
IEEE TRANSACTIONS ON NETWORK SERVICE MANAGEMENT, VOL. 7, NO. 1, MARCH 2010 1

The Taming of The Shrew: Mitigating Low-Rate
TCP-Targeted Attack

Chia-Wei Chang, Seungjoon Lee, Bill Lin, Jia Wang

Abstract—A Shrew attack, which uses a low-rate burst care-
fully designed to exploit TCP’s retransmission timeout mecha-
nism, can throttle the bandwidth of a TCP flow in a stealthy
manner. While such an attack can significantly degrade the
performance of all TCP-based protocols and services including
Internet routing (e.g., BGP), no existing scheme clearly solves
the problem in real network scenarios. In this paper, we propose
a simple protection mechanism, called SAP (Shrew Attack
Protection), for defending against a Shrew attack. Rather than
attempting to track and isolate Shrew attackers, SAP identifies
TCP victims by monitoring their drop rates and preferentially
admits those packets from the victims with high drop rates
to the output queue. This is to ensure that well-behaved TCP
sessions can retain their bandwidth shares. Our simulation
results indicate that under a Shrew attack, SAP can prevent
TCP sessions from closing, and effectively enable TCP flows
to maintain high throughput. SAP is a destination-port-based
mechanism and requires only a small number of counters to
find potential victims, which makes SAP readily implementable
on top of existing router mechanisms.

Index Terms—Shrew attack, differential tagging, fair drop
rate.

I. INTRODUCTION

While a typical Denial-of-Service (DoS) attack [22] uses a
large volume of traffic to disrupt the availability of network
services (e.g., HTTP, routing, etc.), recent results show that
a carefully-designed low-rate attack flow can throttle the
bandwidth of a TCP flow in a stealthy manner [15]. Often
referred to as a Shrew attack [15] or a RoQ (Reduction
of Quality) attack [13], this type of attack exploits TCP’s
retransmission time-out (RTO) mechanism and uses attack
bursts that are synchronized with the RTO value. Then, when a
node retransmits a packet after retransmission timer expiration,
the packet is likely to reach a router that is already inundated
with the synchronized burst, which leads to repeated packet
drops of the TCP flow. Zhang et al. [24] have shown that
such a low-rate TCP-targeted attack can have severely negative
impact on the Border Gateway Protocol (BGP), the de-facto
standard inter-domain routing protocol in today’s Internet. In
particular, Zhang et al. [24] demonstrated that BGP routing
sessions on current commercial routers are susceptible to such
Shrew attacks launched remotely, leading to session resets and

Manuscript received March 20, 2009; revised August 10, and September 23,
2009. The associate editor coordinating the review of this paper and approving
it for publication was M. Sloman.

C. W. Chang and B. Lin are with Electrical & Computer Engineering,
UCSD Atkinson Hall 9500 Gilman Drive #0409 La Jolla, CA 92093-0409
(e-mail: chc019@ucsd.edu).

S. Lee and J. Wang are with AT&T Labs-Research.
This paper is an extended journal version of a conference paper at the

ICDCS Conference [3].
Digital Object Identifier 10.1109/TNSM.2010.I8P0308.

delayed routing convergence. This result implies that Shrew
attacks can potentially disrupt routing stability and network
reachability in the entire Internet.

Although the feasibility and potential impact of this attack
have been known for some time, only a few approaches have
been proposed to mitigate this type of low-rate Shrew attacks,
none of which clearly solves this problem. Kuzmanovic and
Knightly first investigated the use of an active queue manage-
ment (AQM) scheme to mitigate Shrew attacks [15]. Although
they experimented with a rather sophisticated scheme called
RED-PD [18], which takes drop history of each flow into
account, they found that it cannot satisfactorily mitigate the
attack, which is also consistent with the observation from our
experiments. Another method that they explored was to ran-
domize the TCP parameter minRTO to make a synchronized
attack more difficult. Although this approach slightly changes
the behavior of the flows under attack, it does not entirely
solve the problem. Techniques based on sophisticated signal
analysis [4], [17] (e.g., frequency or wavelet based) have also
been proposed for Shrew attack detection. However, none of
these detection schemes have been shown to be sufficiently
accurate to identify all of the possible attack patterns (e.g.,
more possible Shrew attack models are discussed in our
previous work in Section 5 of [24]) or scalable for deployment
in real networks (e.g., details are in Section V).

