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(MCMR) systems, where

customers reauires a Particular set of re-

sources, are common. These systems are often analyzed un-

der steady-state conditions. We describe a simple method,

referred to as Z-iteration, to estimate both transient and

steady-state performances of such systems. The method

makes use of results and techniques available from queueing

theory, network analysis, dynamic flow theory, and numer-

ical analysis. We show the generality of the Z-iteration by

applying it to an ATM network, a parallel disk sYstem, and

a distributed batch system. Validations against discrete-

event simulations show the accuracy and computational ad-

vantages of the Z-iteration.

1 Introduction

We consider a general multiple-class multiple-resource

(MCMR) system. We have a set ‘R of resources and a set

C of customer classes. The nature of a resource depends

on the system being modeled; for example, it may be com-

puter memory, floor space, transmission capacity, etc. Each

resource r has an attribute, denoted by r. max, which is a

constant that indicates the maximum number of units in

terms of which T is quantified.

Each class in C represents a class of customers that re-

quires a particular set of resources. Depending on the system

being modeled, customers can be user programs, manufac-

tured products, network connections (calls), etc. Specifi-

cally, each class-c customer requires some subset IIC of re-
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sources, Rc G ‘R. Furthermore, the class-c customer re-

quires some number of units, denoted by c.r. reg, of each

resource r E ItC (e.g. bandwidth, storage space, etc.). For

example, a network connection would require some trans-

mission and buffer capacity on each of the links of the path

connecting its source to its dest inat ion.

Let l=(t) denote the instantaneous arrival rate of class-c

requests, and l/~~ (t) denote the instantaneous service (or

processing) time of a class-c request at T. Thus we are in-

terested not only in the steady-state behavior of the MCMR

system, but also in its transient or non-stationary behavior.

Transient conditions arise when the statistics of the cus-

tomer arrival processes or the service rates of the resources

vary with time, due to externally time-varying factors or dy-

namic control decisions based on current or delayed system

stat e information.

An arriving class-c customer is blocked at a resource

r c R= iff cr. req exceeds the amount of the resource that is

currently available (additional constraints can be incorpo-

rated too). An arriving class-c customer is blocked iff it is

blocked at any r E ILc. A blocked customer is lost or retried

later. Among the main performance measures of interest are

the instantaneous blocking probabilities (or equivalently the

throughputs) of the different classes, instantaneous average

number of customers at resources, etc.

The generality of our model allows us to consider a

variety of systems, including those with delayed feedback

between changes in system state information and changes

in cent rol decisions. Examples of such systems include

database locking systems, inventory systems, distributed

batch systems, manufacturing systems, and communication

networks. Because the class of a customer can be assigned

when the customer arrives, it is straightforward to model

state-dependent control policies such as assigning jobs to

processors with the least workload.

MCMR systems have often been analyzed under steady-

state conditions (e.g. [12, 14, 20, 5, 25, 3, 22, 10]). In this

paper, we formulate a dynamic flow model [6] to account

for transient conditions as well, We solve our model by

an iteration that differs from iterations used in steady-state

analysis, which only solve for stead y-stat e measures.
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Our solution method

The generality and time-dependency of our model seem

to preclude analytical closed-form solutions. Our solu-

tion method, referred to as Z-iter-ation is, however, numeri-

cal. This has significant computational advantages over the

(straightforward) discrete-event simulation approach, which

requires the averaging of a large number of independent sim-

ulation runs to obtain meaningful performance estimates.

The instantaneous blocking probability of a class c, de-

noted by Be(t), is defined as the instantaneous probability

that a class-c request is blocked at any of the required I?c

resources. For this, we decompose our MCMR system into

a set of multiple-class single-resource (MCSR) systems by

invoking the resource independence assumption. Denoting

byl?~(t )theinstantaneous blocking probability ofclass cat

resourcer, wehave B.(i) =l–~reRC(l– Bl(t)).

The Z-iteration computes l?:(t) together with N:(t), the

instantaneous average number of class-c requests waiting or

in service at resourcer, and U:(t), the instantaneous average

number of class-c requests in service at resource T.

Let the index c’ range over the set of classes requiring

resource T. The Z-iteration depends upon the availability

of two steady-state results about each MCSR system r 6 R

assuming that the Jcl(t) and p:,(t) are constants: (1) an

expression for the steady-state blocking probability B: in

terms of the steady-state actual offered loads ~ct/p~,; and

(2) an expression for the steady-state utilization U: in terms

of the steady-state average numbers of customers N~/, from

which we readily obtain an expression for A.Jp~ in terms of

the N:, and B;.

