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Abstract

Physical layer capture (PLC) in 802.11b refers to the
successful reception of the stronger (higher signal strength
at receiver) frame in a collision. PLC causes significant
imbalance in the throughputs of sources. Existing 802.11b
simulators, including NS-2 and Qualnet, assume that PLC
occurs only if the stronger frame arrives first at the receiver.
We show empirically that in reality PLC occurs even if the
stronger frame arrives later (but within the physical layer
preamble of the first frame). Consequently, throughput un-
fairness in reality can be significantly (up to 15%) higher
than with the former PLC model. We have modified the NS-
2 simulator to account for this and Qualnet will be incorpo-
rating a fix in their next release.

To identify which frames were involved in collisions,
when their transmissions started, and which of them were
retrieved, we have devised a novel technique using multi-
ple sniffers and instrumented device drivers to reconstruct
from the air interface all tx/rx events in a WLAN to within 4��� accuracy. This allows us to quantify the causal links from
the PHY layer through the MAC layer to the observed ap-
plication layer imbalance. which may be as high as 25 %
with two source and 75 % with four sources. It also shows
that the arrival times of colliding frames routinely differ by
as much as 20 ��� due to inherent uncertainties of 802.11b
firmware clock synchronization and rx/tx turnaround de-
lays, and that the frame to arrive first can be either the
stronger or the weaker with equal likelihood.

� Extended version of paper to be published in the Proceedings of the
12th IEEE International Conference on Network Protocols, Berlin,
Germany, October 5th - 8th, 2004.�
This work was supported in part by the Maryland Information and Net-
work Dynamics (MIND) Laboratory, Fujitsu Laboratories of America,
and by the Department of Defense through a University of Maryland
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Figure 1. Scenario showing imbalance in
throughputs obtained by sources though
their channel to the AP is perfect.

1. Introduction

Consider two 802.11b stations, � and 	 , transmitting
data to a wired sink 
 through access point � , in the DCF
(Distributed Coordination Function) mode under the fol-
lowing natural conditions: (1) each of � and 	 have a “per-
fect” channel to � when the other is not transmitting, i.e.,
gets the maximum throughput at the highest bitrate; (2) � ’s
signal at � is stronger than 	 ’s signal at � by a few dB; and
(3) � , 	 , and � are all in range of each other, i.e., no hid-
den terminal. The workload considered is a UDP source on
each station with a constant rate sufficient to saturate the
available capacity. The scenario is shown in Figure 1.

Our experiments, done with a variety of 802.11 cards,
show that � ’s goodput as well as throughput are consis-
tently higher than 	 ’s in the long term (over intervals longer
than, say, 10 seconds). Here, goodput refers to the number
of successful transmissions per second and throughput to
the number of (re)transmissions per second, including lost
tries.



Because � and 	 achieve equal performance when the
other is not transmitting, the imbalance can only be because
of interaction between � and 	 when both are transmitting
simultaneously. Indeed, conditions 1-3 above allow us to
conclude that the imbalance can only be because collisions
are resolved in favor of � , rather than, say, both frames be-
ing lost. The phenomenon of the stronger frame in a colli-
sion being received successfully is known as physical layer
capture (PLC) [1].

Note that the imbalance cannot be caused by 	 ’s frames
having a poor signal-to-noise ratio, because 	 experiences
a perfect channel when � is not transmitting. The imbal-
ance also cannot be caused by 	 switching to a lower trans-
mission bitrate, as that would only reduce each station’s
throughput by same amount. This is because, as explained
in detail in [2], the 802.11 MAC guarantees fair access to
the media (in terms of the number of transmissions) in the
long term and does not abort a transmission in progress (no
matter what the bitrate).

Here are possible models for what happens when frames
of different signal strength collide at a receiver:

I Both frames are lost.

II The stronger frame is received correctly provided it is
sufficiently stronger and it is the first to arrive.

III The stronger frame is received correctly provided it is
sufficiently stronger, regardless of whether it arrives
before or after the weaker frame.

Clearly, we can rule out model I because it does not gen-
erate the observed imbalance. Both models II and III gener-
ate imbalance in favor of � , model III more so than model
II. To the best of our knowledge, existing analytical mod-
els for 802.11 MAC throughput [3, 4, 5] assume model I.
Simulators such as NS-2 [6] and Qualnet [7] use (determin-
istic or probabilistic versions of) model II. We show that in
reality, collisions are resolved according to model III.

The 802.11b standard [8] does not preclude this kind of
capture (see PHY receive process in pages 202-203). Each
frame starts with 192 bits of Physical Link Control Proto-
col (PLCP) preamble and header, consisting of 128 sync
bits, 16-bit Start Frame Delimiter (SFD), and 48 bits in-
dicating, among other things, the bitrate and length of the
MPDU (data) that follows. These 192 bits are always trans-
mitted at 1 Mbps. If a stronger frame arrives while a receiver
is receiving a frame, the stronger frame can be captured pro-
vided it starts before the SFD of the first frame.

Naturally, the difference between models II and III with
respect to throughput imbalance is most significant when
the stronger frame almost always starts second; we demon-
strate such a simulation scenario in Section 4, showing
throughput imbalance of 15% with model III as opposed
to 0% with model II. The PLC imbalance is typically mag-
nified by protocol control mechanisms as one goes higher

up in the protocol stack: the MAC’s Binary Exponential
Backoff (BEB) algorithm magnifies the raw PLC imbal-
ance by increasing the backoff window of the losing sta-
tion; the TCP congestion control magnifies the imbalance
at the MAC layer by throttling the send rate; and so on.

We also show that the time instants of start of recep-
tion of colliding frames at the receiver routinely differ by
as much as 20 microseconds, and that the frame to start re-
ception first can be either the stronger or the weaker frame
with equal likelihood. This happens even when all stations
are in range of each other, due to the rx/tx turnaround de-
lay at stations and inherent uncertainties in 802.11 firmware
clock synchronization. The time differences can be more if
hidden terminals exist.

