser-
vices and the systems together with a harness process. The
harness process runs on an arbitrary machine and ensures
that only one thread in the distributed system is proceeding
at any time. This approach is rather conservative (because
it prevents parallel execution of processes). However, it is
simple and provides the global snapshots needed to check
the assertions.

To participate in the testing, the system and service pro-
grams need to be instrumented, and there is a SeSFJava
Preprocessor for this purpose [2, 3]. But in the case of the
networking projects, we gave the students preprocessed code
to manually insert in their system programs, thereby reliev-
ing them of the preprocessing hassle.

4. PROJECT OVERVIEW
The goal of the project is to build a full-fledged transport

protocol between a client entity and a server entity over
unreliable channels that (exactly like IP) can lose, reorder
and duplicate messages in transit subject to a maximum
message lifetime. The transport service [8] consists of con-
nection management between the client and server entities
augmented with reliable two-way flow-controlled data trans-
fer. A reliable data transfer from a source to a sink ensures
that data is delivered in the same sequence it was sent and
without loss.

The project is divided into four phases. Each phase is
independently tested for correctness.

68

Application

Network

Transport

Transport service

Network service

Layer

Layer

Layer

SW_SourceUser

SW_Source

SW_SinkUser

SW_Sink

NetworkSocketNetworkSocket

Figure 1: Phase I Overview

4.1 Phase I: Data Transfer Protocol (Correct-
ness)

In this phase, the student implements a protocol that
achieves reliable data transfer over unreliable network chan-
nels. Specifically, the project consists of two interacting pro-
grams, a Source and a Sink, as shown in fig. 1. The Source
consists of three components: SW SourceUser, SW Source
and NetworkSocket. The Sink consists of three components:
SW SinkUser, SW Sink and NetworkSocket. SW SourceUser
passes data to SW Source. SW Source buffers the data (in a
send window) and transfers it to SW Sink, resending until it
is acknowledged by SW Sink. SW Sink buffers data received
out of sequence (in a receive window) and delivers data in
sequence to SW SinkUser.

The students are provided with:

• The applications, SW SourceUser and SW SinkUser,
which transfer a file from the source to the sink.

• The NetworkSocket entity which provides the unreli-
able channels to be used by the transport entities.
NetworkSocket entity is a wrapper to the standard sock-
ets. It is used instead of the usual UDP sockets, be-
cause in a LAN environment, the standard sockets dis-
play hardly any loss, reordering or duplication. The
students can change the probabilities of loss, reorder-
ing and duplication on the fly, which is important for
testing.

• The SeSFJava Harness module and the data trans-
fer service specification, which defines the signature of
the interactions between the layers, as well as the per-
missible sequences of these interactions (e.g., the data
sequence delivered to SW Sink must be a prefix of the
data sequence accepted from SW Source).

The students are to implement SW Source and SW Sink so
that they conform to the provided data transfer service. The
students are free to choose the particulars of the design, in-
cluding message types and formats, sequence number space,
data block size, retransmission policy, acknowledgment (cu-
mulative and/or selective) policy, round-trip time estimator,
etc.

4.1.1 Testing Phase I
The data transfer service and the SeSFJava Harness are

illustrated in file Harness.java (fig. 3). For full version of the
harness, see the class homepage [1]. This file consists of the
following parts:

rebind(Harness)

Lookup Lookup

Lookup Lookup

Harness

SW_Sink

SW_SinkUser

SW_Source

SW_SourceUser

Figure 2: Phase I Harness Outline

• The main method which binds an instance of the Har-
ness to Remote Method Invocation (RMI) port “Har-
ness”.

• Lock and unlock methods for the Harness main lock,
for synchronizing the programs and threads of the
project. When a thread acquires the main lock, no
other thread in the network system can proceed, until
the lock is released. This allows a global snapshot
of the network system to be collected at the Harness
and evaluated against the service. (This is a simplified
version of the general SeSFJava Harness.)

• Methods that represent the interactions between the
transport layer and the application layer. There are
three of them: sendData and ackData on the source
side, and deliverData on the sink side.

• Invariants of the data transfer protocol, for example,
the number of bytes delivered to Sink’s user cannot
exceed the number of bytes sent by Source’s user.

After developing the source and sink entities, the student
connects the distributed system (SW SourceUser, SW Source,
SW SinkUser and SW Sink) to the Harness, as shown in
fig. 2. Initially, the student inserts, in the constructor of
each network entity, an RMI “lookup” call for the Harness
RMI port. For each of the interactions mentioned above, the
student inserts code to obtain the Harness lock and issue an
RMI call in the corresponding method in class Harness.

