
Fast Evaluation of Ensemble Transients of

M(t)/M(t)/� Networks

�

Catalin T. Popescu A. Udaya Shankar

cpopescu@cs.umd.edu shankar@cs.umd.edu

Department of Computer Science

University of Maryland, College Park

December 14, 1999

Abstract

We develop a numerical method that approximates the transient solution of time-

dependent M(t)/M(t)/1/1 and M(t)/M(t)/1/K queuing networks. The method gen-

erates a set of coupled di�erential equations, one for each queue in the network. Nu-

merical instability arises under certain conditions, e.g., large bandwidths and bu�ers,

and we present techniques to overcome this problem. We also show how to extend the

method to handle TCP/IP networks.

1 Introduction

A large set of performance evaluation and modeling problems can be reduced to the

problem of solving a queuing system. Often the steady state solution is not enough:

for example, when input rates are time-varying, or if convergence time, maximum tran-

sitory value, or some other time-dependent metric is required. In such cases transient

evaluation becomes necessary. But for this an adequate technique does not currently

exist. Numerical solutions are unmanageable for realistic systems, because the state

�

This work is supported partially by ARPA contract number DABT6396C0075 and DoD contract number

MDA90497C3015 to the University of Maryland. It should not be interpreted as representing the opinions

or views of ARPA, DoD, or the U.S. Government.

1

space becomes enormous. Discrete-event simulations are too slow for systems with

large rates and large bu�ers, due to the high frequency of simulation events. Flow-

level simulation is faster but its accuracy is questionable (because it makes the unreal-

istic assumption that the interval between successive changes in the network-wide ow

pattern is large enough so that steady state holds for most of the interval).

The transient solution of an M/M/1/1 queue is an ugly expression [7]. For a

M(t)/M(t)/� queue, in general case, obtaining the instantaneous probability measures

is analytically intractable [9], and numerically very expensive due to the large state

space.

The idea of approximating the relation between the transient metrics with the

relation between the steady state metrics was introduced in [2]. However, the solution

presented there is practically applicable only to single M/M/1/1 queues. For networks

of queues the method would fail due to the huge number of di�erential equations to be

solved (K

1

�K

2

� ::: �K

n

, where K

i

is the total bu�er space of queue i). According to

our knowledge, at this moment, there is no practical solution to generate or properly

approximate transient solutions for networks of M(t)/M(t)/�. Our method generates a

small set of coupled di�erential equations: one per each queue in the system.

In this paper we present a numerical method, called the Z-iteration, that approx-

imates the transient metrics of M(t)/M(t)/1/1 and M(t)/M(t)/1/K queues and of

open networks created by interconnecting such queues. We also show how to extend

this to TCP/IP networks, i.e., datagram networks with end-to-end congestion control.

Z-iteration yields the time evolution of ensemble metrics (e.g. instantaneous queue

size distribution) at a cost several orders cheaper than simulation. The �rst version

of the Z-iteration [4, 8] handled single multi-class multi-resource queues, adequate for

analyzing connection-oriented networks with strict access control and resource reserva-

tion. In this paper, we develop a more exible formulation that also handles networks

of time-dependent queues, appropriate for modeling classical datagram networks.

The rest of the paper is organized as follows. Section 2 describes the Z-iteration

for single M(t)/M(t)/� queues. Section 3 describes the Z-iteration for for networks of

M(t)/M(t)/� queues. Section 4 examines numerical stability issues. Section 5 briey

describes the Z-iteration for TCP/IP networks. We conclude in Section 6.

2 Z-iteration for Single M(t)/M(t)/� Queue

The Z-iteration is an e�cient numerical approximation method that computes instan-

taneous ensemble metrics of time-dependent queuing systems. It is based on functional

2

approximations of relationships between instantaneous metrics by the corresponding

steady-state relationships. These approximations allow the evolution of the metrics to

be de�ned by a small number of di�erential equations, rather than the large number

of Chapmann-Kolmogorov equations (which are as many as the maximum queue size).

Table 1 gives the notation we use for a queue. Instantaneous parameters refer to a

queue with time-varying arrival and service rates. Steady-state parameters refer to a

queue in steady state, with constant arrival and service rates.

