
Timestepped Stochastic Simulation
of 802.11 WLANs∗

Arunchandar Vasan and A. Udaya Shankar
Department of Computer Science and UMIACS

University of Maryland, College Park, MD 20742 USA
Email: {arun,shankar}@cs.umd.edu

Abstract—We present Timestepped Stochastic Simulation
(TSS) for 802.11 WLANs. TSS overcomes scalability problems
of packet-level simulation by generating a sample path of the
system state S(t) at time t = δ, 2δ, · · · , rather than at each
packet transmission. In each timestep [t, t + δ], the distribution
Pr(S(t + δ) |S(t)) is obtained analytically, and S(t + δ) is
sampled from it.

Our method computes sample paths of instantaneous goodput
Ni(t) for all stations i in a WLAN over timesteps of length δ. For
accurate modeling of higher layer protocols, δ should be lesser
than their control timescales (e.g., TCP’s RTT). At typical values
of δ (e.g, 50ms), Ni(t)’s are correlated across both timesteps
(e.g., a station with high contention window has low goodput
for several timesteps) and stations (since they share the same
media). To model these correlations, we obtain, jointly with the
Ni(t)’s, sample paths of the WLAN’s DCF state, which consists
of a contention window and a backoff counter at each station.

Comparisons with packet level simulations show that TSS for
WLANs is accurate and yields an improvement in simulation
runtime of up to two orders of magnitude. Our transient analysis
of 802.11 complements prior literature and also yields: (1)
the distribution of the instantaneous aggregate goodput; (2)
the distribution of instantaneous goodput of a tagged station
conditioned on its MAC state; and (3) quantification of short-
term goodput unfairness.

I. INTRODUCTION

Packet-level simulation (PLS) of computer networks be-
comes prohibitively expensive as link speeds, workloads,
and network size increase. Timestepped Stochastic Simulation
(TSS) is a method to achieve the modeling accuracy of PLS
at a fraction of the computational cost. TSS generates sample
paths of the network state, just as in packet-level simulation,
but only at increments of discrete timesteps rather than at every
packet transmission. If S(t) represents the network state at
time t, TSS generates an evolution of S(t) at t = δ, 2δ, · · · ,
given S(0). In each timestep [t, t+δ], the distribution Pr(S(t+
δ) |S(t)) is obtained analytically assuming that all stochastic
inputs are time-invariant in [t, t + δ], and S(t + δ) is sampled
from it. This time-invariance assumption holds for δ less than
the feedback time-scale of the end-to-end control mechanisms
(i.e., TCP roundtrip time), in which case TSS generates sample
paths which are very good approximations of those generated
by packet-level simulation. The time-invariance requirement
means that δ cannot be too large; we use δ = 50ms.

∗ Supported in part by the Laboratory for Telecommunications Sciences
under the UMIACS contract.

TSS for networks of point-to-point links was presented in
reference [12]. This paper extends TSS to 802.11 WLANs
[13]. Consider an 802.11 WLAN with α stations, where each
station i is either active or inactive over time, with transitions
occurring only at timestep boundaries. A station that is active
(inactive) at time t has (no) packets to send in its output queue
throughout [t, t + δ]. (The output queue is fed, in general, by
state-dependent data sources, e.g., TCP.) Let M(t) be the
vector of length α whose ith entry indicates whether station i
is active, and M(t) be the number of active stations. Let Ni(t)
be the goodput of station i in timestep [t, t+δ], defined as the
number of packets successfully transmitted by station i in the
timestep. Ni(t) is zero for a station i inactive at t. For a station
i active at t, Ni(t) depends on all the active stations at t, as
determined by the 802.11 MAC protocol. The MAC protocol
we consider here is the basic 802.11 Distributed Coordination
Function (DCF) protocol.

Given M(t), our method computes evolutions of the good-
put vector 〈Ni(t) : 1 ≤ i≤ α〉 for t = 0, δ, 2δ, · · · . For the
timestep size δ of interest (i.e., δ = 50ms), the DCF protocol
introduces strong dependencies in the Ni(t)’s, specifically,
positive correlation in Ni(t) across timesteps and the negative
correlation between Ni(t)’s across stations i in the same
timestep. It is essential to capture these dependencies, oth-
erwise the evolutions of the Ni(t)’s would not be an adequate
foundation for simulating upper-level protocols (e.g., TCP) in
a timestepped manner. Thus the key issue is the short-term
behavior of the DCF protocol.

Our method computes evolutions of the goodput vector and
DCF state jointly: at each timestep, the goodput and DCF
state at the end of the timestep is obtained in terms of the
goodput and DCF state at the previous timestep. We validate
against PLS by comparing the resulting marginal distributions,
the crosscorrelations (across stations), and the autocorrelations
(across timesteps) of the per-station instantaneous goodput and
DCF state. We find that TSS is quite accurate and yields
runtime speed-up of up to two orders of magnitude.