These twosteady-state results are available for a variety

of MCSR systems, including self-service systems where the

customer is also the server, and single- or multiple-server

queueing systems [17, 6]. We point out that the expressions

do not have to beclosedform and can be implicit.

We make use of the concept of instantaneous fictitious

ofler-ed load, originally introduced in [7], to obtain instan-

taneous versions of the above expressions. Specifically, we

replace l?: by B;(t),the NJ, by NJ, (t), and the JCJ /,u~,

by instantaneous fictitious offered loads z:, (t). (Note that

&/.LLj is not replaced by &(t)/pZ(t).)

This yields for every T G ‘R two “instantaneous” expres-

sions, one for l?:(t) in terms of the z:, (t), and one for z~(t)

in terms of the NJ, (t)and B:(t). A third instantaneous

expression is obtained from standard flow balance, defining

N~(t + 6) in terms of the N:,(t),A.(t),~~(t),and 11~’(t)for

r’ c %?.c,where 6 is the time step for computing the instanta-

neous measures. With these three instantaneous expressions

we compute the B:, (t), z:, (t), and N;, (t + 6) in terms of the

I&(t), JCJ (t) and p:,(t) for t = O, 8, 26, . . . . Specifically,

gwen the N:, (t), we iterate over the first two expressions

until the .B~, (t)and z:, (t) converge. Then we use the third

expression to compute the NJ, (t + 6).

Organization of the paper

The rest of the paper is organized as follows. Section 2

presents the Z-iteration method for the general MCMR

model. In Sections 3, 4, 5, we apply the Z-iteration to three

specific systems with time-varying inputs and dynamic con-

trol, namely, an ATM network, a parallel disk system, and

a distributed batch system. The first and third systems are

modeled as systems with self-service resources, for which

validations against discrete-event simulations are given in

Section 6. The second svstem is modeled as a svstem with

single-server resources, ~or which validations

Section 7. We discuss related work in Section

concludes the paper.

2 The Z-Iteration

are given in

8. Section 9

Figure 1 outlines our solution method to the general MCMR

model introduced in Section 1. Recall that the following

measures have been int reduced:

l?: (t), instant aneous blocking probability of class c at

resource r G R..

N:(t), instantaneous average number of class-c re-

quests waiting or in service at resource r.

u:(t), instantaneous utilization of resource T by class-c

requests (average number of class-c requests in service

at resource r),

z:(t), instant aneous fictitious offered load of class-c

requests at resource T.

Let C’ denote the set of classes requesting units of re-

source r. In the outermost iteration, we obtain {NJ (t +

6), B:(t) : r c ‘R, c 6 C’} for t = O, 6, 26, . . . . The

computation for each time t consists of two parts. The first

part (steps 3-9) computes, for every T ● ~, {~~ (t): c E C’}

in terms of {N:(t): c c C’}. The second part (step 10)

computes, for every T E 7? and c c C’, Nf(t + 6) in terms

of {N:(t): c’ E C“}, A.(t), pz(t), and {B1’(t):T’G %}.
The first part involves an iterative procedure (steps 5-9) on

instant aneous versions of two st eady-st ate formulas (steps 7

and 8). We describe these in detail below.

We define a feasible state of resource T by the number of

requests from each class c C C’ that T can simultaneously

support, i.e. for which the total number of units requested

does not exceed r.rnax. Let P denote the set of all feasible

states of r.

Details of step 7

The first steady-state formula expresses the steady-state

blocking probability B: of class c at resource r in terms

of the steady-state actual offered loads {&l /p~, : c’ c C’}.

That is, assuming the &, (t)and p:, (t)are constants for all

t,the steady-state transition rate between two states be-

longing to P is given by some function of ACJ and p:,. A

class-c request is blocked in a state of P if its admittance

would lead to a state outside F“. Refer to such states of

F as class-c blocking states. We solve analytically for the

probability of being in a class-c blocking state, yielding a

formula ~j in terms of the ~:
c

(1)
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1. Initialize {N;(O) : T c %?, c G C“} /’ O for initially empty system ‘/

2. Fori!=O, ti,26, . . .

3.

4.

5.

6.

7.

8.

9.

10

begin

For every r ~ ‘R /’ Obtain {B:(t) : c E C’} in terms of {N:(t) : c c C’} ‘/

begin

Initialize {2~(t) : r E ‘R, c c C’} /’ arbitrary value if t = O “/

/*2[(t-6)ift>O*/

repeat

z;(t) +- ;:(t), for every c e C“

Obtain {B~(t) : c E C“} in terms of {z:(t) : c c C’}

using an instantaneous version of a steady-state formula (see (2))

Obtain {2?~(t) : c E C’} in terms of {B:(t), N;(t) : c 6 C“}

using an instantaneous version of a steady-state formula (see (4))

until I ;:(t)– z:(t) 1<6, for every c e C“

end

For every r c %?.and c e C’,

obtain N~(t + 8) in terms of {N:,(t) : c’ ~ C“}, At(t), p:(t), and {B:’ (t) : r’ & 72.. }

using a difference equation relating arrivals and departures (see (5))

end

Figure 1: Evaluation method.