To demonstrate these behaviors in real-life 802.11 net-
works, we have developed a technique for reconstructing
from the air interface the timeline of all transmission (in-
cluding retransmission) and reception events in an 802.11
WLAN to an accuracy of � ��� . Hence we can identify all
the frames that collided, their arrival times, and whether
any of them were received (due to physical layer capture).
Combining this with an instrumentation of the WLAN de-
vice driver and the TCP/UDP/IP subsystem, we are able to
trace the impact of physical layer capture through the pro-
tocol stack, and thereby explain the observed imbalance in
the application layer throughputs.

1.1. Impact of our findings on simulators

NS-2, probably the most detailed network simulator in
the open source domain, uses a deterministic version of
model-II; if the earlier of two colliding frames is stronger
than the later by 1 dB, it is captured. Qualnet, a state-of-
the-art commercial network simulator, uses a probabilistic
version of model-II; if the earlier frame is stronger, it treats
the later frame’s signal as noise for the earlier frame, com-
putes the resulting bit error rate (this depends on the ear-
lier frame’s bitrate and modulation), and appropriately flips
bits of the earlier frame.

Neither simulator allows the stronger frame to be cap-
tured if it starts later than the weaker frame, and it seems
reasonable to expect the same of other 802.11-capable net-
work simulators. Consequently, the throughput imbalance
predicted by simulation can differ significantly from the im-
balance observed in reality, for example, the imbalances can
differ by 15% with NS-2. The difference can be greatly re-
duced by changing the simulator’s collision handling to that
of model III, and we have shown this for NS-2. We discuss
this further in Section 4. We have informed the maintain-
ers of NS-2 and the Qualnet support staff about this issue,
and Qualnet will incorporate a fix in their next release [9].



1.2. Identifying collisions and their resolution

How does one determine what happens in a collision
when one or both frames may be lost? To identify the cor-
rect collision model (I, II, or III), we need to identify in each
collision precisely which frames were involved in the col-
lision, which frame arrived first, which frame was stronger,
and how the collision was resolved (were both frames lost
or was one of them received).

Clearly, we need to generate a global timeline of all
transmissions (including retransmissions) and all receptions
in the WLAN. This is not trivial for several reasons. The in-
formation needed for this is available only at the firmware
level or the air interface (e.g., the number of retransmissions
a frame underwent is not available at the device driver). Ac-
cess to the firmware code is not feasible (in our case, be-
cause of the stiff license fee). Hence, we need to sniff pack-
ets in the air.

However, a single sniffer cannot capture everything be-
cause it too is subjected to PLC (so the frame retrieved by
it may, in fact, be the one lost by the intended receiver). So
we need many sniffers, which then leads to the problem of
merging the logs of different sniffers on a common timeline,
i.e., synchronizing the timestamps from the various sniffers
to an accuracy adequate to resolve collisions. We solve this
problem, achieving timing accuracy of better than � ��� , by
using timestamps generated by the firmware and synchro-
nizing them via receptions of beacon frames. We explain
this technique, which can be used in itself as a comprehen-
sive WLAN monitor, in Section 3.

1.3. Causal link between PLC and higher-layer
throughput imbalance

Several papers in the literature (e.g., [10, 11]) have
pointed out that difference in signal strengths at the receiver
is accompanied by unfairness in application layer through-
put. They correlate application layer throughput to signal
strength, but they do not explain why it happens. They do
not examine or quantify the causal links from the PHY layer
through the MAC layer to the application layer.

We instrument wireless stations at the lowest layer avail-
able to us – the device drivers of the WLAN cards and the
TCP subsystem in the Linux kernel. We first isolate the ef-
fect of PLC by itself by examining an ad-hoc network in the
broadcast mode, thereby disabling the MAC backoffs and
retransmissions. Then, we consider how the MAC magni-
fies the PHY layer imbalance. We explicitly identify the
frames which collided and how they were resolved at the
receiver, and relate the observed difference in this to the
throughputs obtained by different stations.

1.4. Summary of contributions

Our main contributions are as follows:
� We identify from real-life measurements that model

III is the correct model for physical layer capture. Be-
cause the throughput and goodput imbalance caused
by model III is significantly higher than that caused
by models II and I, this has a practical consequence
to simulators, including NS-2 and Qualnet, which use
model II. Incorporating collision model III in NS-2
makes it more realistic. Qualnet will incorporate this
fix in their next release.

� We develop a novel technique for reconstructing from
the air interface a time line of all transmission (includ-
ing retransmission) and reception events in an 802.11
WLAN to an accuracy of � ��� . This allows one to iden-
tify all the frames that collided, their arrival times, and
how collisions were resolved at a receiver.

� We present a detailed analysis of the causal link be-
tween PLC and application layer throughput imbal-
ance. This explains why a station with a perfectly fine
channel to a sink suffers an unfair degradation in ser-
vice when another station whose frames have stronger
signal strength at the sink starts to compete with it.

1.5. Roadmap

Section 2 surveys related work. Section 3 describes our
method to construct the global timeline of WLAN events.
Section 4 identifies issues with simulator models and sug-
gests fixes in light of our findings. Section 5 describes our
kernel space instrumentation and equipment. Sections 6, 7,
and 8 describe our experiments and our inferences. Sec-
tion 9 concludes.

2. Related work

Related work falls into two groups. The first group con-
siders models for physical layer capture. A survey of com-
munications literature shows that existing analytical models
for obtaining probability of frame capture typically consider
the stronger frame starting first (e.g., [12, 13, 14]). How-
ever, there are patents, including one on the WaveLan pre-
cursor of 802.11 [15], that also consider the stronger frame
starting later.

To the best of our knowledge, reference [16] is the only
work which tries to identify what capture model is used
in 802.11. This work simulates different capture models
[12, 13, 14, 15] to identify which of these explain the ex-
tent of unfairness observed. Thus, it indirectly infers the ap-
propriate capture model, but does not provide any real-life
evidence. Our work, on the other hand, provides concrete



evidence of the correct capture model by the use of a novel
technique that reconstructs all collisions and their resolu-
tions.