For example, SW Source.sendData method after the stu-
dent insertion is as follows:

// Inside SW Source.java
void sendData (byte []data) throws Exception {

harness.lock(); // obtain Harness main lock
harness.sendData(data); // RMI call of Harness method

// with same parameters
. . . // sendData method body
harness.unlock(); // release Harness main lock

}

Consequently, a student can determine the correctness of
both source and sink sides by checking that no errors were
thrown during the execution of Harness. (To detect dead-
locks, we add an extra condition: a file sent by the source
has to be received.)

The program is executed as follows: (1) Execute the Har-
ness module, so it can bind to port “Harness”, (2) Execute
the sink side so it can hook to the Harness class, (3) Execute

69

the source side to start sending the file. A log file is recorded
for every execution.

4.1.2 Grading Phase I
The TAs grade the data in a semi-mechanical way. They

run scripts to execute the projects with different input files
and different network conditions. Each execution is stored
in a different log file, which is checked for thrown errors.
If there is an error, the TA checks the log file to print out
the trace that has generated this error, and determines the
grade accordingly. The student can resort to a very simple
solution, say a send window size of 1, but they will then
suffer in Phase II.

4.2 Phase II: Data Transfer Protocol (Perfor-
mance)

This phase emphasizes the protocol’s performance; that
is, the grade is primarily based on the throughput achieved
under varying network conditions, which in turn depends on
how well the protocol adapts to congestion, the overhead of
the congestion control mechanism, etc.

The students strip the RMI calls inserted in Phase I, and
enhance their code to perform better. Enhancements are of
two kinds: (1) network optimizations, for example, adding
Tahoe congestion control, and (2) code optimizations, for
example, reducing the thread-switching in their code. In this
phase, the NetworkSocket has the ability to play scenarios
that emulate real-life network traffic. Thus, the students
can view how their code performs under various conditions.

The TAs grade this project by running scripts that exe-
cute the students projects a number of times for every test
scenario, and record the throughput for each run. The aver-
age throughput is computed and the students are classified
according to the performance into four groups, from fast to
slow, and the grade is determined accordingly.

4.3 Phase III: Connection Protocol
In this phase, the students build a connection manage-

ment protocol over unreliable network channels. The grade
in this phase is primarily based on the protocol’s correct-
ness. Specifically, the project consists of two interacting
programs, a Client and a Server, as shown in fig. 4. Client
consists of three components: ClientUser, CM Client and
NetworkSocket. Server consists of three components:
ServerUser, CM Server and NetworkSocket.

The students are to implement CM Client and CM Server
which are the transport entities at the two ends. They are
provided with the other entities. ClientUser and ServerUser
are the users of the transport entities. These applications
open and close hundreds of connections under different cir-
cumstances. The pair of NetworkSockets are as in phases
I and II. The specifications formally describe the three-way
handshaking connection establishment, and the two-way hand-
shaking of the disconnection procedure. Similar to that of
phase I, the service specifications and the Harness are pro-
vided in Harness file, and the network system is constructed
as in fig. 5, The testing and grading are carried out simi-
larly to that of phase I. Because of limited space, we will
not describe the methods in detail.

4.4 Phase IV: Putting It All Together
In this phase, the students build a full-fledged transport

service over unreliable network channels, specifically, com-

import . . .;
class Harness extends UnicastRemoteObject implements HarnessInterace{

// HarnessInterface contains the headers of all the methods defined
// in this file except methods correctData and checkAssertions.
. . .

Harness() throws RemoteException {super();}
public static void main(String args[]) throws Exception {

. . .

Naming.rebind(”Harness”, new Harness());
}

public void lock () throws RemoteException { . . . }
public void unlock () throws RemoteException { . . . }

// Source entity variables.
ByteArrayOutputStream srcHist = new ByteArrayOutputStream ();
long srcBufSize = 32*1024;
int srcBufUsed;
long srcNumSent, srcNumAcked;
long sinkNumDelivered; // Sink entity variable

// Sends data from source user to source entity to deliver it to
// remote user.
// Called by SW Source.sendData
public void sendData(byte []data) throws RemoteException {

synchronized (lock){
checkAssertions();
if (srcBufUsed + data.length <= srcBufSize && data.length > 0){

srcHist.write (data, 0, data.length);
srcNumSent + = data.length ;
srcBufUsed + = data.length ;

} else System.out.println(”usr sendDataSource failed ”);
}

}

// Notifies user that n bytes have been acked.
// Called by SW SourceUser.ackData
public void ackData(int n) throws RemoteException {

synchronized(lock){
checkAssertions();
if (srcNumAcked + n <=srcNumSent){

srcBufUsed = srcBufUsed − n ;
srcNumAcked = srcNumAcked + n ;