To illustrate, consider an M/G’/m/m resource used by

one class of customers arriving according to a Poisson pro-

cess of rate AC. Let each admitted customer be served

by one of the m servers for an average duration of l/u~.

Then S: is the Erlang-B formula, i.e. S: = E(&, m) =

(>)m/~! ,._.

The instantaneous version of (1) is obtained by replacing

l?; by l?:(t)and & by z:, (t), yielding
c

l?:(t)= S~({z~/(i) : c’ G C’}) for c c C’ (2)

Details of step 8

The second steady-state formula, which we refer to as T:,

expresses U;, the steady-state utilization of resource r by

class-c customers, in terms of {NJ, : c’ E C“ }, the steady-

state average numbers of customers at resource r:

u: = T:({N:/ : c’ e c’})

From this and p: U: = AC [1 – B:], obtained by equating

the departure rate to the admission rate, we have

(3)

‘i’_c’ is a function that reflects the load and service disci-

pline of ~. The exact form of T.” is application dependent.

For example, consider a self-service facility where the cus-

tomer is also the server, as in an M/G/m/m queueing sys-

tem; here TC’ is clearly equal to NJ. The derivation of TC’

is not always obvious. One approximation to obtain Tcr in

a systematic way is to use steady-state queueing formulas

expressing N: in terms of the ~ assuming no blocking. In-
. ~ in terms of the NII”

verting these formulas, we obtain .

Since we are assuming no blocking~%om equation (3), we

have T: = ~. Thus, we get T: in terms of the NJ,. (See

Section 4.)

The instantaneous version of (3) yields

T:({N:/(t) : c’ C c’}) for c ~ et’
z:(t)=

[1 - B:(t)]
(4)

Knowing {N:(t): c 6 C’} at some fixed t, we can solve

equations (2) and (4) iteratively for {Bj(t): c c C’}. In

particular, starting from an initial estimate {~~(t): c < C“ },

we compute {B: (t): c E C’} from equations (2). Then, we

use equations (4) to compute new values for {z;(t): c ● C“}.

We repeat this process until the values of {z;(t): c E C’}

stabilize as illustrated in steps 5-9 of Figure 1,

Details of step 10

At a fixed time t, once we obtain {B:(t) : . c ‘R, .< C’},

we obtain {N~(t + 8) : r c 7?, c c C’}, where 6 is the

discrete-time step, using the following difference equation:

N;(t+c$) = N:(t) – u:(t)Uf(t) 6+

A.(t) 8 ~ [1 – B:’(t)] (5)

r’ E %

The second term in the right-hand side of equation (5) rep.

resents the average number of class-c requests which finish

using (and depart from) resource r during [t, t + 6); the
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quantity U:(t) is computed from ~ ({NJ, (t) : c’ 6 C’}).

The third term represents the average number of new class-

c requests that are admitted to resource r during [t, t+ $),
Note that the product term ~ reflects the assumption made

in Section 1 that a new class-c request is admitted iff it is

not blocked at any of the required ‘7?C resources (this invokes

the resource independence assumption).

Comments

Assuming that h’ iterations are needed for conver-

gence of the iterative procedure in steps 5-9 of Fig-

ure 1, the computational complexity for each time step is

~(lRl ICTI ( (1~~1 + lz~l)~+ lN~[ )), where lB~l is the cost
of evaluating l?:(.) via (2), Iz~l that of evaluating z:(. )

via (4), and INJI that of evaluating N:(.) via (5). The

Z-iteration requires storage of O(V [’RI I(T l), where V is

the number of instantaneous measures. From Figure 1, we

have V = 5 since we have 5 instantaneous measures defined,

namely, B:(.), z:(.), N~(.), At(. ) and ~~(.).

Regarding the convergence of the above iterative pro-

cedure, it is unfortunately virtually impossible to demon-

strate convergence analytically in most practical situations

due to the complex nature of the underlying nonlinear sys-

tem. There is no simple way to determine whether there

exist solutions to such a system and, if so, under what con-

ditions it is unique. Even if the system has a unique solu-

tion, the iteration may not converge to it and rather oscillate

between different values. Although sufficient conditions for

convergence can be obtained with techniques such as the

control-theoretic Liapunov method [24], they are very diffi-

cult to obtain even for moderately complex systems. Despite

the lack of anrdytical results, our numerical computations in-

dicate that the iteration converges quickly in many practicaf

situations (see Sections 6 and 7).

We note that it might be required to make assumptions

about the arrival or service distributions in order to obtain

the S: (.) and T: (.) formulas.

Above we defined the feasible state of resource r by a

multi-dimension vector representing the number of requests

from each class c E C’ that r can simultaneously support.

h fact, we can define a feasible state differently as long

as in this state, the total number of units requested does

not exceed r. m ax. For example, we can define it by a single

number representing the total number of units of r currently

used by customers. Also, other criteria can used to further

limit admission of requests.

The Z-iteration can also be used to directly solve for

steady-state (if the A.(t) and p:(t)are constants, and a so-

lution exists). We simply set ‘;( ‘+d~–~~(’) = O in equa-

tions (5) and use them in conjunction with equations (2)

and (4) to iteratively solve for steady-state.

As we pointed out earlier, the exact form of S;(.) and

T:(. ) and the values of ,u~(.) and &(.) depend on the par-

ticular application. We next consider different applications,

and show how they fit into the general model and solution

procedure so far introduced.

3 Application: ATM Network

Consider an ATM network that uses dynamic routing to

support real-time communication (voice, video, etc. ) be-

tween pairs of source and destination nodes. The connec-

tions of a service z’ arrive at the service’s source node ac-

cording to a Poisson process of rate ~,, and have an end-

to-end quality-of-service requirement D, (e.g. delay). Each

connection, once it is successfully setup, has a lifetime of

average duration ~. The source node uses its routing in-

formation to choose for the arriving connection a potential

path/route to the service’s destination node. The route and

service together define the class of the connection. Note that

because of the dynamic routing, class arrivals have time-

varying statistics irrespective of whether the service arrivals

have time-varying statistics.

Resources in a network include link bandwidths, buffer

spaces, etc. For this example, we assume link bandwidths

are the main resources; thus ‘R consists of link ids (where

each id denotes the bandwidth component of the link). We

assume a connection of service z requires the reservation of

a certain amount of bandwidth on each link along its route

that are enough to satisfy D,. This reservation amount can

be thought of as either the peak transmission rate of the con-

nection or its “effective bandwidth” [11] varying between its

peak and average transmission rates, The set R. of a class-

. connection would thus contain the links along the route

of class c. The instantaneous arrival rate of class-c connec-

tions of service i, ,lC(t), is a function of Ai and the routing

algorithm. Consider a routing scheme that regularly assigns

probabilities to the candidate paths according to their mea-

sured loads. Arriving connections are routed independently

according to these path probabilities. In this case, class-c

connections of service z arrive according to a Poisson process

of rate &(t) = at(t) A,, where at(t) is the load-dependent

routing probability.

An arriving class-c connection of service z that finds in-

sufficient bandwidth on any r c R= is blocked and lost.

Otherwise, the connection is admitted and bandwidths are

allocated to it on each r c ‘RC for an average duration of
1

— = ~. Note that this is a self-service system.
w:(~)

Thus, r.rmm is the total link bandwidth of r, and c.r, req

is the amount of link bandwidth that must be allocated

(reserved) for a class-c connection on r c ‘R.C. Let’s as-

sume that the cr. r-eq and r. rnax are integers. Let the state

of r indicate the amount of bandwidth allocated. Thus,

7’={0 ,1,... , r.max}. Let Q“(j) denote the steady-state

probability of r being in state j. Then Q’(. ) satisfies the

following recurrence relation [25]:

j Q“(j) = ~ R c’.r.req Q’(j – c’.r.reg)

d ●cr ‘
j=l, . . .. maxax

‘“maxQr(d = 1.where ~j=o

The steady-state blocking probability for class-c connec-

tions at r-, B;, is given by

r.rnax

1?: = E Q’(i)
,=r. max–c. r.reqfl
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This steady-state solution, which defines S:(.) for this

system, is valid for Poisson arrivals and general service

times. It can be used in equations (2) after replacing the

~ by fictitious offered loads z:,(t).
c

Regarding the function T:(. ) used in equations (4), since

T is self-service, we have

T:(.) = Nj(t)

Note that how and when the Jc(t) are varied with time

allows one to model different routing algorithms and routing

update synchronization at the network nodes. Also, the

choice of blocklng states in F can model various admission

control schemes, in particular those which block connections

even if their admission is feasible.

Systems with self-service resources are validated (against

discrete-event simulations) in Section 6. There we con-

sider systems equivalent to single-link network, and tandem

multi-hop network. The tandem network is used by several

multi-hop connections representing main traffic, and several

one-hop connections represent ing cross-t rafic.