The second group of related work is real-life measure-
ment based studies which consider unfairness in 802.11
throughput. References [10] and [11] do not consider the
impact of PLC, but focus on MAC-layer performance. Ref-
erence [17] analyzes location-dependent throughput perfor-
mance, but does not explain the mechanism leading to this.
Reference [18] is closest to our work. It correlates the TCP
throughput to signal strength at the macroscopic level in
presence of a hidden terminal effect only. Specifically, the
authors neither identify collisions and PLC nor provide ev-
idence of how collisions are resolved and how this impacts
higher-layer protocols. We are able to precisely identify and
quantify the impact of PLC by itself and how it is magni-
fied by higher layers.

3. Reconstructing all Tx/Rx events in a
WLAN

How does one determine whether a collision took place,
if one (or both) of the colliding frames is lost? Recall that
the firmware of a transmitting host does not expose the
time instants of start of transmission or number of retrans-
missions a frame underwent. More generally, how does
one develop a comprehensive WLAN monitor? Unlike a
wired network interface, a single vantage point is insuffi-
cient because the signal strengths, channel conditions, etc.,
observed by different hosts on the WLAN vary significantly
(depending on their relative physical locations). This also
means that different hosts resolve a collision differently, de-
pending on which of the colliding frames had a higher sig-
nal strength at their receivers. We exploit this fact to de-
velop a comprehensive monitoring algorithm which pro-
vides a global timeline of all events in a WLAN, and con-
sequently, identifies which transmissions collided and how
they were resolved at a receiver.

We do this by having several stations – one for each traf-
fic source – acting as sniffers. A sniffer is a station with a
WLAN card in monitor mode, i.e, it passively captures all
frames in the channel. Observe that a sniffer is also sub-
jected to PLC. We locate each sniffer close enough to its as-
sociated source so that it resolves collisions involving trans-
missions of its associated source in favor of that source.

Define a Tx event to be the start of a frame transmission
and an Rx event to be the start of a frame reception. Given a
global timeline of all Tx events in the WLAN, we can iden-
tify transmissions that overlap in time and thereby detect
collisions. For instance, Figure 2 shows Tx events ��� at sta-
tion A and ��� at station B at time instants � � and ��� , respec-
tively, with � ��� ��� . This pair of events constitutes a colli-
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Figure 3. Global timeline construction

sion if ���! "� � is less than # , the duration of the frame trans-
mission that stared at � � .

Neglecting propagation delay in the WLAN (which is
limited by the standard to $ ��� but is in the order of nanosec-
onds due to the range of 802.11b), each transmitter’s Tx
event generates an Rx event at its associated sniffer instan-
taneously.

Because every transmitter X has an associated sniffer
that receives (practically) all frames transmitted by X, all
the sniffers together have a record of all Tx events in the
WLAN, with each Tx event record timestamped by the re-
ceive time according to the associated sniffer’s WLAN card
clock.

Hence to merge the sniffers logs into a global timeline of
Tx events, all that is needed is to adjust the timestamps of
different sniffers so that they are all synchronized to a com-
mon clock.

To do this, we exploit the fact that 802.11 cards in nor-
mal operation synchronize their clocks to within � ��� of a
“global” WLAN time that is disseminated in beacon frames



and computed either by the AP (if infrastructure mode) or
by a distributed algorithm involving all nodes (if adhoc
mode) [8]. Sniffer cards, which are in monitor mode pas-
sively listening to all traffic, are not in normal operation and
hence do not synchronize their clocks in this way. But the
difference between a sniffer’s clock and the global time is
sampled by the difference between the receive timestamp of
a sniffed beacon and the global timestamp within the bea-
con.

Therefore, we “synchronize” the receive timestamps in
the sniffer logs by post-processing the logs as follows: Let
� � and � � be time instants of two consecutive beacon Rx
events as logged by a sniffer card’s clock. Let

� � and
� �

be the (WLAN’s global) timestamps in the beacons. Thus
� �  � � is the offset between the global clock and the snif-
fer card’s clock at time

� � . For all records in the interval� � ��� ����� in the sniffer log, compensate the record’s timestamp
by subtracting the offset � �  � � . The drift in the firmware
clock for the inter-beacon duration is small enough ( � $ ��� )
to be ignored.

Figure 3 illustrates the algorithm for two sniffers, � and
	 . Two successive beacons with global timestamps

� � and� � , respectively, are received by both � and 	 . The local
clock of � ’s card is 1 unit ahead of the global time, i.e.,
���	� � ��
 $ . Likewise, the local clock of 	 ’s card is 1 unit
behind of the global time, i.e., ���� � �  $ . Therefore, � ’s
frames from the first beacon to the second are shifted back
by 1 unit, and 	 ’s frames are shifted forward by 1 unit to
get the global timeline. In general the offsets of different
WLAN cards’ clocks are different.

The accuracy of our synchronization technique with re-
spect to any two sniffers can be measured by the differ-
ence between the compensated receive timestamps for each
frame received by both sniffers. A histogram of these dif-
ferences for a typical experiment is presented in Figure 4.
The x-axis is the difference between compensated receive
timestamps of two sniffers, and the y-axis is the normal-
ized frequency distribution. The maximum absolute value
of the difference is � ��� , which is in line with the time syn-
chronization accuracy of the 802.11b cards (as described in
the 802.11b standard).

This accuracy is sufficient because the transmission time
of any 802.11 frame at any transmission bit-rate is more
than $���� ��� (because the 192-bit PLCP preamble and header
is always transmitted at 1Mbps).

Thus, we construct a global timeline of events by com-
posing different sniffer logs. Henceforth, we refer to this
as “global timeline construction” and identifying collisions
from the global timeline as “collision analysis”
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Figure 4. Histogram depicting accuracy of
the time synchronization in a typical exper-
iment. The maximum discrepancy between
sniffer clocks after compensation is � ��� .

4. A better PLC model for simulators

In this section we first make some observations from our
empirical measurements. Then we use these to point out the
scenario where there is a significant difference between pre-
dicted throughput imbalances with capture models II and
III.