In this paper, we present a simple priority-tagging filtering
mechanism, called SAP (Shrew Attack Protection), that pro-
tects well-behaved TCP flows against low-rate TCP-targeted
Shrew attacks. In this scheme, a router maintains a simple set
of counters and keeps track of the drop rate for each potential
victim. If the monitored drop rates are low, all packets are
treated as normal (e.g., low-priority) and equally compete to
be admitted to the output queue and only dropped based on
the AQM (Active Queue Management) policy when the output
queue is (nearly) full. However, if the drop rate for a certain
victim becomes higher than some dynamically determined
threshold (called fair drop rate), the router treats packets for
this victim as high-priority, and these high-priority packets
are preferentially admitted to the output queue. SAP keeps
tagging victim packets as high priority until their drop rate
is below the fair drop rate. By preferentially dropping normal
packets to protect high-priority packets, SAP can prevent low-
rate TCP-targeted Shrew attacks from causing a well-behaved
TCP flow to lose multiple consecutive packets repeatedly. This
simple strategy protects well-behaved TCP flows away from
near zero throughput (due to slow start) under an attack.
As SAP focuses on protecting TCP flows against Shrew
attacks, we envision that SAP is used in conjunction with

1536-1276/07$20.00 c© 2009 IEEE

2 IEEE TRANSACTIONS ON NETWORK SERVICE MANAGEMENT, VOL. 7, NO. 1, MARCH 2010

other systems that are more effective for different types of
network attacks [19], [22]. In fact, SAP can help such systems
by providing more information when some of the monitored
applications experience unusual high packet drop rates.

Since keeping the information about per-flow state is typi-
cally prohibitive for a router to maintain, SAP aggregates flows
and maintains statistics for each aggregate. While different
levels of aggregation obviously lead to different performance
trade-off between accuracy and memory/computation require-
ments, in this paper, we use the application-level granularity
to identify potential victims. Specifically, we identify the
application of a packet based on the value of the destination
port field in the TCP/IP header (regardless of the source and
destination IP addresses) and maintain drop rate statistics for
each port. Due to this aggregation, SAP may not be able to
fully protect legitimate traffic from attack flows all the time.
Furthermore, some attackers may try to evade SAP by using
multiple destination ports or exploit SAP by manipulating
the drop rate of particular ports. In this paper, we illustrate
a number of attack scenarios when SAP is employed, and
present experiment results where SAP performs well in these
adversarial scenarios.

We conducted extensive experimental evaluations using
both an actual commercial Internet router testbed as well as ns-
2 simulations. In our experiments, SAP can effectively protect
victims from Shrew attacks whereas an AQM scheme alone
(e.g., RED) cannot. In particular, in simulations involving a
mix of normal TCP flows and a BGP session, we show that a
Shrew attack can cause the BGP session to close and increase
the drop rate of normal TCP traffic to near 100%, resulting
in a degradation in the performance of normal TCP traffic
to near zero throughput. When we employ SAP, the drop
rate of normal TCP traffic only increased by 1.1%, allowing
normal TCP traffic to retain most of their throughput, and we
observe that the BGP session remained active with no loss
in performance. We also consider a number of adversarial
scenarios, and we demonstrate that SAP performs well when
multiple destination ports have a drop rate higher than the fair
drop rate. In addition, we evaluate performance of SAP when
regular DDoS attacks use ports that SAP wants to protect. In
this scenario, SAP protects legitimate TCP flows from getting
zero throughput or session closing.

The rest of the paper is organized as follows. Section II-A
first reviews the key characteristics of Shrew attacks. Sec-
tion III introduces a high-level overview of our proposed SAP
approach and the details of its central components. Section IV
presents the evaluation results based on simulation and testbed
experiments. Section V reviews related work, and Section VI
concludes.

II. PROBLEM STATEMENT

In this section, we first present the background of Shrew
attack. The research challenge is to devise a simple and
efficient scheme to protect the well-behaved TCP applications.
Previous approaches have focused on identifying such Shrew
attack flows by searching some well-defined “syndromes" in
every passing flow, which are very expensive to implement and
typically impractical in practice. Instead, we try to solve this

Time

minRTO 2 x minRTO 4 x minRTO

W
in

d
o

w
 size

T

L
R

Continuous packet drop

Fig. 1. A Shrew attack uses a periodic on-off wave with period T, burst rate
R, and burst length L to cause repeated packet drops for TCP flows.

problem by identifying potential victims. After analyzing the
common behaviors of the victims under Shrew attack, we find
out that they all share one feature, successive high drop rates,
prior to session close. Therefore we proposed a protection
scheme to prioritize packets from these victims by managing
their drop rates.