4 Application: Parallel Disk System

Consider a system of multiple disks on which data is par-

titioned according to some scheme, e.g. round-robin, range

partitioning, etc. [4]. Each disk has a finite first-come-first-

served (FCFS) queue where queries of different classes wait

to be served. A query requests data retrieval from one or

more disks in parallel. This parallelism typically leads to

reduction in data access time [4, 13]. The collection of disks

needed by a query is defined by the query’s class. We assume

an arriving query requires one unit of space in the queue of

each disk it needs to access.

Thus the resource set % of a class-c query contains the

queues of disks that are needed by class c, and this is a

function of the data partitioning scheme. r-. rnax is the total

number of requests that r can accommodate, and c. r. req = I

for r E R and c c C’. An arriving class-c query that finds

no space in any r E %?Cis blocked and lost.

Assume class-c queries arrive according to a Poisson pro-

cess of rate &(t). Also, assume that the service time of any

query in r is exponentially distributed with mean ~; thus

~ —~forallc CCr.
M(t) — P’

Let the state of r denote the total number of queries

waiting or in service in r-. Thus, Y’ = {O, 1, . . . . T.mw}. The

stead y-stat e blocking probability y for class-c queries at r is

the steady-state probability of r being in state r. max. This

steady-state solution is well-known for the M/M/l /r. maz

queueing system, in particular, for c e C“:

( Xce~’ ‘C) ]r,mfm

B: =

Z;::”:( ~G’y ‘c) y

[17]

This steady-state solution can be used in equations (2)

after replacing “’~~’ ‘c’ by ~C,cC~ z~,(t).

We employ the technique introduced in Section 2 to

derive the function T:(.) used in equations (4). As-

suming steady-state and no blocking, we can treat the

lf/M/l/r.max system of r as an M/M/l/m system, At

steady-state, we know that [17]

(6)

From this and T:(.) = &, which holds assuming no block-

ing, we havel

Therefore, in the transient regime, we have

The above model can be used to study various data parti-

tioning schemes for high-performance indexing [4]. Systems

with single-server resources are validated (against discrete-

event simulations) in Section 7.

5 Application: Distributed Batch System

Consider a distributed batch system such as Condor [19].

Batch jobs (user programs) are submitted to a central mana-

ger (CM). Assume batch jobs of type z arrive to the CM
according to a Poisson process of rate At. The CM uses its

information about the load on the various workstations to

choose for the arriving batch job a potential workstation for

its execution. The class of the batch job is defined by the

workstation it is routed to by the CM and the job type.

Each batch job would typically require resources such as

memory, disk space, and CPU processing power to execute

on a workstation. For this example, we assume all required

resources other than the CPU are always available. The set

%2. of a class-c batch job would thus contain the CPU of the

workstation to which the job is routed,

We assume only one job can be running on each work-

station at a time. Thus, if the owner of the workstation

executes a job of his/her own, then the batch job currently

executing on his/her workstation, if any, is suspended and

its execution resumed later when the owner job finishes ex-

ecution. An arriving class-c batch job that finds another

batch job running or suspended on r E Rc is blocked and

returned to the CM. Otherwise, it is admitted for processing

with mean processing time of 1 /p~ (t).This processing time

includes the time during which the batch job is suspended

due to owner processes [18]. Note that in this application,
we do not assume that blocked jobs are lost, rather they are

returned to the CM for retry.

1 From (6), we have (i) N: =
-’ and ‘h”’ ‘ii)

EC, ~v ~ellw’
~c,~c, N:, = e. Rearranging the last equation,

we have (ni) ~c,ecr ~.J/p” =

%’
Substituting (ni)

m (L), we get an expression for &, which together with T=”(, ) = &

yields the desired result.
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The instantaneous arrival rate of class-c batch jobs of

type i, &(t), is a function of ~,, the load balancing algo-

rithm used by the CM, and the rate of retrials of type i

batch jobs. Assume the load balancing algorithm regularly

assigns to the candidate workstations probabilities accord-

ing to their measured loads. Arriving batch jobs are routed

independently according to these probabilities, Let a=(t)

denote the load-dependent probability that the type i batch

job belongs to class c, i.e. is routed to r ~ R.. Then,

A.(t) = [X +

E
A., (t -6) B:/’(t – 6)] a.(t) (7)

.1.s,,8 d of type ,

?“ a=l

The ~ term in equation (7) represents the total rate

of retrials of type i batch jobs, which is a function of their

blocking probabilities. In this model, r. rnax is the maxi-

mum number of batch jobs that r handles. r.max = 1 and

c. r.req = 1 for T c R. and c c C“. Let the state of r denote

the total number of batch jobs running or suspended on r.

Then, F = {O, 1}. This system is similar to the self-service

ATM system discussed in Section 3, and hence we can use

the S:(.) and T:(.) formulas presented there.

Indeed, we are assuming here the arrival processes are

Poisson. This is not, in general, true since the composite

traffic contains blocked batch jobs returned immediately at

the next time step to the system for retry. This assumption

is less restrictive if blocked batch jobs are returned to the

system after waiting an independent random period [22, 8].

This waiting effect can be easily incorporated into the above

model. This model can be used to study the interactions

between owner jobs and batch jobs, and examine various

load balancing schemes through the l/p~ (t) and a=(t).

6 Validation of Systems with Self-Service Resources

In this section, we compare the results obtained using our

approach with those obtained using discrete-event simula-

tion for systems with self-service resources. In our approach,

we obtain instantaneous performance measures through

equations (2), (4), and (5), substituting with the appro-

priate application-dependent parameters and formulas. We

take the discrete-time step 5 to be 0.1.

The simulation model differs from our analytical model

in that the actual events of arrival and processing of requests

are simulated according to the specified probability distri-

butions and system characteristics (i.e. service disciplines,

admission policy, etc. ). To obt tin reliable performance esti-

mat es, a number of independent replications (i.e. simulation

runs) must be carried out and averaged. In particular, let

X(’) (t) denote a generic measure computed at time instant

t in replication i, where t takes on the successive values

tl,tz,...,tk,.... Then, the mean value of this measure at

particular time instant tk is estimated as ~fl X(’) (t~)/N,

where N is the total number of replications. ~he larger N

is, the more accurate the simulation estimates are [21]. In

our simulations, the performance measures are periodically

computed at t = 1,2, 3,....

The measures considered are precisely defined as they are

introduced below. In all experiments, we start with empty

systems. For the cases with N = 50, the observed mean of

the simulation measures at various time instants typically

show 95~o confidence interval for a ~ 10~0 range. For the

cases with higher N, the same confidence interval is obtainetd

for a -J 3% range.

We first consider a MCSR system with a single resource

r 1 used by 10 customer classes whose parameters are shown

in Figure 2.
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cl
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C7
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0.2

2

Figure 2: Parameters of 10 classes using rl with rl .max z.

200.

Class-e customers arrive at rl according to a Poisson

process of rate AC, The system is self-service. In particu-

lar, an admitted class-c customer holds the acquired c.rl .reg

resource units for an ex~onentiaJ duration with mean 1 /u.

before releasing them. ‘This system is similar to a sing~e~

link ATM network modeled as in Section 3, and hence we

use the T=’(. ) and $(. ) formulas presented there to obtain

the performance measures by our approach.

Figures 3, 4, and 5 show the time behavior of the total

number of in-service customers, the fraction of resource units

allocated, and the tot al throughput, respectively. The first

measure denotes the total number of customers currently

holding resource units, which is equal to ~c, ~c,l N:? (t) in

our approach. The second measure denotes the fraction of

rl .maz currently being held by customers, which is equal to

(Z.f~c~l N;;(t) x c’.rl.~eq)/rlma~ in our approach. The
third measure denotes the tot al current admission rate,

which is equal to ~C,ec,, A=, (1 – 11~~(t)) in our approach.

Generally, it is equal to ~=,=e &~ ~r,~~c, [1 – B~I’ (t)] for

MCMR systems.

In our simulations, the first two measures displayed at

time instant t (t = 1,2,3,.. .) are simply the values of these

measures as observed at t. The last measure, namely the

total throughput, displayed at time instant t is defined to

be the total number of customers admitted in the interval

[t-1,t).

Our approach yields results very close to the exact vd-

ues. In addition, we found our approach much less time-

consuming than simulation. This is especially because the

latter requires the averaging of a large number of indepen -

dent simulation runs. To give an idea of the computational

savings, for this experiment, on a DECstation 5000/133, our

approach required around 6 seconds of execution time whilt;
the 50-run and 1000-run simulations required around 25 sec-

onds and 8 minutes, respectively. The number of it eratiom
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required at each time step for convergence of the iterative

procedure in steps 5-9 of Figure 1 is less than 6 iterations

for c = 10–5 and 2:(O) = &/p~.

NO OF IN-SERVICE CUSTOMERS vs Time

Simulation (50 runs) -----
Slmulatlon (1000 nurs) +--

Z-Iteration — -
,! !.

>

,,~,

1
5 10 15 20 25 30 35 40 45 50

Time

Figure 3: Total number of in-service customers versus time.

MCSR self-service system.
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I 1 1 I I I 1 I 1
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Figure 4: Fraction of resource units allocated versus time.