Consider a collision of RTS frames transmitted by two
stations � and 	 at a receiver. Let ��� denote the time instant
when the reception of the RTS frame transmitted by source
� starts, and ��� denote that of source 	 . Figure 5 shows a
histogram of ���  ���� for all collisions at the receiver ob-
tained from a typical real-life experiment (described in Sec-
tion 7). Source � is the stronger, and almost all collisions
(99 %) are resolved in its favour. From these results, we
make the following observations:

� The stronger frame is almost always retrieved even if
it starts second.

� The arrival times of colliding frames routinely differ
by as much as ��� ��� , and the frame to arrive first can be
either the stronger or the weaker with approximately
equal probability.

� RTS frames are also successfully captured.

In light of these observations, we identify issues with the
PLC model commonly used in simulators. We restrict citing
source code to the NS-2 simulator (version 2.26) due to li-
censing concerns, and briefly discuss Qualnet at the end of
this section. Our experimental results have helped uncover
two issues in the current modeling of physical layer cap-
ture in NS-2.
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Figure 6. Topology used for NS Experiment

4.1. Issue I: Capture model II vs. capture model
III

In a collision of data frames, NS-2 does not display cap-
ture of the stronger frame if it starts second, contrary to ex-
perimental results. The pseudo-code for NS-2 capture (para-
phrased from the file mac/mac-802 11.cc) is outlined in
Figure 7. Here, pktRx refers to the first frame in the
collision and p refers to the second frame. If the ratio of
pktRx ’s signal strength to p’s signal strength is greater
than CPThresh (which is set to 10, or equivalently, a dif-
ference of 1 dB), then the routine capture is executed.

We now identify a scenario where using the existing
model causes significant deviation from reality. We simu-
late in NS-2 the topology shown in Figure 6. We disabled
RTS/CTS to avoid another problem described below. The
distances � � and 	 � are 50 meters and 200 meters, re-
spectively. The workload consists of two equal rate CBR
sources, one on each station, with a total rate enough to sat-
urate the available capacity.

Because transmissions are slotted and NS-2 uses one
global clock, all the frames in a collision start transmission
at the same time. Hence, the time difference between the re-
ceptions of the two frames is determined solely by the prop-
agation delay. In our scenario, � ’s frame arrives at � before
	 ’s frame.

// pktRx is the first frame
// p is the second frame
if (pktRx - � rxPower/p- � rxPower � CPThresh-
old)

capture(p);
else
if (p- � rxPower/pktRx - � rxPower � CPThresh-
old)

capture(pktRx );

else
collision(p);

Figure 7. Original code deciding capture in
NS-2 simulator with our suggested improve-
ment (in box).

Case 1: Suppose � and 	 transmit with the same power.
Then � ’s signal is stronger at � than 	 ’s signal at � by more
than 1 dB (in NS-2, the signal strength is inversely propor-
tional to a power of the distance, either $ ��� � or $ ����� ). So the
stronger signal arrives before the weaker signal and the ex-
isting NS-2 code resolves all collisions in favor of � . The re-
sulting difference in their long-term throughputs is 14.45%.

Case 2: Suppose 	 transmits with high enough power such
that the ratio of signal strength of 	 at � to that of � at � is
higher than the capture threshold of 1dB. Now the stronger
signal starts second at � , and therefore, the existing NS-2
code loses both signals in a collision. NS-2 shows no un-
fairness in this scenario, contrary to what is observed in re-
ality. It would be more realistic to observe the same unfair-
ness as in case 1, but in 	 ’s favor.

Further, the histogram in Figure 5 shows that it is not the
propagation delay (which is of the order of nanoseconds)
which decides which frame arrives first at the receiver,
but rather the inherent uncertainties of clock synchroniza-
tion (drift, missed beacons, etc.) and rx/tx turnaround time.
Therefore, if one were simulating a wireless technology that
has capture model II, then our results show that it is crucial
to accurately model these timing jitters.

4.2. Issue II : lack of RTS capture

In a collision of RTS frames, NS-2 does not display cap-
ture behavior at all (i.e., even if stronger starts first), con-
trary to experimental results. Suppose two RTS frames col-
lide in NS-2. If the stronger frame is second, then both
frames are lost (as discussed in Issue I). If the stronger
frame is first, then it is captured (as it should be). How-
ever, the NS-2 capture sub-routine (paraphrased in Figure
8) wrongly marks the medium as busy for the dura-
tion of the second frame plus an additional EIFS dura-



tion. Consequently, the CTS response to the first RTS is
never sent, effectively resulting in the first RTS frame be-
ing dropped. However, our experiments described in the
Section 7 show that when RTS/CTS frames are used, the
stronger RTS frame always receives a CTS frame in re-
sponse.

set nav(txtime(p) + eifs );
free(p);

Figure 8. Capture sub-routine in NS-2 simula-
tor

Issue I can be fixed by minor modifications to the exist-
ing code and this results in an unfairness of 15%, which re-
flects reality better. Issue II has been taken up with NS-2
maintainers for further debugging.

As mentioned before, Qualnet uses a probabilistic cap-
ture model if the stronger frame starts first, and therefore is
affected by Issue I. Subsequent to our communication, their
support staff have scheduled a fix to their simulator in a fu-
ture release.

5. Equipment and Modifications to Kernel-
Space Software

To observe and quantify PHY layer phenomena on a mi-
croscopic timescale, it is necessary to record events as they
happen at the layers closest to the PHY layer (as opposed
to indirect inferences from macroscopic application layer
measurements). To this end, we instrumented the lowest
layers we had access to: wireless device drivers and the ker-
nel. We first summarize the hardware and software we used
and then describe our kernel-space instrumentation in this
section.

Source stations: For generating traffic, we use up to four
identical IBM Thinkpad R-32 laptops, each with 256Mb
RAM, 1.2GHz P4 processor, RedHat Linux with kernel
2.4.19, Compaq WL100 WLAN card with firmware version
0.8.0, and an instrumented linux-wlan [19] driver.

Access point and sink: The Prism2 chipset supports a
HostAP mode, which allows a laptop with a WLAN card
to act as an access point. Time-critical tasks like ACK-
ing and sending beacon messages are implemented in the
firmware, and management tasks like client association are
implemented in the device driver. We use an IBM R-32 lap-
top as an Access Point (AP), with an instrumented version
of the host-ap [20] device driver.

The AP is connected to a sink machine via a 100Mbps
Ethernet switch. The sink machine is a P3 750Mhz 512Mb
desktop running RedHat Linux with kernel 2.4.19.

Sniffers: We use another five IBM Thinkpad R-32 laptops
as sniffers. For each source (including the AP), we have
a dedicated sniffer placed in such a way that the signal
strength of that source at the sniffer is larger than that of
all other transmitters at the sniffer. So, in a collision involv-
ing a frame transmitted by the source, the sniffer captures
the source’s frame.

We used a variety of Prism2 [21] chipset cards, namely,
LinkSys WPC11, Compaq WL100, and Demartec. Prism2
cards support a monitor mode of operation, in which the
card captures all frames sent in that frequency. The Prism2
chipset prepends a special header to all sniffed frames, con-
taining fields indicating signal strength, noise level, trans-
mission bit rate, and a timestamp generated by the firmware
(using the clock of the WLAN card) at the start of frame re-
ception. The Prism2 firmware also implements a firmware
level queue.

We use the linux-wlan driver and tethereal [22] as the
user level process for sniffing. At peak data rates in the
WLAN, the socket receive buffer of the tethereal program
occasionally overflowed when the rate of flushing to the
disk wasn’t sufficient. So, we tuned the kernel to increase
the limit for the maximum memory limit for the receive
buffer of the SOCK RAW socket used by the sniffer pro-
gram.

Driver instrumentation: The linux-wlan and hostap
drivers are instrumented to log events such as packet sub-
mission to firmware and firmware’s notification of success-
ful transmission or exception (frame dropped after maxi-
mum retries). We use the rdtsc instruction available in the
Pentium family of processors to timestamp events. This in-
struction returns the number of CPU clock ticks since
the machine was last bootstrapped, thereby giving a res-
olution of inverse of the CPU frequency ( $ � $�� � GHz);
it also completely avoids the inaccuracies of using sys-
tem calls.

We implemented a kernel module to efficiently log driver
events in specially allocated kernel memory, thus avoiding
the problem of synchronization with other kernel processes.
The data is moved from kernel-space to the user-space by
using our extension to the Linux /proc filesystem. We do
not use the standard kernel log buffer because of the num-
ber and frequency of events occurring at the driver level and
the problem of synchronization with other processes, like
syslogd and klogd daemons, which use the standard ker-
nel buffer.

TCP tracing: We tracked the time evolution of the RTT,



loss, and congestion window of our TCP sources by using
the NF HOOKs [23] provided in the linux kernel. Every
time a packet enters or leaves the IP subsystem, a call-back
function registered by our module is executed. This routine
looks up the parameters of the TCP connection in the as-
sociated kernel data structure and logs it in a special area
of kernel memory. Again, we use the /proc sub-system to
move the data from kernel-space to user-space at the end of
each experiment.

Logging during experiments is done using in-memory
buffer only. The data is written to the disk only after the
end of experiment, thus our instrumentation is not intrusive.

6. Isolating the unfairness caused by PLC

The goal is to analyze the impact of physical-layer cap-
ture effect, all by itself, on 802.11b performance. For this,
we consider WLAN networks in adhoc mode in which sta-
tions broadcast data, i.e., with destination MAC address
FF:FF:FF:FF:FF:FF. Because there is no unicast, there are
no ACKs and hence no timeouts, retransmissions, or binary
exponential backoff, and the transmission bit rate is fixed at
2Mbps (the highest bit rate for broadcast). Thus all MAC-
layer mechanisms are eliminated except for carrier sensing
(and the initial backoff). (Adhoc mode is needed because
in infrastructure mode, the AP retransmits broadcasts from
clients.)

A A’
B

B’

3m

4−5m

2−3m

C

Figure 9. Approximate locations of nodes
� � � � � 	 � 	 �

, and � . The drawing is not to scale.

We use two stations, � and 	 , broadcasting in the adhoc
mode, and two sniffers, � �

and 	 �

, one placed close to each
source. A third sniffer, � , acts as a sink. We explore two
physical configurations. We first look at a configuration de-
signed to maximize the difference between signal strengths
of the two stations at the receiver. Later we look at a config-
uration designed to explore the scenario in which the signal
strengths distributions of � and 	 partially overlap.

Figure 9 shows positions of sources and sniffers in an in-
door setting for the first scenario. We use UDP sources at �
and 	 (because TCP sources cannot broadcast). Each UDP

source broadcasts 10,000 data packets at a constant send-
ing rate chosen such that the firmware queue is always non-
empty. Each UDP packet is 1472 bytes, this includes a se-
quence number. This results in a 802.11 frame payload of
1500 bytes (after adding 20-byte IP header and 8-byte UDP
header), which is the Ethernet-based MTU used by current
WLAN device drivers (although the WLAN standard allows
2304 bytes). Sniffer � logs all of the packets that were suc-
cessfully received.

To verify that both sources are in range of the sink, we
performed experiments in which only one source was send-
ing at a time. In all cases, the sink received all 10,000 pack-
ets sent by the source correctly, thus verifying that each
source has a perfect channel to the sink. Likewise, we ver-
ified that the sources are in range of each other by pinging
one from another. Experiments were repeated with several
cards, and we observed consistent results.
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Figure 10. Received signal strength (in dBm)
vs. time (in sec.) (a), and goodput (in KBps)
vs. time (in sec.) (b) for a typical ad-hoc mode
experiment.