} else System.out.println(”usr ackedData failed ”);
}

}

// Delivers ”data” received to entity user.
// Called by SW SinkUser.deliverData
public void deliverData(byte []data) throws RemoteException {

synchronized(lock){
checkAssertions();
if (sinkNumDelivered + data.length <= srcNumSent &&

data.length > 0 && correctData(data))
sinkNumDelivered = sinkNumDelivered + data.length ;

else System.out.println(”usr deliverData failed ”);
}

}

boolean correctData (byte []data) {
byte srcData[] = srcHist.toByteArray();
for (int i = 0; i < data.length; i++)

if (srcData [((int) sinkNumDelivered) + i] != data[i])
return false ;

return true ;
}

// ASSERTIONS section
void checkAssertions() throws RemoteException{

if (!((srcBufUsed >= 0) && (srcBufUsed <= srcBufSize)))
System.out.println(”:bufCondition(false)”);

}
}

Figure 3: Harness program (file Harness.java)

70

Application

Network

Transport

Transport service

Network service

Layer

Layer

Layer

ClientUser ServerUser

CM_Server

NetworkSocketNetworkSocket

CM_Client

Figure 4: Phase III Overview

rebind(Harness)

Lookup Lookup

Lookup Lookup

Harness

CM_Server

ServerUser

CM_Client

ClientUser

Figure 5: Phase III Harness Outline

bining phases II and III (after stripping the RMI calls). The
grade of this project is based on the correctness and the per-
formance of the students’ implementations.

5. EXPERIENCE WITH THE STUDENTS
We have been using SeSFJava in the senior-level under-

graduate computer networks course for the past three years.
The projects are mandatory: no student can pass the course
without passing the projects. The average number of stu-
dents per class is 50. Most students have not been exposed
to formal methods before taking this course.

Using SeSFJava significantly improves the performance of
the students. Table 1 compares the use of detailed informal
description of the projects (without SeSF) against the use of
SeSF in specifying these projects. The number of students
who completed all the phases of their projects almost dou-
bled. Their questions about the specifications decreased by
40%. The student drop rate decreased by almost half.

Without With Improv.
SeSF SeSF

% of students who 45% 88% 95%
completed their projects
of email queries 16 10 60%
per students
% of students 27% 14% 93%
dropping the class

Table 1: Improvement using SeSFJava

From the TA perspective, using SeSF reduces the grad-
ing time per student, because considerable amount of the
grading is carried mechanically. The number of regrading
requests fell by 60%. We think this is because a student
can test his/her implementation against the project specifi-

cation, and because the TA provides the student with the
trace demonstrating any errors (and thus grade penalties).

6. CONCLUSION
This work presented a design for an incremental transport

protocol project. We integrated formal methods, SeSFJava
in particular, into this project to achieve several goals. First,
misunderstandings of the project specifications are almost
entirely eliminated, because the specifications are presented
formally in a language that is familiar to the students. Sec-
ond, we are able to test and grade each phase thoroughly
and independently, which results in better management of
time for the students and the TAs. Third, the students and
the TAs are able to mechanically test whether the project
implementations conform to the specifications.

SeSFJava and the Harness have been used in computer
network courses [1, 10]. It is not limited to networking
projects, and can be used in introductory concurrent pro-
gramming courses.

Acknowledgment
This work was supported in part by the Maryland Informa-
tion and Network Dynamics (MIND) Laboratory, Fujitsu
Laboratories of America, and by the Department of Defense
through a University of Maryland Institute for Advanced
Computer Studies (UMIACS) contract.

7. REFERENCES
[1] T. Elsharnouby. Class homepage on computer

networks (CMSC417) at University of Maryland, 2003.
http://www.cs.umd.edu/class/spring2003/cmsc417/.

[2] T. Elsharnouby and A. U. Shankar. SeSFJava: A
framework for design and testing of concurrent
systems. Technical Report CS-TR 4619, UMIACS-TR
2004-61, University of Maryland, 2004.

[3] T. Elsharnouby and A. U. Shankar. SeSFJava harness:
Service and assertion checking for protocol
implementations. IEEE Journal on Selected Areas in

Communucations, 2004.

[4] S. S. Lam and A. Shankar. A theory of interfaces and
modules I − composition theorem. IEEE Transactions

on Software Engineering, 20(1):55–71, January 1994.

[5] N. Lynch and M. Tuttle. Hierarchical correctness
proofs for distributed algorithms. In Proceedings of the

ACM Symposium on Principles of Distributed

Computing, Vancouver, B.C., August 1987.

[6] J. Misra. A Discipline of Multiprogramming.
Springer-Verlag, 2001.

[7] A. Roscoe. The Theory and Practice of Concurrency.
Prentice Hall Series in Computer Science, 1998.

[8] A. U. Shankar. Transport layer principles. published
in The Communication Handbook, CRC Press, 1996.

[9] A. U. Shankar. Concurrent Systems and Services:

Design, Verification and Testing. in preparation, 2005.

[10] Y. Yang. Class homepage on computer networks
(CS433) at Yale University, 2003.
http://zoo.cs.yale.edu/classes/cs433/assignments/prog1.

71