Detailed comparisons are in Section VII, but a quick com-
parison against PLS is shown in Figures 1(a) through 1(c)
for a 100s simulation where M(t) is 32 at t = 0s and drops
to 16, 8, 4 at t = 25s, 50s, and 75s respectively. Figure 1(a)
shows two sample paths of Ni(t), (one from TSS and one from
PLS). Note the variation in Ni(t). Figure 1(b) compares the
evolutions of the E[Ni(t)] and Dev[Ni(t)]. TSS matches PLS

 0 10 20 30 40 50 60 70 80 90
 0

 20

 40

 60

 80

 100
N

i(t
) i

n
pa

ck
et

s/
tim

es
te

p

Time in seconds, Timestep δ=50ms

Sample path of Ni(t)

PLS
TSS

 49 49.5 50 50.5 51
 0

 5

 10

 15

 20

(a)

 5
 10
 15
 20
 25
 30

E
[N

i(t
)]

E[Ni(t)] and Dev[Ni(t)] in packets/timestep

PLS
TSS

 9
 12
 15

 49.8 50 50.2

 0 10 20 30 40 50 60 70 80 90 100

 4
 6
 8
 10
 12

D
ev

[N
i(t

)]

Time in seconds, Timestep δ=50ms

PLS
TSS

 7
 9

 11

 49.8 50 50.2

(b)

 0 1 2 3 4 5 6 7 8 9
-0.15
-0.12
-0.09
-0.06
-0.03
 0

C
ro

ss
co

rr
el

at
io

n
Fu

nc
tio

n
of

 N
i(t

),N
j(t

)

Lag (in timesteps)

PLS: M=8
TSS: M=8

 0

 0.2

 0.4

 0.6

 0.8

 1

A
ut

oc
or

re
la

tio
n

Fu
nc

tio
n

of
 N

i(t
)

Correlations in Ni(t)

PLS: M=8
TSS: M=8

(c)

Fig. 1. Sample path of Ni(t); E[Ni(t)] and Dev[Ni(t)] ; and autocorrela-
tion function of Ni(t) and crosscorrelation function for Ni(t), Nj(t) between
t = 50s and t = 75s where M(t) = 8. The number of active stations M(t)
is initially 32 and is halved at t = 25s, 50s, and 75s.

well, especially at the transition points, except for Dev[Ni(t)]
between t = 75s and t = 100s when there are only two
active stations, which we explain later. Figure 1(c) compares
the autocorrelation of Ni(t) and the crosscorrelation between
Ni(t) and Nj(t) between t = 50s and t = 75s with 8 active
stations; again, TSS matches PLS well.

A. The Timestepped Simulator

The DCF state of station i at time t consists of its con-
tention window Ci(t) and its backoff counter Bi(t). It

turns out, as we explain later, that Bi(t) can be generated
from Ci(t). Thus in each timestep [t, t + δ], TSS obtains
〈Ni(t), Ci(t + δ) : 1 ≤ i ≤ α〉 given 〈Ni(t − δ), Ci(t) :
1 ≤ i ≤ α〉 in the following steps:

• Obtain the per-station collision probability p(t) as a
function of the number of active stations M(t) at time t
(available from M(t)).

• Obtain the distribution Pr(NA(t)) of the instantaneous
aggregate goodput NA(t) ,

∑
Ni(t) given p(t) and

M(t). Sample NA(t) from it.
• For each station i, obtain Pr(Ni(t)|Ci(t)) by abstracting

the interaction with the rest of the stations by a collision
in each attempt with probability p(t).

• Sample Ni(t) from Pr(Ni(t)|Ci(t)) for all i depen-
dently such that the sampled Ni(t)’s are correlated and
add up to NA(t).

• For each station i, obtain Pr(Ci(t+δ)|Ni(t), Ci(t)) and
sample Ci(t + δ) from it independently.

Because all involved probability distributions can be
parametrized in terms of M(t) and δ, they can be precomputed
or cached across TSS runs. Thus the time taken to sample from
these distributions is agnostic to both transmission bitrates
involved and δ. In sum, each timestep of TSS takes O(M)
time, which is a huge improvement over the PLS runtime of
O(M × δ × bit-rate).

B. Our contributions and related work

To the best of our knowledge, there has been no prior work
on timestepped stochastic simulation of WLANs or on the
transient analysis needed to achieve this. Specific contributions
include the following:

• Transient analysis of 802.11 performance, yielding a
method to generate sample paths of instantaneous metrics.
Prior performance analyses (e.g., [3], [6], [9], [19], [16])
obtain the average aggregate goodput.

• Distribution of the instantaneous aggregate goodput
NA(t) by obtaining both the mean and variance of the
aggregate goodput renewal period.

• Distribution of the instantaneous goodput of a tagged
station conditioned on its MAC state. This explains
and quantifies the short-term unfairness in instantaneous
goodputs due to the 802.11 DCF backoff mechanism.

Prior analytical models (e.g., [3], [6], [9], [19], [16], [2])
for 802.11 performance evaluation consider long-term aver-
ages for a constant number of active stations. The general
approach is to observe a tagged station between two successful
transmissions and estimate the average time and number of
attempts taken for the same, from which one obtains the long-
run average per-station and aggregate goodput and collision
probabilities.

There has been much work on timestepped simulation of
point-to-point networks (reference [12] provides a list). For
WLANs, reference [10] develops a fluid timestepped deter-
ministic simulator in which the average aggregate goodput is
the input to the fluid model, and obtains long-run metrics. It

ACKPKT

t1t0 t2 t3 t4 t5 t6

Y 2

Y 3
iB (t)

Backoff counters paused Backoff counters decremented
Transmission interval Idle interval I τ

SIFS
DIFS

ACKPKT

success
collision collision

τI τ I τ I τ I τ I

k

PKT

PKT

PKT

PKT
1Y

j

i

Fig. 2. Aggregate evolution of a WLAN, with evolution of tagged station i
shown in more detail.

is not clear if this model can capture the short-term effects of
DCF on TCP workloads.

In sum, our work complements prior work by obtaining
distributions of instantaneous metrics and sample-paths that
approximate packet-level simulation well.