�(t) instantaneous arrival rate at time t

�(t) instantaneous service rate at time t

N(t) instantantaneous average queue size at time t

B(t) instantaneous blocking probability at time t

U(t) instantaneous utilization at time t

z(t) instantaneous virtual tra�c intensity at time t (6= �(t)=�(t))

� steady-state arrival rate

� steady-state service rate

� steady-state tra�c intensity (= �=�)

N steady-state average number of customers

B steady-state blocking probability

U steady-state utilization

F

N

(�) function yielding N in terms of �

F

B

(�) function yielding B in terms of �

F

U

(�) function yielding U in terms of �

Table 1: Notation

Consider a single queue, either M(t)/M(t)/1/1 or M(t)/M(t)/1/K. We �rst sum-

marize the old version of the Z-iteration [4, 8]. The starting point was the following

ow equation, obtainable from the Chapmann-Kolmogorov equations:

dN(t)

dt

= �(t)[1� B(t)]� �(t)U(t) (1)

The idea was to express B(t) and U(t) in terms of N(t), thereby transforming

equation (1) into a single scalar di�erential equation for N(t). It turns out that the

relationship between B(t) and N(t) is very well approximated by the relationship be-

tween steady-state B and steady-state N . The same holds for the relationship between

U(t) and N(t).

Thus we want functions expressing B and U in terms of N . What is available, how-

ever, are functions expressing N , B, and U in terms of the steady-state tra�c intensity

3

� (= �=�). We denote these functions by F

N

(�), F

B

(�), and F

U

(�), respectively. For

example, for a M/M/1/1 queue we have [6, 7]:

N = F

N

(�) =

�

1� �

B = F

B

(�) = 0

U = F

U

(�) = � (2)

For a M/M/1/K queue, we have [6, 7]:

N = F

N

(�) =

�

1� �

�

(K + 1)�

(K+1)

1� �

(K+1)

B = F

B

(�) =

1� �

1� �

(K+1)

�

K

U = F

U

(�) =

1� �

K

1� �

(K+1)

� (3)

For M/M/1/1, we can invert F

N

(�) and so obtain B and U in terms of N , speci�-

cally, B = 0 and U = N=(N+1). But in general, including the case of blocking queues,

we cannot invert F

N

(�) analytically. So instead the inversion was done numerically,

using another approximation as follows:

� U is computed from N assuming a non-blocking system.

� B is computed as the �xed point of B = F

B

(�) and � = U=(1 � B) (obtained

by equating the inow �(1� B) to the outow �U). The resulting value of � is

simply the steady-state tra�c intensity value consistent with B and N .

This approach works very well for M(t)/M(t)/1/1 and M(t)/M(t)/K/K queues,

and for M(t)/M(t)/1/K queues when �(t) < �(t). But it does not work for networks

of these queues or for M(t)/M(t)/1/K queues when �(t) > �(t).

We now present the new version of the Z-iteration. This version eliminates the

non-blocking assumption used in the numerical inversion operation above, and works

for open networks of M(t)/M(t)/1/K and M(t)/M(t)/1/1 queues.

As mentioned above, formulas for N , B and U are usually in terms of �. This

suggests that we introduce an instantaneous version of �, which we refer to as the

instantaneous virtual tra�c intensity, denoted by z(t), and develop a di�erential equa-

tion for z(t) rather than for N(t). Then N(t), U(t), and B(t) can be approximated

by

N(t) = F

N

(z(t))

4

B(t) = F

B

(z(t))

U(t) = F

U

(z(t)) (4)

Although z(t) is �ctitious, it has a natural interpretation: at any time t, it is the

amount of tra�c intensity that if applied constantly would result in steady-stateN , B,

and U equal to N(t), B(t), and U(t), respectively. In fact, z(t) is just a more accurate

version of the iterate � that appears in the numerical �xed-point inversion in the old

version. Note that z(t) is not equal to �(t)=�(t).

To obtain a di�erential equation for z(t), we start with the di�erential equation for

N(t)

dN(t)

dt

= �(t)[1� B(t)]� �(t) U(t);

Replacing dN(t)=dt by (dN(t)=dz(t))(dz(t)=dt), dN(t)=dz(t) by dF

N

(z)=dz, B(t) by

F

B

(z(t)), and U(t) by F

U

(z(t)), we obtain

dz(t)

dt

=

1

dF

N

(z)=dz

[�(t)(1� F

B

(z(t)))� �(t)F

U

(z(t))] (5)

Thus we have a scalar di�erential equation whose solution yields the evolution of z(t).

Plugging z(t) into equation (4) yields evolutions of N(t), U(t), and B(t).

Equation (5) can be instantiated for any type ofM(t)/M(t)/�queue. For aM(t)/M(t)/1/1

queue, we obtain

dz(t)

dt

= (1� z(t))

2

(�(t)� �(t)z(t)) (6)

For a M(t)/M(t)/1/K queue, we obtain

dz(t)

dt

=

(1� z(t)

(K+1)

)(1� z(t)

K

)(1� z(t))

2

(1� z(t)

(K+1)

)

2

� (K + 1)

2

z(t)

K

(1� z(t))

2

(�(t)� �(t)z(t)) (7)

Example: Consider a M/M/1/K queue with � = 1:5, � = 2:0, K = 7, and initially

empty. Figure 1 shows plots of N(t) and U(t) obtained from the Z-iteration and also

obtained from solving the Chapman-Kolmogorov equations. Figure 2 is the same for

� = 2:0, � = 1:5 and K = 10.

3 Z-iteration for M(t)/M(t)/� Networks

We extend the Z-iteration to networks of M(t)/M(t)/1/1 and M(t)/M(t)/1/K queues.

Here, a departure from queue i is routed to queue j with a time-dependent probability

r

ij

(t), and leaves the network with probability 1 �

P

j

r

ij

(t). The arrivals to queue i

consist of external arrivals �

i

(t) (from outside the network) and departures from queues

5

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

time(sec)

N
(t

)

Evolution of N(t)

Z−iteration
Chapman−Kolmogorov

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time(sec)

U
(t

)

Evolution of U(t)

Z−iteration
Chapman−Kolmogorov

Figure 1: Results for M/M/1/K queue (� = 1:5, � = 2:0, K = 7)

in the network routed to queue i. The total arrival rate of queue i, denoted �

�

i

(t), is

given by

�

�

i

(t) = �

i

(t) +

n

X

j=1

r

ji

(t) �

j

(t) U

j

(t): (8)

Any arriving customer can be blocked, except, of course, customers feeding back

from queue i. The di�erential equation for z

i

(t), the instantaneous virtual tra�c

intensity of queue i, is obtained by appropriately modifying equation (6) or (7). If

queue i is a M/M/1/1 queue, we have

dz

i

(t)

dt

= (1� z

i

(t))

2

[�

i

(t) +

n

X

j=1;j 6=i

r

ji

(t)�

j

(t)F

U

j

(z

j

(t))� �

i

(t)(1� r

ii

(t))z

i

(t)] (9)

If queue i is a M/M/1/K queue, we have

dz

i

dt

=

(1� z

(K

i

+1)

i

)(1� z

K

i

i

)(1� z

i

)

2

(1� z

(K

i

+1)

i

)

2

� (K

i

+ 1)

2

z

K

i

i

(1� z

i

)

2

� [�

i

(t) + (

n

X

j=1;j 6=i

r

ji

�

j

(t)F

U

j

(z

j

))� �

i

(t)(1� r

ii

)z

i

] (10)

Examples: We present three examples. The �rst example is the small network

shown in Figure 3(a). The arrival rates are varied as shown in part (b) of the �gure.

The evolution of N

1

(t) and N

2

(t) are plotted in Figure 3(c) and (d).

6

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

time(sec)

B
(t

)

Evolution of N(t)

Z−iteration
Chapman−Kolmogorov

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time(sec)

B
(t

)

Evolution of B(t)

Z−iteration
Chapman−Kolmogorov

Figure 2: Results for a M/M/1/K queue (� = 2:0, � = 1:5, K = 10)

The second example is a tandem network with feedback, presented in Figure 4.

The corresponding plots are in Figure 5. We compare our method against the average

obtained after 10,000 runs by the simulator.

The third example is a larger queueing network, presented in Figure 6. Some plots

are presented in Figure 7. The simulator spent 160 seconds for averaging 30,000 runs,

while the Z-iteration equations were solved in less than one second by Matlab. This

discrepancy increases for higher input rates and/or smaller service times, because this

increase the number of events to be processed but has no e�ect on the equations to be

solved.

From experimentation we �nd that the method works well for open queuing net-

works but fails for closed queuing networks. To work well for closed queuing networks,

we need the standard normalization constant (for computing B, U and N).

4 Numerical Issues

For M(t)/M(t)/1/K queues the z(t) di�erential equation becomes extremely sti� for

values of K larger than 10

3

. This gives rise to problems regarding numerical stability

and convergence. Applying regular solution methods to the di�erential equations stated

above will produce an incorrect answer or no answer at all. Applying sti� equation

solvers will produce a correct answer but extremely slowly (for a good coverage of

di�erential equation solvers, see [5]).

7

µ1 = 2.0K1 = 10

K2 = 7 µ2 = 1.5

r_1-2 = 0.4

r_2-1 = 0.3

λ2

λ1

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

Time(s)

A
rr

iv
al

 R
at

e(
t)

The Arrival Rates vs. Time

λ
1
(t)

λ
2
(t)

(a) (b)

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

Time(s)

N
1(t

)

Evolution of N
1
(t)

Z−iteration
Simulation

0 10 20 30 40 50 60
0

1

2

3

4

5

6

Time(s)

N
2(t

)

Evolution of N
2
(t)

Z−iteration
Simulation

(c) (d)

Figure 3: A simple network and its evolutions.

In this section, we describe how to overcome these problems for networks of M(t)/M(t)/1/K

queues. Consider the di�erential equation (10). Observe that for high K (� 10

3

), we

have z

K

� 0 for z < 1 � � and z

K

� 1 for z > 1 + �, for some � > 0. Using this

approximation in equation (10) and simplifying, we get

dz

i

dt

=

8

>

>

>

<

>

>

>

:

(1� z

i

)

2

[�

i

(t) + (

P

n

j=1;j 6=i

r

ji

�

j

min(z

j

; 1))� �

i

(t)(1� r

ii

)z

i

] for z

i

< 1� �

i

((1� z

i

)

2

=z

i

)[�

i

(t) + (

P

n

j=1;j 6=i

r

ji

�

j

min(z

j

; 1))� �

i

(t)(1� r

ii

)z

i

] for z

i

> 1 + �

i

as in equation (10) otherwise

(11)

The formulas for N

i

, B

i

and U

i

are similarly modi�ed. For example, for N

i

we have:

N

i

(z

i

) =

8

>

>

>

<

>

>

>

:

(z

i

=1� z

i

) for z

i

< 1� �

i

K

i

+ (z

i

=1� z

i

) for z

i

> 1 + �

i

as in equation (3) otherwise

(12)

8

K1 = 7 K2 = 10

µ3 = 2.0 µ4 = 2.0µ1 = 2.0

K3 = 12 K4 = 7

µ2 = 1.6

r_4-3 = 0.1

r_4-1 = 0.2

λ1

0 50 100 150 200
0

0.5

1

1.5

2

2.5

Time(s)

A
rr

iv
al

 R
at

e(
t)

The Arrival Rate vs. Time

λ
1
(t)

Figure 4: A tandem network with feedback

These modi�cations are not su�cient. We need to stop using equation (10) around

z

i

= 1:00, the point of instability. To do so, we �nd an �

i

> 0 such that N(1� �

i

) =

N(1 + �

i

). That is,

K

i

+

1 + �

i

1� (1 + �

i

)

=

1� �

i

1� (1� �

i

)

(13)

which yields �

i

= 2=K

i

. So we make the computation jump over the interval [1��

i

; 1+

�

i

] as follows: whenever 1� 2=K

i

< z

i

< 1 would hold, we set z

i

= 1+2=K

i

; whenever

1 < z

i

< 1+2=K

i

would hold, we set z

i

= 1� 2=K

i

. Outside this interval, we continue

to use the �rst two lines of equation (11).

This is still not good enough. For large �

�

i

(t) and �

i

(t), we get a lot of large uctua-

tions when z

i

(t) comes close to the value �

�

i

(t)=�

i

(t). This is because dz

i

(t)=dt becomes

highly negative (positive) when z

i

(t) is slightly higher (lower) than �

�

i

(t)=�

i

(t). To over-

come this problem, we exploit the following monotonicity property in the evolution of

z

i

(t):

At any moment t, z

i

(t) tends to evolve monotonically (increasing or decreasing)

towards �

�

i

(t)=�

i

(t) from its current value.

We use this property by allowing a change in the sign of dz

i

(t)=dt to occur, during

a computational step of the solver ([t � �t; t]), only if the current value of �

�

i

(t)=�

i

(t)

has been changed from the previous step such that

z

i

(t� �t)

�t

2

�

min

�

�

�

i

(t)

�

i

(t)

;

�

�

i

(t � �t)

�

i

(t� �t)

�

; max

�

�

�

i

(t)

�

i

(t)

;

�

�

i

(t� �t)

�

i

(t� �t)

��

(14)

9

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time(s)

N
1(t

)

Evolution of N
1
(t)

Z−iteration
Simulation

0 50 100 150 200
0

1

2

3

4

5

6

7

Time(s)

N
2(t

)

Evolution of N
2
(t)

Z−iteration
Simulation

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

Time(s)

N
3(t

)

Evolution of N
3
(t)

Z−iteration
Simulation

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

Time(s)

N
4(t

)

Evolution of N
4
(t)

Z−iteration
Simulation

Figure 5: Evolutions for the tandem network with feedback

5 Z-iteration for TCP/IP Networks

We have extended the Z-iteration to handle TCP/IP networks. Consider an IP net-

work with multiple TCP connections routed over some paths. The links have �xed

bandwidths and the routers allocate �xed-size bu�ers for each outgoing link. The traf-

�c is generated by end-to-end bulk TCP connections, each de�ned by source node,

destination node, and connection start and end times. We assume �xed-size packets.

There are three aspects to the extension. First, the TCP/IP network is transformed

to a network of queues in the usual way: Each outgoing link of a node is modeled by

a queue with service rate equal to the link bandwidth and max queue size equal to

the link bu�er space. The routing between the queues is determined by the network

topology, the connections, and routing tables. To illustrate, suppose node A has an

outgoing link A1 to node B, and node B has outgoing links, B1, B2, and B3. Then

in the queuing model, the output of A1 can go to B1, B2, B3, or be absorbed within

node B, as shown in Figure 8. The probability r

A1,B1

of going to B1 is given by the

10

0.30.3

0.3

0.2

0.7

0.5

0.7

1.0

λ3=7.0

λ2 = 9.0

λ4=7.0

λ1=4.0
0.2

1.0

1.0

0.3

1.0

0.2

0.2

0.6

1.0

1.0

0.3 0.2

0.1

0.7

0.2

0.3

K4 = 10 K5 = 5

K9 = 12

K10 = 8 K11 = 10 K12 = 7

K14 = 12

K13 = 10

K8 = 10K7 = 7

µ13 = 18.0

µ14 = 18.0

µ6 = 16.0µ4 = 10.0

µ9 = 11.0

µ11 = 10.0µ10 = 8.0

K1 = 10 K2 = 10 µ2 = 7.0 K3 = 12 µ3 = 12.0

K6 = 10

µ7 = 8.0

µ12 = 22.0

µ1 = 5.0

µ8 = 12.0

µ5 = 12.0

Figure 6: The 14 nodes network

fraction of packets in queue A1 that are forwarded to B1

Second, each TCP source generates packets (customer arrivals) stochastically, with

a time-varying rate that accounts for the e�ects of congestion control. Speci�cally,

at any moment in the Z-iteration computation, the current rate of a TCP source is

given by plugging in the current roundtrip time and current loss probability (both

available from the current queue sizes and blocking probabilities along the path) into

a \TCP pro�le". The TCP pro�le is an empirically-obtained function that expresses

the instantaneous send rate of a TCP source in terms of the instantaneous roundtrip

time and instantaneous loss probability experienced by the source; please refer to [1]

for details.

Third, we have to account for the deterministic service times of IP routers. The

earlier equations for the M(t)/M(t)/1/K queues do not work well at all. We found

that reasonably satisfactory accuracy is achieved by using \deterministic" versions of

the equations for dN=dt and U , and retaining the M/M/1/K-derived equations for B

and N , as follows:

dN(t)

dt

=

8

>

>

>

>

>

<

>

>

>

>

>

:

�(t)� �(t)U(t) if [0 < N(t) < K] or

[N(t) = 0 and �(t) > �(t))] or

[(N(t) = K and �(t) < �(t))]

0 otherwise

11

0 2 4 6 8 10
0

1

2

3

4

5

6

Time(s)

N
4(t

)

Evolution of N
4
(t)

Z−iteration
Simulation

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(s)

N
6(t

)

Evolution of N
6
(t)

Z−iteration
Simulation

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Time(s)

N
10(

t)

Evolution of N
1
0(t)

Z−iteration
Simulation

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

Time(s)

N
14(

t)

Evolution of N
1
4(t)

Z−iteration
Simulation

Figure 7: Evolutions of some queues for the 14 nodes network

U(t) = min(�(t)=�(t); 1)

N(t) =

z(t)

1� z(t)

�

(K + 1)z(t)

(K+1)

1� z(t)

(K+1)

B(t) =

1� z(t)

1� z(t)

(K+1)

z(t)

K

(15)

These will generate the following di�erential equation in z(t):

dz(t)

dt

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(1�z(t)