A. Background: Shrew Attack

Shrew attack [15] is a low-rate DoS attack that attempts
to deny bandwidth to TCP flows while sending at sufficiently
low average rate to elude detection by counter-DoS mech-
anisms. Fig. 1 illustrates a single source Shrew attack with
a packet stream of a square waveform that has an attack
period T , a burst length L, and a peak rate R. Kuzmanovic
and Knightly [15] showed that such an attack can reduce the
throughput of TCP flows to near zero throughput or cause
session resets if the attack has the following characteristics:
(1) R is large enough to induce victim’s packet loss (i.e.,
R aggregated with existing traffic volume exceeds the link
capacity); (2) L is long enough to induce timeout (e.g.,
typically no less than the round-trip time), but sufficiently
short to elude detection; and (3) T is chosen such that when
flows attempt to exit timeout, they will face continuous drop
(i.e., T is scaled in accordance to the minRTO).

The rationale behind this form of low-rate attack is to let
TCP mistake that the link is highly congested. When the
initial attack burst of a Shrew attack causes packet drops for a
TCP flow, the TCP sender will wait for the retransmission
timer to expire before it starts to retransmit. As such a
retransmission timeout value is typically an integer multiple
of the minRTO, subsequent retransmissions encounter another
attack burst and are dropped repeatedly because the attack
interval is synchronized with the retransmission timeout value.
As a result, the TCP flow fails to exit the timeout phase
and experiences near-zero end-to-end throughput or a session
close.

Moreover, most TCP implementations use among a small
set of fixed minRTO values1, which makes a single Shrew
attack effective for a large set of TCP flows [2], [15], [24].
More specifically, Kuzmanovic and Knightly [15] show that

1Juniper routers use 1000ms as minRTO whereas Cisco routers use 300ms
and 600ms depending on the models.

C. W. CHANG et al.: THE TAMING OF THE SHREW: MITIGATING LOW-RATE TCP-TARGETED ATTACK 3

dropped
packets

arriving
packets

tagged
packets

forwarded
packets

High priority

Low priority

Differential
Tagging

Preferential
Drop

Drop Rate
Collector

Fair Drop Rate
Controller

Fig. 2. SAP Architecture

the normalized TCP throughput under a Shrew attack is:

µnorm(T) =

{
T−minRTO

T if T ≥ minRTO
2T−minRTO

T if T < minRTO
(1)

where T is the attack period and L the peak length.2 This
shows that a Shrew attack with sufficient peak rate and T =
minRTO can cause the TCP throughput to become zero.

B. Managing Drop Rates of TCP

In principle, TCP uses packet drops as an indication of
congestion and reacts to a packet drop by reducing the rate of
the corresponding flow. Assume a TCP flow under a steady-
state packet drop rate of p, the average incoming rate can be
bounded with respect to a round-trip time of r seconds3 and a
average packet (segment) size of b bytes. Let A(p, r, b) denote
the average arrival rate of this deterministic model of a TCP
flow, and µ(p, r, b) as the corresponding average throughput,
both in units of bytes/s. In particular, the upper-bounds for
A(p, r, b) and µ(p, r, b) can be simplified as

A(p, r, b) ≤
b
√

3
2

r
√

p
(2)

µ(p, r, b) ≤
b
√

3
2

r
√

p
(1 − p). (3)

The details could be found in [12], [18]. With respect to r and
b, the throughput of a TCP flow in Equation 3 is proportional
to 1√

p −√
p in the steady-state model.

As shown in Fig. 1, when a Shrew attack occurs, the TCP
throughput will degrade to near zero (e.g., µ(p, r, b) ≈ 0)
because of the bursty high drop rates (e.g., p ≈ 100%).
Therefore, our main idea is to protect these well-behaved TCP
flows by managing their drop rates. However, doing so for
every single flow is typically prohibitive. In the next section,
we show how well-behaved TCP flows can be protected in a
practical manner by managing drop rates at an aggregate level.

2Eq. 1 assumes L > RTT and minRTO > (SRTT + (4 ∗ RTTVAR)) for
all flows, where RTT, SRTT, and RTTVAR correspond to the round-trip time,
the smooth round-trip time, and the round-trip time variation.

3The steady-state model assumes a non-zero, non-bursty average packet
drop rate of p, where an individual TCP connection has at most one packet
drop in a time window of data.

III. SHREW ATTACK PROTECTION

A. