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Abstract

We characterize a TCP implementation by a func-

tion, called a pro�le, that expresses the instantaneous

throughput at the source in terms of the instanta-

neous roundtrip time and instantaneous loss rate for

bulk transfers. We empirically obtain pro�les of sev-

eral TCP implementations, accurately enough to dis-

tinguish not only the TCP version but also the imple-

mentation (BSD, Windows, etc).

Pro�les have several uses: comparing di�erent TCP

implementations, diagnosing a TCP implementation,

quantifying TCP-friendly ows, etc. We devise a

method that uses pro�les to compute the time-evolution

of instantaneous performance metrics (throughput,

queue size, loss rate, etc.) of TCP networks. Com-

parison against ns simulations shows the method to be

accurate and fast.

1 Introduction

Consider a TCP connection doing a bulk transfer
from a source host to a destination host that is always
ready to receive. The current throughput at the source
depends on its current window size and retransmission
timeout, which in turn depend on the current roundtrip
time (RTT) estimate, the current packet loss estimate,
the congestion control algorithm (Tahoe, Reno, Vegas,
etc.), and the particular implementation (BSD Unix,
Linux, Solaris, Windows NT, Windows 95, etc.). The
RTT estimate is obtained from (exponential averaging
of) measured packet RTTs. The packet loss estimate
is based on timeouts and duplicate ack reception; each
packet loss estimate results in a retransmission.

Thus for a TCP source implementation, we expect
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the instantaneous throughput to be a function of the in-
stantaneous RTT and instantaneous estimated packet
loss rate, We refer to this function as the pro�le of the

TCP source implementation. We refer to these met-
rics as instantaneous because they are computed over
a small number of roundtrip times.

The importance of such a characterization of TCP
is well recognized. It serves to compare the perfor-
mance of di�erent TCP versions and implementations.
It provides a reference for diagnosing and debugging
TCP implementations. It provides a quantitative cri-
teria for deciding the TCP-friendliness of a ow. In
this paper, we show how pro�les can be used to com-
pute instantaneous performance metrics (throughput,
queue size, loss rate, etc.) of TCP networks.

Most investigations of TCP performance has been
done through analytical models [1, 2, 7, 8, 10]. The idea
of obtaining the throughput of a connection as a func-
tion of encountered roundtrip time and loss rate is not
new. References [8, 10] develop analytical models to
obtain this function. Reference [10] models most of the
details of TCP Reno except for fast recovery, and an-
alytically develops the dependence between long-term

throughput, roundtrip time and estimated loss rate.
However, in order to obtain tractable analytical

models, many simpli�cations are required, making the
accuracy and utility of the model questionable. More-
over, many implementations of TCP Reno di�er from
the TCP Reno speci�cations [5, 6, 12], for example, in
how they manage timers, how they interpret the spec-
i�cations, and so on [3, 11]. All these can induce large
di�erences between an analytical model and reality.

Consequently we obtain TCP pro�les empirically, by
analyzing packet traces at the network-interface (e.g.
Ethernet) level of TCP source implementations. This
yields much more accurate pro�les, accounting for all
source implementation details. Indeed the accuracy is
more than enough for distinguishing di�erent TCP im-
plementations and for doing fault diagnosis. For ex-
ample, the pro�les for NetBSD 1.2 and Windows NT
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4.0 SP3 show that NetBSD is up to three times faster
than Windows NT 4.0 SP3 for low loss rates, whereas
Windows NT is 30 to 40% faster for loss rates between
0.1 and 0.25. As a matter of fact, both implement TCP
Reno. The pro�le for SunOS 5.5 brings out the well-
known problem of low RTO initialization, described in
[3, 11] (Sun has �xed it in the next version).

Accuracy in pro�les is essential if they are to be
used for di�erentiation or diagnosis of TCP implemen-
tations. It is also essential if they are to be used to
model TCP sources for evaluating performance metrics
of a network. Inaccurate pro�les result in inaccurate
metrics, as we will see later.

In this paper, we present a method that uses pro�les
to compute the time-evolution of instantaneous perfor-
mance metrics (throughput, queue size, loss rate, etc.)
of TCP networks. We validate our method against sim-
ulations performed with the ns [4, 9] simulator. Our
method proves to be both accurate and fast.

Our method is based on numerical evaluation of

time-dependent queuing models. Given a TCP net-
work to evaluate, we model the network by a queuing
network in the usual way, with one queue for each out-
going link. Each TCP source is modeled as a time-
dependent stochastic process whose current rate is the
instantaneous throughput indicated by the appropri-
ate TCP pro�le for the current network state. We solve
the queuing network numerically, using certain approx-
imations, to obtain the time evolution of instantaneous
metrics, speci�cally, the average queue size, loss prob-
ability, and utilization at time t, for every connection
at every link.

The rest of the paper is organized as follows. In
Section 2 we describe the experimental procedure for

obtaining TCP pro�les and present pro�les for NetBSD
1.2, Windows NT 4.0 (SP3), and SunOS 5.5. In Sec-
tion 3 we describe the method for computing the in-
stantaneous metrics of a TCP network. In Section 4
we apply the method to several networks and compare
the results against ns simulations. The networks range
from small to large (100 nodes, 120 links, link band-
width of 104 packets/sec, link bu�er of 104 packets).
Section 5 concludes the paper.

This paper is a shortened version of the full paper
available at http://www.cs.umd.edu/users/shankar
/Papers/tcp-pro�les-zit.ps.gz . For details please con-
sult that paper.

2 TCP Pro�les

Obtaining the pro�le of a TCP source implementa-
tion involves the following: choose a host which runs
the target implementation to act as the source, choose a

set of hosts in the Internet to act as destinations, and
trace a number of bulk transfers between the source
and these destinations. Processing the resulting traces
yields a set of points in the space of instantaneous

throughput, instantaneous roundtrip time and instanta-

neous loss rate. Finally we �t a surface through these
points.

Throughout, we use milliseconds (ms) for time mea-
surements and packets/millisecond for throughput.

Before giving details of obtaining pro�le, we note
some important points of our experiments:

In this paper, we are interested in wide-area connec-
tions, going through several hops, rather than local-
area connections. Roundtrip times in our experiments
are typically over 60 ms.

It is important that the set of source-destination
paths explored in our experiments exhibit a wide range
of loss rates and roundtrip times. Otherwise the re-
sulting set of points will have large holes, leading to
inaccurate surface �tting.

We �nd in the wide-area context that the pro�le of a
TCP source does not depend on the receive window ad-
vertised by the destination (provided of course that it
is non-zero). That is, the limits imposed on the conges-
tion window, hence throughput, by the roundtrip time
and loss rate completely dominate the limit imposed
by the destination receive window. The destination re-
ceive window would limit the throughput only in the
case of very low roundtrip times (1 - 20 ms).

We observe that the pro�le of a TCP source is not
a�ected by the locations of the source and destinations,
or how the hosts are connected to the Internet (LAN,
modem, etc.). These factors a�ect where in the pro�le
a connection spends most of its time, but they do not

a�ect the pro�le itself, i.e., do not a�ect the relation-
ship between instantaneous throughput, instantaneous
roundtrip time, and instantaneous loss rate.

The pro�le of a TCP source is also not a�ected by
the the TCP version and implementation of the des-
tination. For example, a destination that delays acks,
or acks every other packet only, induces an increase in
the instantaneous RTT estimate at the source, which
as we shall see decreases the throughput. However, the
pro�le of the source is itself not a�ected.

Because we are interested in wide-area connections,
where the roundtrip time is usually over 60 ms, we do
not consider the operating system overhead or proces-
sor speed as limiting factors. The delays they introduce
are at most 1 or 2 ms, which we think is negligible con-
sidering the round-trip times.
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2.1 Obtaining the Traces

For the sources we chose three hosts, running Win-
dows NT 4.0 Service Pack 3, Intel Platform, NetBSD
1.2, and SunOS 5.5, respectively we chose 13 destina-
tions in the Internet, spanning a large range of RTTs.
Each connection consists of a 1.5MB transfer from
source to destination, speci�cally to port 9, the dis-
card port. The measurements were done at morning,
mid-day, afternoon, evening and night, and on week-
days and weekends. The packets were traced at the
Ethernet level using tcpdump.

2.2 Processing the Traces

We process the traces by considering every sequence

of k packets sent by the source. For each sequence,
we obtain the estimated loss rate as the number of
retransmitted packets divided by the total number of
packets (k), the instantaneous RTT as the average RTT
for all k packets, and the instantaneous throughput as
the number of packets (k) divided by the time spent in
sending them. This triplet gives us one sample point in
the space of instantaneous throughput, instantaneous
roundtrip time, and instantaneous loss rate.

For k = 100, we plot, in Figure 1, the sample points
obtained for Windows NT at loss rate of 0.01 and 0.1
respectively.

We easily observe that the points form a curve.

2.3 Obtaining the Profiles

Next, we quantize the horizontal plane of instan-
taneous loss rate (lrate) and instantaneous roundtrip
time (rtt) into rectangles of 0.01 on the loss rate axis by
10ms on the roundtrip time axis. For each rectangle we

compute the instantaneous throughput (throughput)
by averaging the throughputs of the sample points
whose lrate and rtt lie inside the rectangle.

The resulting surface is then smoothed to yield the
�nal pro�le For each surface, we are looking for an
approximating continuous function:

throughput = F (lrate; rtt) (1)

We consider 'slices' through the surface for every
quanti�ed value of the loss rate. For each slice we
�nd, using the �rst order least-square approximation
in the logarithmic plane, a corresponding approximat-
ing function. For Windows NT 4.0 SP3 and SunOS 5.5
implementations the approximating pro�les have the
form:

F (lrate; rtt) = B(lrate) � rtt�A(lrate) (2)
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Figure 1. Sample points for Windows NT 4.0
SP3 for loss probabilities (PL) of 0.01 and 0.1
respectively.

For Windows NT 4.0 SP3 and SunOS 5.5, the values
of parameters A(lrate) and B(lrate) are presented in
Table 1, columns 2-5.

For NetBSD 1.2, a we have found the following ap-
proximating expression to be adequate:

F (lrate; rtt) = B(lrate) � rtt(A(lrate)�10
�4
�rtt�lrate):

(3)
where A(lrate) and B(lrate) are presented in Table 1,
columns 6-7.

The resulting pro�les for NetBSD and Windows NT
are plotted in Figure 2. By using the parameters from
Table 1, and the appropriate expression, one can obtain
accurate pro�les for loss rates between 0:00 and 0:30
and roundtrip times between 60ms and 5000ms.

2.4 Observations

From the pro�les, we can easily remark the big dif-
ferences between the throughputs achieved by di�erent
implementations. Comparing, for example, the pro-
�les for NetBSD and Windows NT (see Figure 3(a)),
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lrate A
NT

B
NT

A
Sun

B
Sun

A
BSD

B
BSD

0.00 1.0305 6.780 0.7600 3.600 1.1000 25.000

0.01 1.0240 6.528 0.8100 4.000 1.0600 13.500

0.02 1.0173 6.165 0.8600 4.400 1.0270 8.100

0.03 1.0114 5.790 0.9050 4.850 1.0135 6.600

0.04 1.0050 5.430 0.9250 4.730 1.0050 5.700

0.05 0.9980 5.090 0.9340 4.550 0.9980 5.130

0.06 0.9910 4.750 0.9400 4.400 0.9910 4.750

0.07 0.9830 4.380 0.9470 4.300 0.9830 4.380

0.08 0.9755 4.045 0.9530 4.200 0.9760 4.050

0.09 0.9682 3.710 0.9590 4.120 0.9685 3.730

0.10 0.9607 3.430 0.9650 4.050 0.9607 3.430

0.11 0.9535 3.180 0.9700 4.000 0.9535 3.180

0.12 0.9445 2.955 0.9750 3.950 0.9445 2.955

0.13 0.9357 2.750 0.9800 3.900 0.9357 2.730

0.14 0.9267 2.530 0.9850 3.850 0.9267 2.520

0.15 0.9174 2.340 0.9900 3.800 0.9174 2.340

0.16 0.9100 2.160 0.9950 3.750 0.9100 2.160

0.17 0.9022 1.970 1.0000 3.700 0.9022 1.970

0.18 0.8941 1.800 1.0050 3.640 0.8941 1.800

0.19 0.8865 1.650 1.0100 3.570 0.8865 1.650

0.20 0.8800 1.530 1.0150 3.490 0.8800 1.530

0.21 0.8750 1.420 1.0200 3.420 0.8732 1.420

0.22 0.8710 1.340 1.0250 3.350 0.8667 1.340

0.23 0.8680 1.260 1.0300 3.300 0.8580 1.260

0.24 0.8660 1.190 1.0350 3.250 0.8490 1.190

0.25 0.8640 1.120 1.0400 3.200 0.8400 1.120

0.26 0.8620 1.090 1.0450 3.150 0.8300 1.090

0.27 0.8610 1.040 1.0500 3.100 0.8200 1.040

0.28 0.8605 1.020 1.0550 3.050 0.8100 1.020

0.29 0.8600 0.990 1.0600 3.000 0.8000 0.990

0.30 0.8597 0.970 1.0650 2.950 0.7900 0.970

Table 1. Profile Parameters

we see that for low loss rates, NetBSD is up to three
times faster than Windows NT. However, for higher
loss rates, NT starts to be more e�cient, and for es-
timated loss rates of 0:1 to 0:25 and roundtrip times

over 300ms, Windows NT 4.0 SP3 performs 30 to 40%
faster than NetBSD 1.2. We conclude that the di�er-
ences are not induced by operating system overheads,
because the RTTs are large compared to packet pro-
cessing times. More likely, these di�erences are intro-
duced by timer management and other implementation
di�erences.

The di�erences between these pro�les are so large
that we wonder whether the overall performance in the
Internet can be improved merely by just implementing
TCP more carefully, for example, an implementation
whose pro�le is the minimum of the three pro�les for
each value of lrate and rtt. Recall that all three sys-
tems implement TCP Reno.

We also observed that the pro�ling process is use-
ful in debugging TCP implementations, in addition to
quantifying their e�ciency. The problem of RTO ini-
tialization for SunOS 5.5 ( [3, 11] ) is visible as some
measurement points placed very for from the mass of
point which de�nes the pro�le surface.

3 Fast Evaluation of Instantaneous

Metrics of TCP Networks

By using pro�les together with ow-based methods
to solve time-dependent queuing networks, we have de-
vised a method that computes the time-evolution of in-
stantaneous performance metrics (throughput, queue
size, loss rate, etc.) of TCP networks. We have com-
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Figure 2. The TCP Profiles for NetBSD 1.2 and
Windows NT 4.0 .

pared our method against ns [4, 9] simulations, and

�nd that it produces close results for most of our test

cases.

3.1 Time-Dependent Queuing Network Model

We consider current-style TCP/IP networks, i.e.,
hosts and routers interconnected by links in some arbi-
trary topology. We assume that routers use Drop-Tail
FIFO queues for outgoing links. We assume that the
tra�c of the TCP/IP networks is generated by bulk
TCP connections. Each connection has a source, a
destination, a start time, and a duration. The routes
taken by the packets can be �xed or dynamically up-
dated.

We model the TCP/IP network by a network of
queues. A queue is introduced for every outgoing link
of a router, and it models the system around the out-
going link. The packets are the customers of the queue.
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Figure 3. A comparison between the TCP pro-
files of NetBSD 1.2, Windows NT 4.0 SP3

The link speed determines the service rate of the queue.
The memory allocated by the router for the outgoing
link determines the bu�er space of the queue.

Each TCP source generates packets according to a
time-dependent stochastic process whose rate is var-
ied with time. The rate variation is determined by
the current network state and the pro�le characteriz-
ing the TCP source implementation. Speci�cally, from
the current network state and current path of the TCP
connection, we obtain the loss rate and roundtrip time
experienced by the connection. Plugging this into the
pro�le of the TCP source yields its current rate.

In the TCP/IP network, the paths taken by the

packets are speci�ed by routing tables, and they may be
�xed or dynamically updated depending on the rout-
ing scheme. This is captured in the model by hav-
ing time-varying routing probabilities between queues
whose current values are determined by the current
distribution of packets in the queues, which in turn is
determined by the current rates and current paths of
the transport connections.

Node A

A -> B

B -> A A -> D

Node B

A -> C

A

B

D
C

Figure 4. How the queuing model is con-
structed. Example.
One way of determining the routing probabilities is

as follows. For each queue i and transport connection c,
maintain the average number Nc;i(t) of packets in the
queue belonging to the transport connection at time t
(our evaluation method computes these metrics). Then

the probability that a packet leaving queue i at time
t belongs to connection c is estimated by the fraction
of connection c packets in queue i at time t, i.e., the
ratio of Nc;i(t) to

P
xNx;i(t). This approach can be

re�ned in several ways. For example, the packets in the
queue can be grouped according to arrival time slots
and maintain separate Nc;i(t)s for each group. Then
the routing probabilities are based on the Nc;i(t)s for
the group of packets at the head of the queue.

3.2 Comparing Our Method to Simulation Ap-
proaches

Our method models the TCP/IP network by a time-
dependent queueing network and numerically com-
putes the time-evolution of instantaneous ensemble
metrics using certain approximations (described in fol-
lowing subsections). We next discuss the limitations
and advantages of our method against that of using
detailed packet-level simulators such as ns.

� In general, the instantaneous \sample path" met-
rics obtained from simulation runs will vary, some-
times considerably, around the instantaneous en-
semble metrics obtained by our method. On the
other hand, the computational cost of simulation
is orders more than that of our method.

� Our method will capture TCP dynamics only par-
tially. Speci�cally, it appears to accurately cap-
ture the e�ects induced by starting and ending
TCP connections. However, it does not appear
to accurately capture the perturbations caused by
the synchronization between di�erent TCP ows,
the so-called phase e�ects, etc. We are currently
working on ways to incorporate such e�ects in our
method.

� The size of the time increments in our numeri-
cal evaluation can be varied, allowing us to eas-
ily trade between compuation cost and accuracy.
Such trade-o�s are practically impossible to do in
packet-level simulators.

� Just as di�erent TCP implementations have dif-
ferent pro�les, we found that TCP Reno in ns has
its own pro�le, one that di�ers signi�cantly from
that of real TCP Reno systems. This suggests
that perhaps stochastic models using empirically-
obtained pro�les give a more accurate measure of
what is happening in reality, even if the results are
di�erent from the ones obtained by simulation.
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3.3 Evaluation Method

The evaluation time is divided into small time steps.
For each time step t, we determine, for each queue
i, the instantaneous bu�er occupancy (i.e., average
queue size) Ni(t), the instantaneous loss probability
Bi(t), and the instantaneous utilization Ui(t). Based
on these, the instantaneous roundtrip time and instan-
taneous loss rates of each TCP connection is computed.
Plugging these into the TCP pro�le of the connection,
we obtain the instantaneous rate of that connection for
the next time step of evaluation.

Obtaining the time-evolution of Ni(t), Bi(t), and
Ui(t) is a di�cult task. We describe this computation
in the following paragraphs.

Let the evaluation time be divided into time steps
of size �t. For a step starting at time t we compute,
for each queue, the bu�er occupancy at the end of that
step, Ni(t+ �t), using the uid ow formula:

Ni(t+�t) = Ni(t)+

8>>>><
>>>>:

[�i(t)� �i(t)Ui(t)]�t

if �i(t) � �i(t)Ui(t) < 0
or Ni < Ki

0
otherwise

(4)

where �i(t) is the input tra�c rate for queue i at time
t, �i(t) is the service rate for queue i at time t, and Ki

is the bu�er space for queue i.
For computing Ui(t) we again use the formula from

uid ow approximation:

Ui(t) =

8>><
>>:

�i(t)=�i(t)
if Ni(t) = 0 and �i(t) < �i(t)

1
otherwise

(5)

For computingBi(t), we do not use the uid ow for-
mula because we found from experience that it does not
yield correct results. Instead, we approximate Bi(t) by

the steady-state blocking probability of anM=M=1=Ki

queue with average queue size of Ni(t).
The input to queue i consists of external sources and

outputs of other queues. To compute the input rate
�i(t) of queue i, we employ the decomposition approx-
imation. A departure from queue i is routed to queue
j with a time-dependent probability rij(t), and leaves
the network with probability 1�

P
j rij(t). The arrivals

to queue i consist of external arrivals ��i (t) (from out-
side the network) and departures from queues in the
network routed to queue i. The total arrival rate of
queue i, �i(t), is given by:

�i(t) = ��i (t) +

nX
j=1

rji(t) �j(t) Uj(t): (6)

To compute Ni;c(t), we use a di�erence formula:

Ni;c(t+ �t) = Ni;c(t) + [�i;c(t) � �j;c(t)]�t (7)

where �i;c(t) is the rate of class c at queue i, and j is
either the next queue on the path of connection c or a
�ctional sink queue if i is the last queue on the path.

4 Example Evaluations

We applied the evaluation method outlined above
to several TCP networks, and compared the results
against simulations obtained from the ns.

In the course of our comparison, we discovered that
the pro�le for the TCP Reno implementation in ns dif-
fers from all of the pro�les we have measured (i.e., Win-
dows NT SP3, SunOS 5.5, NetBSD 1.2). Of course, this
is not unexpected since ns most likely does not simu-
late many details of real implementations. This empha-
sizes even more the importance of the implementation
details in TCP performance evaluation.

We obtained the pro�le for the ns implementation
of TCP Reno, and used this pro�le in our evaluation
method. A comparison between the pro�les of Win-
dows NT 4.0 SP3, NetBSD 1.2 and NS, for a loss prob-
ability of 0.00, is given in Figure 5.
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Figure 5. Comparison between NT, NetBSD
and NS, for a loss rate of 0.00, in logarithmic
plane.

Example 1 The �rst example is the network from
Figure 6(a). Here, we have four TCP connections from
nodes N1, N3, N8 and N6 to N7. The queue size at the
bottleneck link, N5 ! N7 is presented in Figure 6(b)
and is compared agains one ns simulation run. The run
times for both methods are insigni�cant.

Example 2 This is the medium size network from
Figure 7(a). The load is moderate and the connections
start, one by one, between time 0 sec and 30 sec. We
plot the bu�er occupancy for one of the queues of the
network in Figure 7(b).
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Figure 6. Example 1: Small network, 4 TCP
connections.

Example 3 For this example we have a larger net-
work, of about 100 nodes and medium load. Here, the
connections come up and go down during the evalua-

tion period. The topology is presented in Figure 8, and
some plots are displayed in Figure 9.

Example 4 Here we use the same network as in the
previous example, (Figure 8), but with higher load.
The plots are presented in Figure 10.

5 Conclusions

We have shown that a TCP source implementa-
tion can be accurately characterized by an empirically-
obtained pro�le, that is, a function expressing instan-
taneous throughput at the source in terms of instan-
taneous roundtrip time and instantaneous loss proba-
bility. We obtained TCP pro�les for three commonly
used operating systems, and conclude that the pro�les
are signi�cantly inuenced by implementation details.

Pro�les have many uses, including debugging imple-
mentation problems, evaluating the e�ciency of TCP
implementations, quantifying TCP-friendly ows, and
so on. We used these pro�les to devise a method to
evaluate the metrics of a network with many TCP
connections. The method proved to be accurate and
much faster than simulation. Its main drawback is
that it misses the phase e�ects which sometimes ap-
pear in highly loaded networks. This happens because
our method distributes equally the loss probability, at
a queue, among the ows passing through that queue.

We stress the fact that the pro�le for TCP Reno
in ns di�ers from all the pro�les of real systems mea-
sured by us. We suggest that the empirically-obtained
pro�les give the real measure of what is happening in
reality, even if the results are di�erent from the ones
obtained by simulation.

The size of the evaluation step is an important factor
in achieving a good speed. We have obtained these
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Figure 7. Example 2: Medium network,
medium load. Running Time: our method
takes 2 sec; ns takes 10 sec (no metrics
dumped) to 60 sec (all metrics dumped).

results using steps of 0.05 seconds. Using a larger step
size will result in slightly uctuating metrics. However,
the computation is faster using the bigger step, and, for
very large networks, one can trade some precision for
speed. Currently, we investigate the possibility of using
variable step sizes. Such trade-o�s are not at all easy
to do with simulations.

Future work will involve an investigation for other
uses of the TCP pro�les. Possibilities include a de�-
nition of TCP-friendly UDP connections, prediction of
the available throughput for adaptive network applica-
tions, determining the conformance of the ows passing
through gateways, and so on.

We plan to extend the evaluation method to RED
gateways and, also, to integrated-services TCP/IP net-
works. We also intend to increase the speed of our
method by a more careful implementation of our eval-
uation tool, and by using variable step sizes.
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Figure 9. Example 3: Buffer occupancy for
some queues. Running Time: our method
takes 16 sec; ns takes 71 sec (no metrics
dumped) and 937 sec (all metrics dumped).
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Figure 10. Example 4: Buffer occupancy for
some queues. Running Time: our method
takes 29 sec; ns takes 146 sec (no metrics
dumped) and 2150 sec (all metrics dumped).
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