Sta- Signal Num. of packets that Fraction of pkts that Goodput Service Through-
tion (dBm) were were collided collided were collided (KBps) time put

sent lost (
���

) lost (
���

) and lost (msec.) (KBps)
A 8.64 10,000 6.23 862.12 8.62 0.06 0.64 116.68 12.54 117.73
B -19.51 10,000 870.67 862.12 8.62 8.70 100.00 104.20 12.80 117.91

Table 1. Results of ad-hoc mode experiments. Each number is an average computed over several
experiments. Fractions have been multiplied by 100. Observe that the average goodput of station �
is larger even though its average throughput is nearly the same as that of station 	 .
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Figure 11. Non-overlapping distributions of
signal strengths of � and 	 at � .

Metrics: We use two sets of metrics, one quantifying the
extent of the physical-layer capture, and the other quanti-
fying the impact of the effect on higher-layer performance.
For each source, let � denote the total number of frames
transmitted by the source, let 
 denote the number of these
frames that were not received at the sniffer, and let ��� , for	 � $ ��
�
�
 � � , be an indicator variable that is $ if frame

	
was involved in a collision (according to our collision anal-
ysis).

Our metrics that quantify extent of capture for each
source are:

� Fraction of transmitted packets that collided:��� ���� � � ��� � �
� Fraction of transmitted packets that were lost:� � � 
 � �
Our metrics for estimating the impact on higher-layer

performance are:
� Throughput: the number of “transmission-complete”

interrupts over time.
(These interrupts are generated by the WLAN card

and logged by the source driver. Because there are no
ACKs, a “transmission-complete” interrupt does not
imply successful transmission. Hence the throughput

metric really quantifies the source’s share of the me-
dia access.)

� Goodput: the number of frames of the source received
by the sink over time.

� MAC Service Time: The average time between suc-
cessive transmission-complete interrupts.

(Because the firmware queue is never empty, the
MAC service time of a frame is the time from the pre-
vious frame’s transmission-complete interrupt to this
frame’s transmission-complete interrupt.)

Results of the experiments: Figure 10a represents the time
evolution of the signal strength of the two source stations as
perceived by the sink sniffer in a typical experiment. Each
point in the figure is the averaged value of signal strengths
of 50 frames around the frame received at that time instant.
Figure 11 shows the corresponding histogram.
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Figure 12. Throughput (KB/s) vs. time (sec.).
Note, that throughput of both stations is
nearly equal.

Figure 10b depicts the goodputs achieved by both
sources during one of the experiments over time. The
stronger source, � , has higher goodput than the weaker
source, 	 .The overall goodput (computed over the en-
tire experiment) for the stronger source was typically 12%
higher than that of the weaker source.



The time evolution of the instantaneous through-
puts is shown in Figure 12. The difference in the instanta-
neous throughputs varies on the short-term between the two
sources, while the overall throughputs differ by less than
1%. The service times for the two sources (Table 1) dif-
fer by less than 2%.

Because there are no ACKs and retransmissions, the
throughput seen by the source represents the rate of media-
access. Because there is PLC and subsequent loss for the
weaker station, the goodputs seen at the sink sniffer differ.

Table 1 presents the results of our collision and loss anal-
ysis of the experiments.

���
and

���
are very close (differ

by 0.9%) for the weaker source showing that most of the
frames that collided were lost by the weaker source, while���

of the stronger source is close to zero. Nearly all of
the collisions (99%) were resolved in favor of the stronger
source. The average goodput of station � is larger, even
though its average throughput is nearly the same as that of
station 	 .

About 44% of the cases the stronger source started sec-
ond. The packets of the weaker source that were lost are al-
most always (99%) the ones for which our global-timeline
analysis detected collision.

Figure 13. Overlapping distributions of signal
strengths of A and B at C

Impact of overlapping signal strengths:
In order to observe what happens when the distribu-

tions of received signal strengths are not clearly separated,
we adjusted the positions of nodes � and 	 such that the
ranges over which the signals vary overlap partially at the
receiver � . We then repeated the experiments described
above. Figure 13 shows the resulting distribution of the sig-
nal strengths of the two stations at the sink � and a Gaussian
curve fitted using MATLAB. For comparison, Figure 11
shows the signal strength distributions which do not over-
lap (obtained from one of the previous ad-hoc mode exper-

iments).
From loss analysis and global collision analysis, we find

that 81% of the frames which collided were resolved in fa-
vor of the stronger source and both sources lost close to
20% of frames that collided. This shows that PLC happens
even when signal strengths distributions from two sources
are not completely separated from each other provided there
are some collisions that happen with frames having higher
strength than those that collide with them.

Summary:
� In about 44% of the collisions, the stronger frame

started second but was still captured by the receiver.
� Nearly 100% of collisions were resolved in favor of

the station with the stronger signal.
� The resulting long-term goodput imbalance between

the two sources was as high as 12%.
� The resulting long-term throughput imbalance be-

tween the two sources was practically zero.
� In case of overlapping signal strengths, 81% of the col-

liding frames were resolved in favor of the stronger
source, with remaining 20% being lost.

7. How higher layers magnify the unfairness

The second round of experiments was designed to quan-
tify the amount by which higher layers magnify unfairness
caused by PLC. We present detailed results and analysis for
two sources (A and B), and summarize the results for more
sources.

Experiments conducted: All experiments were conducted
in a typical indoor WLAN environment, with access point
��� , sources � , 	 , � , � , and sniffers ��� �

, � �

, 	 �

, � �

, �
�

, po-
sitioned approximately as shown in Figure 14. There were
two sources close to the AP in the same room, and two
other sources farther away in different rooms. There was
no other RF transmission before, after, and during the ex-
periment (this was confirmed by sniffing on the channel).

We verified that all stations could hear each other by
pinging them in ad-hoc mode. We confirmed that a perfect
bi-directional channel was available from each station to the
AP by running netperf on that station alone. Each station at-
tained the same application throughput of � � � Mbps. For the
UDP source experiments, each station sent 10,000 MTU-
sized packets (not including MAC-layer retransmissions).
The sending rate was chosen such that the firmware-level
queue on each station was never empty during the course of
experiment. For the TCP experiments, each station ran net-
perf [24] for 100 seconds.

Metrics for UDP experiments: For a source, let � be the
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Figure 14. Approximate locations of nodes
in infrastructure mode experiments. X’ is the
sniffer for station X. The drawing is not to
scale.

total number of RTS frames transmitted by the source, and
let � be the total number of CTS frames received by the
source. Each CTS frame corresponds to an RTS frame that
was received. Thus ����� , and �  �� is the number of RTS
frames that were transmitted and lost. � and � can be ob-
tained from the log of the sniffer associated with the source.

For a source, our metrics for measuring the extent of cap-
ture are:

� Fraction of RTS losses:
� � �  �  �� � � �

� Fraction of RTS collisions: Let � � , for
	 � $ ��
�
�
 � � ,

be an indicator variable, which is $ if the RTS frame	
is detected as having collided by our global collision

analysis and � otherwise.
� � � � � � � � �

Our metrics for measuring the impact on higher layer
performance are:

� Link Layer Goodput: The number of unique IP-level
frames successfully transmitted per unit time. This is
obtained from the device-driver log of the source by
counting the number of “successful transmission” in-
terrupts over time. Because ACKs are used, an inter-
rupt showing “successful transmission” indicates that
the frame got through.

� MAC Service Time: This is obtained from the device-
driver in the same manner as that for the ad-hoc mode
experiments. In this case however, this includes the
time durations due to retransmissions and binary ex-
ponential backoff.

Results of UDP experiments: The time evolution of the
signal strength remains the same as the Figure 10a for ad-
hoc experiments. Figure 15 shows the link-layer goodput of
the stations over time.
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Figure 15. Link-layer goodput (in KBps) vs
time (sec) of two sources in a typical UDP
expt in infrastructure mode with RTS/CTS.

The stronger source finishes first for the same number
of packets. The overall goodput of the stronger source is
18.7% higher. The average MAC service time of the weaker
source is 4.96 ms and that of the stronger is 4.19ms, a dif-
ference of 18.37% .

Tables 2 and 3 present the detailed results of the experi-
ments. The values in the tables were obtained by averaging
results of multiple experiments. The variation of each met-
ric is very small. Nearly 5% of the RTS frames sent by each
source collided at the AP. 95.46% of the collisions were re-
solved in favor of station A. In about 53% of the collisions,
the stronger station, A, started sending later than B. The data
from one of these experiments was presented as a histogram
on Figure 5 in Section 4.

���
was close to

���
for the weaker

station, showing that it lost most of the collisions.

Metrics for TCP experiments: We use the following to
quantify the impact of PLC on TCP performance:

� Congestion Window
� RTT as observed by TCP
� TCP level loss
� TCP level throughput, as reported by net-perf.
� Firmware Service Time (instead of MAC Service time

used for UDP)

Firmware service time is the time between submission of
frame to the firmware and the successful completion in-
dication. This includes the queuing delay involved in the
firmware and is more representative of the end-to-end de-
lay that affects TCP performance.

All our metrics involving TCP state were obtained by the
kernel instrumentation summarized in Section 5.

Results of TCP experiments: The signal strengths of the
sources at the AP is the same as that in Figure 10a. The



Proto- Sta- Signal Fraction of packets that RTT Goodput (KBps) Goodput
col tion (dBm) collided (

���
) were lost (

���
) (msec.) link layer appl. layer difference

DATA RTS DATA RTS mean variance mean variance (%)
UDP A 8.72 0.01 4.78 0.01 0.48 N/A 347.23 3.88 330.45 3.72 18.70

B -19.53 0.01 4.82 0.02 4.92 N/A 292.45 1.67 278.56 1.57
TCP A 8.82 0.01 4.69 0.01 0.38 106.76 245.52 3.26 234.89 3.12 25.13

B -19.44 0.02 4.78 0.02 4.79 136.65 195.37 2.85 187.53 2.73

Table 2. Analysis of collisions, losses and achieved goodputs during UDP and TCP experiments in
the infrastructure mode with RTS/CTS enabled. Each value is an average over several experiments
and fractions have been multiplied by 100. Signal strength is measured at the access point.

Protocol Transmission 1 Transmission 2 % lost by % won by % won by
both transmission 1 transmission 2

UDP A � AP B � AP 4.54 95.46 0.00
TCP AP � A A � AP 100.00 0.00 0.00

AP � A B � AP 5.16 94.84 0.00
AP � B A � AP 15.59 84.41 0.00
AP � B B � AP 100.00 0.00 0.00
A � AP B � AP 5.68 93.82 0.50

Table 3. Analysis of collision resolution for UDP and TCP experiments in infrastructure mode with
RTS/CTS. Each value is an average over several experiments. A � B denotes A sends to B.
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Figure 16. Link-layer goodput vs time of two
stations during a typical TCP experiment in
the infrastructure mode with RTS/CTS.

time evolution of the link-layer goodputs is shown in Fig-
ure 16. All numbers are averages over several experiments.
The difference in the long-term link-layer goodput is 29%
and the application layer throughput (reported by netperf)
difference is 28.57%.

After slow start, the congestion windows of both TCP
sources were at 23 frames (corresponding to 32K adver-
tised receiver buffer) throughout the experiments, except for

the very few losses (0.02%) for the weaker station. This im-
plies that the throughputs obtained by the application is ef-
fectively determined by the RTT.

The firmware service times of the sources are shown in
Figure 17. The X-coordinate of a point in the graph repre-
sents the transmission completion time instant of a frame
and the Y-coordinate represents the firmware service time
of that frame.

The weaker source has higher instantaneous service time
(most of the time) and the difference in the average per-
frame firmware service time is 27%.

Figure 18 shows the time-variation of the RTT values
seen by TCP. A point in the graph denotes the RTT value
in the Y-axis and the time instant the information was ob-
tained in the X-axis. The weaker source has higher RTT in
general and the average RTT of the weaker source is higher
by 27.9%. Table 2 summarizes the results.

Table 3 presents the detailed collision analysis of all
pairs of simultaneous transmissions at various receivers.
The results show that collisions are resolved in favor of
the stronger source 93.82% of the time at the AP. The
stronger source also collides with transmissions from AP
to the weaker source and affect the weaker source’s recep-
tion 15.59% of the time, while the weaker affects the AP’s
transmission to the stronger only 5.16% of the time.
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Figure 17. Time evolution of the firmware ser-
vice time (including queuing) for a TCP exper-
iment (with RTS/CTS enabled).
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Figure 18. TCP’s RTT of both stations in the
experiment with RTS/CTS.

Statistical analysis: While we expect a frame which was
retransmitted to have a higher service time, it is not guaran-
teed due to the random choices of back-off durations. There-
fore, we quantify the relation between the service time and
the number of transmissions using Pearson’s correlation co-
efficient [25]. The result gives an average correlation co-
efficient of 0.41. This shows that the service time is posi-
tively correlated with the number of transmissions the frame
underwent. The correlation coefficient is not very close to
1 due to the inherent randomness involved in the queuing
delay and choice of backoff intervals. This implies that, in
most of the cases, frames that experienced higher service
time in the firmware are the ones that collided and thus were
retransmitted.

Results with multiple sources: The time evolution of the
goodputs with 4 UDP sources is shown in Figure 19b and
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Figure 19. Time evolution of signal strengths
at AP (a), and link-layer goodput of stations
for a typical 4 station UDP experiment (b)
(with RTS/CTS enabled).

the signal strengths are shown in Figure 19a.
(These figures have been shown in color to aid distin-

guishing between the curves.) The time evolution of link-
layer goodputs with 4 TCP sources is shown in Figure 20.

The UDP curves show the strongest source finishing first
for the same number of packets. The TCP curves also show
the strongest source’s goodput being higher than those of
the rest. The results are summarized in Table 5.

In order to quantify the extent of unfairness, we com-
pute three metrics, namely Jain’s Fairness Index [26], the
ratio between the maximum and minimum goodput, and
coefficient of variance (i.e., variance/mean). The first two
metrics increase with increasing fairness, while the last de-
creases. (Let � � denote the goodput obtained by source

	
and � be the number of sources. Jain’s Fairness Index

�
is

defined as
������� � 	 �

�� � � � � � . If all sources achieve the same good-

put, then
� � $ , else � � � � $ , higher value indicating

greater fairness.) The results are shown in Table 4. The low
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Figure 20. Time evolution of the link-layer
goodput of all stations for a typical 4 station
TCP experiment (with RTS/CTS enabled).

with RTS/CTS w/o RTS/CTS
Fairness index UDP TCP UDP TCP

Jain’s index 0.91 0.95 0.77 0.90
Min/Max ratio 0.50 0.57 0.28 0.44
Coeff. of variance 0.30 0.22 0.53 0.32

Proto- Sta- Goodput (KBps) with RTS/CTS
col tion enabled disabled

mean variance mean variance
UDP A 228.91 3.98 373.06 9,32

B 150.06 2.67 207.39 6.81
C 116.53 2.32 117.49 2.10
D 115.21 3.40 105.08 2.11

TCP A 158.27 3.16 226.57 5.19
B 113.26 3.39 184.58 3.68
C 101.08 5.05 120.75 2.78
D 90.20 5.38 100.99 4.87

Table 5. Goodputs for multi-source experi-
ments with UDP and TCP with RTS/CTS and
with RTS/CTS disabled.

min/max values shows severe unfairness between the best
and the worst stations. Other metrics are also significantly
away from the ideal (1 for Jain and 0 for Coefficient of vari-
ance) values showing the extent of unfairness. The results
without the use of RTS/CTS are discussed in the next sec-
tion.

Summary: The results of the experiments presented above
confirm that in the infrastructure mode (with binary expo-
nential backoff, ACKs, and retransmissions):

� Collisions are resolved in favor of the stronger station.

� RTS frames are successfully captured; the stronger sta-
tion gets the CTS frame.

� In approximately 50% of the cases the stronger RTS
frame starts second but is still received properly.

� MAC layer magnifies the discrepancy (due to binary
exponential backoff) by approximately 10%.

� TCP may additionally magnify the difference. In our
case it does not, because there are no TCP-layer losses
as link-layer losses are masked by retransmissions.
Therefore, unfairness seen at the MAC-layer propa-
gates to the application-layer unchanged.

� Observed throughput difference at the applica-
tion layer may be as high as 25% for two sources and
up to 75% with four sources.

8. Infrastructure mode experiments without
RTS/CTS

The final round of experiments was designed to quantify
the impact of PLC on WLANs that do not use RTS/CTS. We
expect the number of data frame collisions to increase with-
out the use of RTS/CTS, and therefore, the effect of unfair-
ness to be more pronounced. (Existing 802.11 WLAN cards
and APs do not use RTS/CTS by default; it has to be spe-
cially enabled by the user/administrator.)

Experiments conducted involve four mobile sources gen-
erating UDP and TCP traffic. The experimental setup is
identical to the one used in four source experiments with
RTS/CTS enabled. Owing to lack of space, we briefly sum-
marize our results for four sources.

Table 4 shows metrics for fairness with 4 sources. Table
5 summarizes the goodputs attained by each source. The
metrics used show much bigger unfairness for workloads
which didn’t use RTS/CTS. Thus, the use of RTS/CTS in-
creases fairness, but does not bring it close to ideal because
of PLC.

9. Conclusions and future work

Existing models for modeling collisions in 802.11 net-
works typically assume that either both colliding frames are
lost or that the stronger frame is received successfully only
if it starts first. In this work, we showed experimentally that
in reality the stronger frame is retrieved first irrespective of
whether its reception starts first or second.

This result has significant impact on the modeling of the
physical layer in discrete event simulators. Specifically, we
have uncovered two issues in the NS-2 simulator. The Qual-
net simulator will also be modified to account for our re-
sults.



Finally, we examined the causal link between physical
layer capture and application layer unfairness in great de-
tail. This quantifies the impact of the physical layer capture
on the perceived application layer unfairness by itself and
examined how it is magnified by the MAC and higher layer
control mechanisms.

Directions for future work include the design of control
mechanisms at the MAC layer to compensate for the unfair-
ness induced by the physical layer.
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