(K+1)

)

2

(1�z(t))

2

(1�z(t)

(K+1)

)

2

�(K+1)

2

z(t)

K

(1�z(t))

2

for values of z(t) such that

�[�(t)� �(t)min(�(t)=�(t); 1)] [0 < N(t) < K] or

[N(t) = 0 and �(t) > �(t))] or

[(N(t) = K and �(t) < �(t))]

0 otherwise

(16)

Of course, we extend this method to open networks of queues as described in Sec-

12

r_a1_b2

r_a1_b3

r_a1_b1

Queue a1
Node BNode A

Queue b1

Queue b2

Queue b3

Figure 8: The queuing model for a link from node A to node B.

tion 3, and we employ the techniques presented in Section 4 to deal with numerical

instability for large Ks.

Example: We present an example of a network with 18 nodes (Figure 9) and multi-

ple TCP connections. Some connections start at time t = 0 and continue until the end

of the evaluation; some other connections start at time t = 30 and end at time t = 70.

We computed the bu�er occupancy at the outgoing queues using the Z-iteration

and we compare the results against one ns simulation run [3]. Our method took 1

second to run, dumping all metrics, while ns spent 450 seconds to do the same thing,

on the same machine. Without any disk access (i.e. no dumping of metrics) ns spent

20 seconds while our program runs in fractions of a second.

The plots for some queue sizes are displayed in Figure 10.

6 Conclusions

Queuing systems are a natural way of modeling computer networks and many other

systems. One usually obtains steady-state metrics of queuing models, because this is

13

N1

N3

N10

N11

N17

N18

N14

N15

N16

N13

N12

N9

N8

N7

N6

N5

N4

N2

Figure 9: The TCP example network.

relatively tractable for many kinds of queuing systems. But steady-state metrics do

not o�er answers to many interesting questions. Transient evolutions, on the other

hand, can provide answers to most questions that one would like to ask in evaluating a

system. They also allow for realistic modeling of critical events such as network routing

updates, unlike steady-state models.

Transient metrics are usually very hard to obtain, unmanageable by analytical

methods and time-consuming by simulation. But the Z-iteration changes this premise,

allowing very fast computation of some very useful transient metrics. It translates a

queuing network with N nodes into a system ofN coupled di�erential equations. Look-

ing at the results and the run time, we conclude that it o�ers the power of simulation

at a fraction of cost for these transient metrics.

Regarding future work, a theoretical justi�cation for the Z-iteration is very much

needed.

14

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Time(s)

N
(t

)

Buffer occupancy at queue N13 −> N19

Z−iteration
ns simulation

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Time(s)

N
(t

)

Buffer occupancy at queue N14 −> N15

Z−iteration
ns simulation

0 20 40 60 80 100
0

20

40

60

80

100

120

140

Time(s)

N
(t

)

Buffer occupancy at queue N15 −> N5

Z−iteration
ns simulation

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Time(s)

N
(t

)

Buffer occupancy at queue N7 −> N8

Z−iteration
ns simulation

Figure 10: The TCP example network - Results.

References

[1] C.T. Popescu and A.U. Shankar. Empirical TCP Pro�les and Application. In IEEE

International Conference on Network Protocols '99, November 1999.

[2] D. Tipper and M.K. Sundareshan. Numerical Methods for Modeling Computer

Networks Under Nonstationary Conditions. In IEEE J. Select Area Commun.,

8(9):1682-1695, 1990.

[3] K. Fall and K. Varadhan. ns Notes and Documentation.

[4] I. Matta and A.U. Shankar. An Iterative Approach to Comprehensive Performance

Evaluation of Integrated Services Networks. In IEEE International Conference on

Network Protocols '94, Boston, Massachusetts, October 1994.

[5] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag,

15

Second edition, 1993.

[6] K.S. Trivedi. Probability & Statistics with Reliability, Queuing and Computer Sci-

ence Applications. Prentice Hall, 1982.

[7] L. Kleinrock. Queueing Systems, volume I and II. New York: Wiley, 1976.

[8] I. Matta and A.U. Shankar. Z-iteration: A simple method for through-

put estimation in time-dependent multi-class systems. In ACM SIGMET-

RICS/PERFORMANCE '95, pages 126{135, Ottawa, Canada, May 1995.

[9] S. Tripathi and A. Duda. Time-Dependent Analysis of Queuing Systems. In IN-

FOR, 24(3):199-219, 1986.

16