MCSR self-service system.
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We next validate our resource independence assumption

manifested in equation (5) by the product term ~. We con-

sider a similar self-service system but with 3 resources and

20 customer classes. Out of the 20 classes, 10 classes require

all 3 resources. A class-c customer requires the same number

of units of each r E %?=. Figure 6 shows the system param-

eters. Note that this system can be regarded as a tandem

multi-hop ATM network modeled as in Section 3. See Fig-

ure 7. Here, classes 1 to 10 represent multi-hop connections

modelirw main traffic, while other classes represent one-hop

connections modeling cross-traffic.
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Figure 6: Parameters of 20 classes using 3 resources rl, r2,

and r3 with rl. rrzaz = 150, r2. rnaz = 200, and r3. rnax =

250.

cll . c13 c14 ... c16 c17 ... c20

1
rl )--r2 Fr3-+

w

I
cl ... Clo

I

Figure 7: Tandem network.

Figure 8 shows the instantaneous total throughput. Sim-

ulation results, denoted by Exp, are fox Poisson arrivals

and exponential holding times. Simulation results, denoted

by Det, are for Poisson arrivals and deterministic holding

times. The results show the accuracy of our approach in

both cases as they satisfy the assumptions required to obtain

the T=’ (.) and S: (.) formulas used here. (Our experiments

with deterministic arrivals show large errors as expected. )

Figure 5: Total throughput versus time. MCSR self-service

system.
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THROUGHPUT vs Time

7:~

Simulation (lOOOrrms; Exp) ----
Simulation (1000 runs; Det) +--
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Figure 8: Total throughput versus time. MCMR system

with self-service resources.

Next, we consider a similar self-service system whose pa-

rameters are given in Figure 9. Here, AC] varies with time.

‘I’hismimics the effect oftraffic control policies such as flow

control and routing. We assume A.l alternates every 20

time units between zero and 0.125, starting with zero. Fig-

ures 10 and 11 show the instantaneous total throughput and

blocklng probability, respectively. Our approach accurately

reproduces the behavior obtained by simulation. We com-

pute the instantaneous blocking probability B(t) from the

throughput y(t) using the relation B(t)= l–y(t)/A(t),

where X(t) is the instantaneous total arrival rate of requests.

We do this rather than compute B(t) directly from the sim-

ulations because doing that would require averaging over a

very large number of replications, because B(t) typically has

a very low value and thus a high sample variance.

Class c ‘RC c. r. req A. I/pc

cl {rl, r2, r3} 30 0 H 0.125 5

C2 {rl} 30 0.125 5

I C3 {r2j 10 0.1 2

C4 {r3} 50 0.25 2

Figure 9: Parameters of 4 classes using 3 resources rl, r2,

andr3 with rl. maz = 50, r2. maz= 100, andr3. maz = 150.
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Figure 10: Total throughput versus time. MCMR system

with self-service resources. Time-varying arrivals.
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Figure 11: Blocking probability versus time. MCMR system

with self-service resources. Time-varying arrivals.

7 Validation of Systems with Single-Server Resources

In this section, we compare the results obtained using our

approach with those obtained using discrete-event simula-

tion for systems with single-server resources. The perfor-

mance measures are computed as described in Section 6 ~~

Similar confidence intervals are also observed for the mea-

sures obtained by simulation.

We consider a MCMR system with 3 resources and 4,

customer classes. Out of the 4 classes, class cl requires alll

3 resources. A class-cl customer requires one unit of each~

resource. Figure 12 shows the system parameters.

m
Figure 12: Parameters of 4 classes using 3 resources with

r-.max = 5 each.

Class-c customers arrive according to a Poisson process

of rate &. Each resource consists of a single-server with a

finite waiting room and a FCFS scheduling discipline. AU

admitted class-c customer occupies one unit of space, ancl

requires an exponential service time with unit mean. This

system is similar to the parallel disk system discussed in

Section 4, and hence we use the T:(. ) and &(. ) formulas

presented there to obtain the performance measures by ouIr

approach. Figure 13 shows the instantaneous total through..

put. The results obtained by our approach agree with those

obtained by simulation.

We next consider the same system but with Acl varyin~

with time. We assume AC1 alternates every 20 time unita

between zero and 0.2, starting with zero. Figures 14 and

15 show the instantaneous total throughput and blocklng

probability, respectively. Our approach accurately repro-

duces the behavior obtained by simulation.
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Figure 13: Total throughput versus time. MCMR system

with single-server resources.
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Figure 14: Totaf throughput versus time. MCMR system

with single-server resources. Time-varying arrivals.
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Figure 15: Blocking probability versus time. MCMRsystem

wi~h single-server ~esources. Time-varying arrivals.