II. 802.11 DCF OVERVIEW AND MODELING

We briefly overview the 802.11 DCF protocol using stan-
dard terminology [13]. Time is slotted. As shown in Figure
2, when station i gets a new packet to transmit (at time
t0), it sets its contention window Ci(t) to the initial size γ,
and sets its backoff counter Bi(t) to a random value from
Uniform[0..Ci(t)–1]. It continuously decrements Bi(t) at the
rate of one unit per slot while the media is idle, pauses while
the media is busy, and transmits when Bi(t) reaches zero. The
transmission interval τ equals PKT+ACK+SIFS+DIFS. If
the transmission is unsuccessful (i.e., ACK not received), Ci(t)
is doubled (binary exponential backoff). If successful, Ci(t) is
reset to the initial size γ. In both cases, a new value of Bi(t)
is chosen from Uniform[0..Ci(t)–1] for the next transmission
attempt. If successful transmission does not occur within β
attempts, then the packet is aborted and the MAC state is
reset.

The WLAN’s aggregate evolution, obtained by superposing
the per-station evolutions, is a sequence of transmission inter-
vals alternating with variable idle intervals I. Note that each
idle interval equals the smallest of the backoff counters at the
end of the previous transmission interval. Also, a transmission
interval is of size τ whether or not it is successful (as in
references [4], [9], [11], [10], [13]).

A. Model assumptions and notation

Table I shows some notation used in TSS. We assume the
following:

• Within any timestep [t, t+δ], each idle interval is treated
as an IID copy of a stationary random variable I .

• There are no aborts, which is reasonable because the
probability of abort, p(t)β , is negligible for standard
values of protocol parameters (e.g., less than 0.007 for
p(t) < 0.5 and β = 7).

M(t) number of active stations
p(t) per-station (conditional) collision probability
λ(t) per-station attempt rate
pA(t) aggregate collision probability
NA(t) aggregate goodput (random variable)
For a tagged packet:
K number of transmission attempts (rv)
Yj initial value of backoff counter for attempt j (rv)
X total backoff duration: Y1 + · · · + YK (rv)

TABLE I
NOTATION FOR TSS QUANTITIES DEFINED IN TIME INTERVAL [t, t + δ].

• RTS/CTS is not used.
• We assume that every successful transmission is received

at all stations (i.e., no hidden or exposed terminals) and
that a collision results in checksum errors at all receivers
(i.e., no physical layer capture).

• We assume that the transmission bitrate and packet size
are constant.

Define the backoff timeline to be the sequence of all idle
intervals ordered by their occurrence time, i.e., the transmis-
sion intervals in the real timeline are collapsed to points. Note
that an interval of δ slots in the real timeline would on average
have δE[I]/(E[I]+τ) idle interval slots. We show (in Section
III-D) that deviations from the average are rare. So we assume
the following to simplify the analysis:

• Any interval of length δ slots in the real timeline contracts
(corresponds) to an interval of length ηδ slots in the
backoff timeline, where η , E[I]/(E[I] + τ).

III. THE DISTRIBUTION Pr(NA(t))

The distribution of the instantaneous aggregate goodput
NA(t) is obtained by extending the analysis in reference [2]
with second moments and the central limit theorem for renewal
processes. Following [2], we get the per-station collision
probability and attempt rate, from which we get the aggregate
attempt rate and collision probability, from which we get
the distributions of the idle interval, the transmission renewal
period, and the goodput renewal period. Applying the central
limit theorem yields the desired goodput and throughput
distributions. From the latter distribution, we justify the real-
to-backoff-timeline contraction approximation.

A. Analysis of per-station attempt process in backoff timeline

The attempt process of a station i in the backoff timeline
is a sequence of “blocks”, where each block corresponds to
the lifetime of a tagged packet. Specifically, each block is
a sequence of intervals of the form 〈Y1, Y2 · · ·YK〉, where
K is the number of transmission attempts for the packet,
Yj is the initial backoff counter for attempt j, there is a
transmission after each Yj , and the transmission after YK alone
is successful. The total backoff duration X for the tagged
packet is given by Y1 + Y2 + · · · + YK .

For each timestep [t, t + δ], the per-station collision prob-
ability p(t) can be obtained given M(t), either by a fixed
point iteration [2] or empirically from packet-level simulation

[18]. K is a truncated geometric random variable with fail-
ure probability p(t). Each Yj is uniformly distributed over
[0, · · · , γ2j−1 − 1]. Thus E[K] and E[X] can be obtained.

In the backoff timeline, the per-station attempt process
is a markovian renewal process with average overall cycle
(renewal) period E[X] and average number of attempts in a
cycle E[K]. By the renewal reward theorem [15], the attempt
rate λ(t) is given by E[K]/E[X], which is thus available given
M(t).

B. Analysis of aggregate attempt process in backoff timeline

The aggregate attempt process is the superposition of the
per-station attempt processes. In the backoff timeline, the
aggregate attempt process is a sequence of blocks, where each
block is a sequence of intervals of the form 〈I1, I2 · · · IL〉,
where each Ii is an IID copy of the idle interval I , a
single station transmits successfully after IL, and two or more
stations transmit unsuccessfully after each Ii for i 6= L.

The per-station attempt processes are assumed to evolve
independently in the backoff timeline, with each being subject
to the per-station collision probability p(t). Then the proba-
bility that there is at least one transmission in a slot of the
aggregate attempt process is 1− (1−λ(t))M(t), where λ(t) is
the per-station attempt rate obtained above. So the idle interval
I is a geometric random variable with success probability
1− (1− λ(t))M(t). The aggregate collision probability pA(t)
is the probability of two or more transmissions in a slot
given at least one transmission. Assuming that collisions are
independent, L is geometric with success probability 1− pA.

C. Analysis of aggregate attempt process in real timeline

The aggregate attempt process in the real timeline is a
sequence of blocks, where each block is a sequence of
intervals of the form 〈T1, T2, · · · , TL〉, where each Ti is an
IID copy of T = I + τ and only TL is successful (as before).
Thus the aggregate attempt process is a renewal process with
period T . With E[T] = E[I] + τ and Var[T] = Var[I], by the
central limit theorem for renewal processes [15], we have:

The aggregate throughput (i.e., number of T intervals) in
[t, t + δ] is normally distributed with mean δ/E[T] and
variance δVar[T]/E[T]3.

The aggregate goodput process is a renewal process
with period G = T1 + T2 + · · · + TL. We have
E[G] = E[E[G|L]] = E[T].E[L], which yields the
mean goodput in [t, t + δ] as δ/E[G] (all prior works (e.g.,
[2], [3], [9]) stop here). Also Var[G] can be shown to be
E[L]Var[T] + Var[L]E[T]2, where E[L] and Var[L] can be
obtained from the distribution of L. Thus we have:

The aggregate goodput NA(t) is normally distributed with
mean δ/E[G] and variance δVar[G]/E[G]3.

X f X l

t
f

X2X1 Xn−1

t
l

Y0 Y1

Time from last success

t ηδt+

Time to first success

Backoff timeline

First successful transmission of station i Last successful transmission of station i

Fig. 3. Transmissions of a tagged station in the backoff timeline interval
[t′, t′ + ηδ] corresponding to the real timeline interval [t, t + δ]. A longer
arrows indicates a successful transmission, a shorter arrow failure.

D. Real-to-backoff-timeline contraction approximation

Because each throughput renewal T equals I + τ and I
is geometrically distributed, the total idle interval in [t, t +
δ] is the sum of a (normally distributed) random number of
geometric random variables. One can compute the mean and
variance of this compound random variable and approximate
this by a normal distribution. However, its deviation is very
small relative to its mean (less than 8% for δ = 50ms). Thus
it can be approximated by a constant equal to its mean.

IV. THE DISTRIBUTION Pr(Ni(t)|Ci(t))

To obtain the distribution of Pr(Ni(t)|Ci(t)), we consider
the per-station attempt process for station i in the backoff
timeline. We first analyze the case that the station begins its
first attempt for some packet exactly at t.

A. Obtaining Pr(Ni(t)|Ci(t) = γ, Bi(t) = Uniform[0..γ–1])

Recall that X is the total backoff duration for one successful
transmission. There are n successful transmissions in [t, t+ δ]
the sum of n IID copies of X is less than the aggregate idle in-
terval ηδ and the n+1th successful transmission occurs outside
the interval. Let E1 denote the event X1 + · · ·+Xn ≤ ηδ and
E2, the event X1 + · · ·+Xn+1 ≤ ηδ. Clearly, E1 ⊂ E2. Thus
Pr(Ni(t) = n) = Pr(E1

∧
E2) = Pr(E1)−Pr(E2). Further

Pr(E1) = F n
X(ηδ), where the pdf fn

X of the distribution
Pr(X1 + X2 + · · · + Xn) is the n-fold convolution of
fX with itself, and F n

X denotes the corresponding cdf. We
have developed an algorithm to compute this convolution
efficiently; details are available in reference [18].

B. Obtaining Pr(Ni(t)|Ci(t) = γ2c−1, Bi(t) = b)

We now analyze the case where at time t, the station is in
the middle (as determined by Bi(t)) of an arbitrary attempt (as
determined by Ci(t)) for the transmission of the first packet
in [t, t + δ]. Let X∗

f denote the first time to success in the
backoff timeline. Conditioned on X∗

f = x, Pr(Ni(t) = n)
is given by the probability of fitting n − 1 copies of X in
the backoff timeline interval ηδ −x. Because the first attempt
for the next packet begins at t′ + X∗

f , this probability can be
obtained exactly as in the previous case. So we want to obtain
the pdf of X∗

f |Ci(t), Bi(t).
Given Ci(t) = γ2c−1 and Bi(t) = b, the first transmission

occurs at t′+b in the backoff timeline interval as seen in Figure
3. The number of further attempts K (which can be zero) is a

truncated geometric distribution with failure probability p(t).
Recall that the Yi’s denote the backoff chosen for each of these
attempts. Now Xf = x iff b + Yc+1 + Yc+2 + · · ·Yc+K =
x. Each of the Yi’s is uniformly distributed in increasing
intervals so Pr(Xf |Bi(t), Ci(t)) can be obtained. Uncon-
ditioning Pr(Ni(t)|Xf) using Pr(Xf |Bi(t), Ci(t)) yields
Pr(Ni(t)|Bi(t), Ci(t)).

C. Obtaining Pr(Ni(t)|Ci(t) = γ2c−1)

We have so far obtained Pr(Ni(t)|Ci(t), Bi(t)) and we
want to obtain Pr(Ni(t)|Ci(t). If Ci(t) = γ2c−1, then
Bi(t) was chosen from the Uniform[0..Ci(t)−1] when it was
renewed. Therefore at a given t, the distribution of Bi(t) is
distributed according to the forward recurrence time (remain-
ing time) distribution [15] corresponding to the distribution
Uniform[0..Ci(t)−1]. Thus we have Pr(Bi(t) = b|Ci(t) =

γ2c−1) = 2(Ci(t)−b−1)
Ci(t)(Ci(t)−1) for b ∈ [0, Ci(t)−1]. Unconditioning

on Bi(t) gives Pr(Ni(t)|Ci(t)).

D. Short-term unfairness in 802.11

Short-term unfairness in 802.11 has been the subject of
much research [7], [8], [17], [20]. Reference [20] examines
short-term unfairness for hidden terminals while references
[8], [7] claim 802.11 is fair over intervals that are defined
in terms of the number of inter-transmissions that other hosts
may perform between two transmissions of a given station.
Our analysis naturally yields a quantification of the short-term
unfairness over arbitrary fixed intervals (δ here) even with no
hidden terminals.

Consider a pair of tagged stations i and j among M active
stations. Note that a difference between Ci(t) and Cj(t) auto-
matically results in a difference in the means of Ni(t), Nj(t).
To quantify the extent of short-term unfairness in goodputs, we
use Jain’s fairness index JF [14]. For two stations, JF (Ni, Nj)

is defined to be
(Ni + Nj)

2

2(N2
i + N2

j)
and ranges in [1/2, 1], where 1/2

corresponds to lowest fairness (one station gets all the goodput
while the other gets nothing) and 1 corresponds to highest
fairness (both get equal goodput). Specifically, we compute
E[JF (Ni, Nj)] in two different ways: 1) by approximating
the jdf of 〈Ni(t), Nj(t)〉 the product of the pdf’s of Ni(t)
and Nj(t), which are identical when unconditioned; and 2) by
packet level simulations (PLS) described later in Section VII.
Note that the pdf of Ni(t) can be obtained by unconditioning
that of Ni(t)|Ci(t) on Ci(t). Values of E[JF (Ni, Nj)] are
shown for varying M in Table II. The value predicted by the
analysis matches that obtained from PLS for the unconditioned
Jain’s index almost exactly confirming that the short-term
unfairness in 802.11 can be quantified by the distribution of
the instantaneous goodput.

V. DEPENDENT SAMPLING OF Ni(t)’S

Ni(t) is determined by two factors: 1) the initial state Ci(t);
and 2) interaction between stations in [t, t+δ]. Factor 1, which
influences the autocorrelation in a station’s goodput across
timesteps, is modeled by Pr(Ni|Ci). However, Pr(Ni|Ci)

M
E[JF (Ni,Nj)]
PLS Analysis

4 0.94 0.95
8 0.83 0.84

16 0.73 0.74

TABLE II
SHORT-TERM UNFAIRNESS ILLUSTRATED BY E[JF (Ni,Nj)] AS
OBTAINED BY PLS AND ANALYSIS FOR VARIOUS VALUES OF M .

does not capture the crosscorrelation between stations’ good-
puts completely because it abstracts the interaction with other
stations by the average behavior through the per-station col-
lision probability p(t). So to account for factor 2, we first
obtain a sample of NA(t) and obtain samples Ni(t) such that∑

Ni(t) = NA(t) in a negatively correlated manner.

A. Algorithm for sampling Ni(t)

The algorithm needs to sample from marginal distributions
of Ni(t)|Ci(t) while accounting for correlation. Our basic
approach is to sample from different parts of the marginal
distribution depending on other stations’ goodputs. The main
steps in our algorithm (preliminary approaches and details are
in reference [18]) are:

• Obtain a sample NA(t) of aggregate goodput.
• Obtain a random permutation of the stations’ indices by

a Knuth shuffle [5] and allocate goodputs to stations in
order of this permutation as long per-station goodputs are
lesser than NA(t) in sum.

• If sum of goodputs allocated so far is greater (lesser) than
the expected goodput for all stations above (below) some
tolerance, then sample goodput of next station from the
lower (upper) tail of the pdf Pr(Ni|Ci).

• If sum of goodputs allocated so far is close to the
mean subject to both the upper and lower tolerances,
then sample goodput of next station from the full pdf
Pr(Ni|Ci).

Let n∗ be a goodput such that Pr(Ni ≤ n∗|Ci) = 1/2.
By sampling the lower (upper) tail of Pr(Ni|Ci), we mean
sampling from the distribution Pr(Ni|Ci, Ni ≤ n∗) (distri-
bution Pr(Ni|Ci, Ni > n∗)). The Knuth shuffle and iterative
allocation of goodput to each station take O(M) deterministic
time. Because the pdf’s can be precomputed or cached, the
overall runtime is O(M) and independent of the transmission
bitrate; any PLS would take O(Mδ × bit-rate).

VI. THE DISTRIBUTION Pr(Ci(t + δ)|Ni(t), Ci(t))

We first analyze the case Ni(t) = n, n 6= 0. Recall that X∗

f

is the time to the first success, and let X∗

l denote the time in
the backoff timeline from the last success in the interval to
the end of the interval. Figure 3 illustrates this.

Our goal is to obtain the distribution Pr(X∗

l |Ci(t), Ni(t)).
Once this is done, we can obtain the distribution of Ci(t + δ)
given that X∗

l slots have been spent in backing off since the
last successful transmission. Now Pr(Ni(t) = n|Ci(t)) can
be expressed in terms of X∗

f and X ′

is. That is, Pr(Ni(t) =
n) is the probability that X∗

f + X1 + · · · + Xn−1 ≤ ηδ and
X∗

f + X1 + · · · + Xn > ηδ. We have already seen how to

obtain Pr(X∗

f |Ci(t)) in Section IV. Now X∗

l is given by
ηδ − (X∗

f + X1 + · · ·Xn−1). Thus by Bayes’ theorem, we
obtain Pr(X∗

l |Ci(t), Ni(t) = n).
Suppose X∗

l = x. This means the total backoff Xn of the
n + 1-th successful transmission is greater than x. For Ci(t +
δ) = 2c−1γ to occur after spending a backoff duration x from
the last successful transmission, we want c − 1 unsuccessful
transmissions, Y1+· · ·+Yc to just exceed x, and Y1+· · ·+Yc−1

should be less than x. Thus we can obtain the distribution
of Ci(t + δ)|X∗

l . Unconditioning on X∗

l yields Pr(Ci(t +
δ)|Ci(t), Ni(t)).

When Ni(t) = 0, as in Section IV, we approximate Bi(t)
as the forward recurrence time. Using this and a similar
application of Yi’s, we obtain the distribution of Ci(t + δ)
conditioned on X∗

f . Again, unconditioning on X∗

f yields the
required distribution.

VII. RESULTS

Our main results are broadly along two directions: quan-
tifying speedup and validating accuracy. Because the pdf’s
required for TSS are precomputed using the transient analysis,
we first quantify the cost for precomputation in (memory)
space and time. Then we compare the runtime improvement
offered by TSS over PLS. Next, we validate 1) the transient
analysis of 802.11; and 2) the overall TSS technique for
WLANs.

For validation of the transient analysis of 802.11, we
compare the conditional pdf’s, namely, Pr(Ni(t)|Ci(t)) and
Pr(Ci(t + δ)|Ni(t), Ci(t)). For validation of TSS, we com-
pare an “internal” (to the method) metric, namely, Ci(t) and
an “external” metric, namely, Ni(t). Specifically, we consider:

1) the pdf of Ni(t);
2) the autocorrelation function of the timeseries

Ni(0), Ni(δ), · · · that captures correlations across
time;

3) the crosscorrelation function between the series
Ni(0), Ni(δ), · · · and Nj(0), Nj(δ), · · · that captures
correlations across stations.

The same three points of comparison are considered for the
metric Ci(t) as well. In addition, we also consider the pdf of
the aggregate goodput NA(t).

A. Simulation setup

Because TSS models only the MAC layer, to insure a fair
comparison of the time taken for a simulation, we have im-
plemented a simple 802.11 MAC layer packet level simulator
(PLS) instead of resorting to a full blown simulator such as
ns-2 [1]. This avoids the overheads of upper layer (routing,
transport) as well as lower layer (physical) events in ns-2
which TSS for 802.11 does not model. As an illustration of ns-
2 overheads, a simulation run of 1000 seconds for a scenario of
two constant bit rate (CBR) flows sharing one 802.11 channel
takes about 4.5 seconds in our custom simulator with logging
enabled, while ns-2 takes about 70 seconds with all logging
disabled.

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

Ti
m

e(
se

cs
)

Number of active stations M

95% confidence intervals

Avg time

 10

 20

 30

 40

 50

S
pa

ce
 (k

ilo
by

te
s)

Space-time costs in storing precomputed pdf’s

Memory

Fig. 4. Space and time costs for precomputation of Pr(Ni(t)|Ci(t))
and Pr(Ci(t + δ)|Ci(t), Ni(t)) for δ = 50ms with M varying in
[2, 4, 8, · · · , 64].

All simulations were carried on a machine with a 3.2GHz
Pentium-4 processor and 1.5Gb RAM running Red Hat Enter-
prise Linux release 3. We use a fixed packet size of 1500 bytes
including the MAC-layer overhead and the 802.11a parame-
ters: slot size of 9µs, SIFS of 16µs, data bitrate of 54Mbps,
ACK bitrate 6Mbps, PHY-layer overhead of 20µs, and con-
tention window ranging over the 7 values [16, 32, · · · , 1024]
with 7 maximum attempts. Unless otherwise mentioned, all
stations always have packets to transmit, i.e., are active, during
the entire run of the simulation.

B. Precomputation costs in space and time

Using the transient analysis, for each tuple 〈M, Ci(t)〉, a
table of tuples of the form 〈Ni(t), pdfval〉 is obtained for
Pr(Ni(t)|Ci(t)). Likewise, for each tuple 〈M, Ci(t), Ni(t)〉,
a table of tuples of the form 〈Ci(t+δ), pdfval〉 is obtained for
Pr(Ci(t + δ)|Ni(t), Ci(t))). Because Ci(t) ranges over the
standard seven values [16, · · · , 1024], for a fixed M , the sizes
of all tables are determined by the maximum value Ni(t) can
take.

For a fixed M , let nm denote the maximum value of Ni(t)
for which entries of tables are computed. So the tables for
Pr(Ni(t)|Ci(t)) have 7nm entries in all. Likewise, the tables
for Pr(Ci(t + δ)|Ci(t), Ni(t)) have 7 × nm × 7 = 49nm

entries in all. Each entry in the table is stored as a double
of size eight bytes. So the space required is 400nm bytes. For
M = 2, nm is about 130, and this yields a space requirement
of about 52000 bytes (in uncompressed form).

Figure 4 shows the space and time requirement for precom-
puting pdf’s for δ = 50ms with M varying in [2, 4, 8, · · · , 64].
Because nm decreases with increasing M , both the space and
time required decrease with increasing M . The space require-
ment is almost negligible compared to memory consumed in
typical packet level simulators, and the time requirement is a
one-time cost shared across all runs of a simulation scenario.
Nevertheless, these costs can be reduced by interpolating the
pdf’s among the parameters M and Ni (Ci is likely not a
suitable candidate for interpolation for large M).

 1

 2

 3

 4

 5

 6

 2 12 22 32 42 52 62

R
un

tim
e(

in
 s

ec
s)

Number of active stations M

PLS runtime/50

(with 95% intervals)
TSS runtime

(with 95% intervals)

 0

 100

 200
R

at
io

Min ratio(for M=2) = 5.9

Max ratio(for M=64) = 233

Fig. 5. Runtimes of TSS and PLS and their ratio for a 1000s simulation
with M varying in [2, 4, 8, · · · , 64]. Each point is an average of 100 runs.
For PLS, the runtime has been scaled down by a factor of 50 to enable
visual comparison with TSS. For TSS, the runtime includes the time taken to
load precomputed pdf’s from disk, and the time taken for precomputation is
amortized over 100 runs.

C. Runtime comparison

TSS for WLANs provides an improvement up to two orders
of magnitude in the runtime over PLS. Figure 5 shows the
average time taken by both PLS and TSS and their ratio,
for a 1000s simulation run with M in [2, 4, 8, · · · , 64]. Each
point plotted in Figure 5 and its associated 95% confidence
interval is obtained from 100 runs. For PLS, the curve is shown
scaled down by a factor of 50 to enable visual comparison
with TSS. For TSS, the runtime includes the time taken to
load precomputed pdf’s from disk, and the time taken for
precomputation is amortized over 100 runs. The PLS curve
shows a linear increase in the runtime as expected. The TSS
curve shows a dip and then an increase. This is because the
amortized time to calculate precomputed pdf’s is significant
compared to the actual simulation loading time and runtime
for smaller M ; once a threshold has been crossed in M ,
the computational costs predominate. The trend in the TSS
runtime curve for smaller M is similar to the precomputation
cost curves in Figure 4.

D. The distribution Pr(NA(t))

We obtain the distribution of the instantaneous aggregate
goodput for δ = 50ms through simulations and analysis. In
each run of the simulation, the system is “warmed up” for
5s from a “cold start” and then a sample of the instantaneous
aggregate goodput is obtained. We obtain the pdf of the instan-
taneous aggregate goodput from the samples of 10000 such
runs and the results comparing it with analytically predicted
distribution are shown in Figure 6.

We make the following observations:
• The distribution of NA(t) can be well approximated by

a gaussian as predicted by the analysis.
• The means of the distributions obtained by simulation

coincide almost exactly with those obtained by analysis.
• The peaks (deviations) of the normal distributions ob-

tained by simulations are higher (lower) than those ob-
tained by analysis; for M = 2 the scenario is reversed.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

70 80 90 100 110 120 130 140 150

P
D

F

Number of packets in timestep of 50ms

PDF of NA(t)

M=32 M=8 M=2

PLS: M=2
Analysis: M=2

PLS: M=8
Analysis: M=8

PLS: M=32
Analysis: M=32

Fig. 6. Comparison between empirically obtained pdf of NA(t) for t = 5s
and δ = 50ms for varying M . The deviations of NA(t) predicted by the
analysis are overestimates for M > 2 while for M = 2, it is an underestimate.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35 40

P
D

F

Number of packets in timestep of 50ms

M=16,Ci(t)=1024

M=32,Ci(t)=16

PLS
Analysis

PLS
Analysis

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

 0 10 20 30 40 50 60 70 80

P
D

F

PDF of Ni(t)|Ci(t)

M=4
Ci(t)=32

M=8
Ci(t)=32

PLS
Analysis

PLS
Analysis

Fig. 7. PDF of Ni(t)|Ci(t) for various values of Ci(t) and varying M .

The last observation can be explained as follows. For the
analysis, we had assumed that each throughput renewal in the
global timeline is a failure with a fixed probability independent
of the past. In reality, there are two factors that affect the
variance. Specifically, the size of an idle interval is positively
correlated with the event that the preceding throughput re-
newal(s) is a collision, and the event that a throughput renewal
is a failure is negatively correlated with the event that previous
throughput renewal(s) is a failure. Reference [18] provides
more details.

E. Pr(Ni(t)|Ci(t)) and Pr(Ci(t + δ)|Ni(t), Ci(t))

For each value of M , we do 100000 simulation runs with
M constant throughout the simulation runs. In each simulation
run, at t = 5s and δ = 50ms, a sample of Ni(t), Ci(t), and
Ci(t+δ) is obtained. From 100000 samples from 100000 such
runs, a frequency distribution of Ni is obtained for each fixed
Ci as an estimate of the conditional probability distribution
Pr(Ni|Ci). From this same set of samples, a conditional
distribution of Ci(t + δ) given Ci(t), Ni(t) is also obtained.
This entire exercise is repeated for varying values of M .

 0.1

 0.3

 0.5

 0.7

 0 5 10 15 20 25 30

P
D

F

Packets in timestep

M=16

M=64

PLS: M=16
TSS: M=16
PLS: M=64
TSS: M=64

 0.01

 0.03

 0.05

 0.07

 0 10 20 30 40 50 60 70

P
D

F
PDF of Ni(t)

M=4M=8

PLS: M=4
TSS: M=4
PLS: M=8
TSS: M=8

Fig. 8. Distribution of unconditional Ni(t)

Figure 7 shows the PDF Pr(Ni|Ci) for for varying M . The
pdf’s do not match exactly for small M because of our approx-
imation in obtaining the random total backoff in an interval
[t, t+δ] by a constant ηδ. However, the accuracy improves with
increasing M . As M and contention window size increase,
the goodput starts deviating from normal significantly with
an increased probability of zero instantaneous goodput. The
analysis captures this trend as can be seen in Figure 7. We
also note that Pr(Ni(t) = 0|Ci(t) = 1024) for M = 16 is
much higher (around 0.45) than Pr(Ni(t) = 0|Ci(t) = 16) for
M = 32 (around 0.075) illustrating the short-term unfairness;
even though the number of active stations is doubled (i.e.
M = 32), the probability of zero goodput is much lower (than
for M = 16) because of a favorable contention window (in this
case 16). Validation of the distribution of Ci(t+δ)|Ni(t), Ci(t)
can be found in reference [18].

F. The distributions Pr(Ni(t)) and Pr(Ci(t))

We now compare the unconditional distributions of Ni(t)
and Ci(t). As can be seen in Figure 8, the distribution of
Ni(t) as obtained from TSS is very close to that obtained from
PLS except for a large M (e.g., 64) where it overestimates the
time with zero goodput (and underestimates the others). This is
because TSS overestimates the probability of Ci(t) being high
for large M . A more detailed explanation of this, a comparison
of the distribution of Ci(t), and validation of correlations can
be found in reference [18].

VIII. CONCLUSIONS AND FUTURE WORK

We presented a transient analysis of 802.11 and used it to
perform TSS for WLANs. The transient analysis of 802.11
looks at a tagged station within a timestep and obtains condi-
tional pdf of Ni(t) conditioned on the MAC state Ci(t) and
that of new MAC state Ci(t + δ) conditioned on Ci(t) and
Ni(t). The TSS technique uses this transient analysis to obtain
the instantaneous goodputs of all stations such that they 1)
add up to the aggregate instantaneous goodput and 2) have
the required correlation structure. In sum, the method obtains
the sample path evolutions of the contention windows and
instantaneous goodputs of all stations with time. We validate

the transient analysis and TSS technique against PLS. TSS
scales well with increasing number of stations and is agnostic
to bit-rate. Proposed work includes integration of the technique
with traffic sources with state dependent control (e.g. TCP) and
modeling the PHY layer (with arbitrary location of stations).

REFERENCES

[1] NS-2 network simulator. http://www.isi.edu/nsnam/ns.
[2] A. Kumar, E. Altman, D. Miorandi and M. Goyal. New Insights

from a Fixed Point Analysis of Single Cell IEEE 802.11 WLANs. In
Proceedings of IEEE INFOCOM, 2006.

[3] G. Bianchi. Performance analysis of the IEEE 802.11 Distributed
Coordination Function. In IEEE Journal On Selected Areas in Com-
munications, March 2000.

[4] D. Malone, K. Duffy, and D. Leith. Modeling the 802.11 dis-
tributed coordination function in non-saturated heterogeneous condi-
tions. IEEE/ACM Transactions on Networking., 15, February 2007.

[5] D.E.Knuth. The Art of Computer Programming: Seminumerical Algo-
rithms. Addison-Wesley Publishing Company, 1981.

[6] F.Cali, M. Conti, and E. Gregori. IEEE 802.11 Wireless LAN: Capacity
Analysis and Protocol Enhancement. In Proceedings of INFOCOM,
1998.

[7] G. Berger-Sabbatel, A. Duda, O. Gaudoin, M. Heusse, and F. Rousseau.
Fairness and its Impact on Delay in 802.11 Networks. In Proceedings
of IEEE GLOBECOM, 2004.

[8] G. Berger-Sabbatel, A. Duda, O. Gaudoin, M. Heusse, and F. Rousseau.
Short-Term Fairness of 802.11 Networks with Several Hosts. In
Proceedings of the Sixth IFIP IEEE International Conference on Mobile
and Wireless Communication Networks, MWCN, 2004.

[9] H.Kim and J.Hou. Improving protocol capacity with model-based frame
scheduling in ieee 802.11-operated wlans. In Proceedings of the 9th
annual international conference on Mobile computing and networking
(MobiCom), 2003.

[10] H.Kim and J.Hou. A fast simulation framework for IEEE 802.11-
operated wireless LANs. In Proceedings of the joint international
conference on Measurement and modeling of computer systems ACM
SIGMETRICS/PERFORMANCE, 2004.

[11] K. Medepalli and F. A. Tobagi. Throughput analysis of ieee 802.11
wireless lans using an average cycle time approach. In Proceedings of
IEEE GLOBECOM, 2005.

[12] A. Kochut and A.U. Shankar. Timestep Stochastic Simulation of
Computer Networks using Diffusion Approximation. In Proceedings
of IEEE/ACM MASCOTS 2006, 14th International Symposium on Mod-
eling, Analysis, and Simulation of Computer and Telecommunication
Systems, Monterey, California, 2006.

[13] The Institute of Electrical and Electronic Engineers Inc.
IEEE 802.11, 1999 edition (ISO/IEC 8802-11:1999).
http://standards.ieee.org/getieee802/802.11.html.

[14] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure Of Fairness And
Discrimination For Resource Allocation In Shared Computer Systems.
DEC Research Report TR-301, 1984.

[15] S. M. Ross. Introduction to Probability Models. Academic Press, Inc.
[16] O. Tickoo and B. Sikdar. ‘‘On the Impact of IEEE 802.11 MAC on

Traffic Characteristics”. IEEE Journal on Selected Areas in Communi-
cations, 21(2):189–203, February 2003.

[17] V. Ramaiyan, A. Kumar, and E. Altman. Fixed Point Analysis of Single
Cell IEEE 802.11e WLANs: Uniqueness, Multistability and Throughput
Differentiation. In Proceedings of ACM SIGMETRICS, 2006.

[18] A. Vasan and A. U. Shankar. Timestepped Stochastic Simulation of
802.11 WLANs. In Technical Report, University of Maryland, CS-TR-
4866, UMIACS-TR-2007-19. URL: http://drum.umd.edu, 2007.

[19] Y.C.Tay and K.C. Chua. A Capacity analysis for the IEEE 802.11 MAC
protocol. In Wireless Networks, January 2001.

[20] Z. Li, S. Nandi, and A. K. Gupta. Modeling the Short-Term Unfairness
of IEEE 802.11 in Presence of Hidden Terminals. In NETWORKING
2004, Networking Technologies, Services, and Protocols; Performance
of Computer and Communication Networks; Mobile and Wireless Com-
munications, 2004.