8 Related Work

MCMR systems have often been analyzed under

state conditions (e.g. [12, 14, 20, 5, 25, 3, 22, 10]).

steady-

In this

paper, we formulated a dynamic flow model [6] to account

for transient conditions as well. We solved our model by

an iteration that differs from iterations used in steady-state

analysis, which only solve for stead y-stat e measures.

Our model yields the time-varying average behavior of

a generaf MCMR system. We use the well-known decom-

position technique [16, 14] to approximate the system as a

collection of MCSR systems. For each MCSR system, we

describe the evolution of the instantaneous average number

of customers of each class by relating its instantaneous ad-

mission rate to its instantaneous departure rate.

To obtain the instantaneous admission rates, we adapt

steady-state queueing formulas to yield the instantaneous

blocking probability of each class in terms of inst ant aneous

fictitious offered loads. The concept of fictitious offered load

was originally introduced in [7], where it was used to obtain

steady-state blocking probability and carried load for a spe-

cific call routing and network topology.

Reference [7] considered a network of source nodes, des-

tination nodes, and intermediate nodes, with a link from ev-

ery source node to every intermediate node, and a link from

every intermediate node to every destination node. Each

link can carry a fixed total number of calls. The call arrival

process from a source to a destination is Poisson with fixed

rate. The call routing is not dynamic; a fixed fraction of

the call arrivals is routed through every intermediate node.

In addition, overflow traffic (due to blocking links) is routed

through alternate available routes (from equation (15) in [7],

it appears that overflow from a blocking link is duplicated on

all alternate available routes). Each call, once admitted, has

an exponential holding time of fixed mean that is the same

for all calls. The blocking probability of a link is given by the

Erlang-B formula expressed in terms of fictitious combined

offered load. The system is solved for steady-state average

number of calls on each link by equating the call departure

rate to the call admission rate.

Our model extends this fictitious offered load concept to

an~ system where the steady-state blocking probabilities can

be expressed in terms of offered loads. This alfows us to con-

sider general multi-class systems, where, for example, each

class has different resource and service needs, and resources

have different scheduling disciplines. Also, our model can be

applied to describe general dynamic routing schemes with

the arrivaf rate of a class changing as a function of the in-

stantaneous system state.

To obtain the instantaneous departure rates, we again

adapt steady-state queueing formulas to yield the instanta-

neous average number of in-service customers of each class

in terms of the instantaneous average numbers of customers

waiting and in service. The same technique was used in

[26], where feedforward queueing networks were considered.
Each service center is an M/M/1 infinite FCFS queue with

the same average service time for all classes. The routing of

each class is a time-dependent Bernoulli process. Compa~ed

to our model, this does not model blocking resources, or

service centers with complicated structure (e.g. service cen-

ters consisting of multiple resources with different scheduling

disciplines serving customers with different needs). Though

we do not consider here sequential resource needs by one

customer (a customer requests all needed resources simulta-

neously), our model is easily extended to capture this situ-

ation.
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Our dynamic flow model is quite general, and can be

used to study both transient and steady-state performances

of various MCMR blocking and non-blocking systems. Our

approach has advantages over other approaches that might
beused to analyze transient behaviors. One such approach

is that of time-dependent queueing models, which involve

probability distributions for all events. However, such mod-

els are extremely difficult to solve analytically [27], andcom-

putationally expensive to solve numerically [26]; A second

approach is that of diffusion models, which utilize averages

and variances [2, 23]. Such models involve partial differen-

tizd equations and are usually intractable, A third approach

is that of fluid models, which utilize average quantities only

[I]. Such models involve ordinary differential equations and

are usually tractable. However, dynamic flow models ap-

pear more accurate since they include detailed probabilistic

descriptions manifested inourmodel inthe computation of

both the instantaneous blocking probabilities and the in-

stantaneous average number of in-service customers.

9 Conclusions

We described the Z-iteration, a simple method to estimate

transient and steady-state performances of MCMR systems.

The Z-iteration integrates techniques from several areas, in-

chding standard queueing theory techniques [17]; the re-

source decomposition technique [16, 9]; the dynamic flow

technique used for approximating system dynamics and non-

linearity [7, 6, 26, 8]; and the technique of repeated substi-

tutions used in numerical analysis to solve nonlinear equa-

tions [15].

We have shown the generality and validity of the

Z-iteration by applying it to three systems, namely, an ATM

network, a parallel disk system, and a distributed batch sys-

tem. Future work remains to carry out further validations

and detailed evaluation of such systems. We are currently

using the Z-iteration to analyze traffic control schemes for

ATM networks.
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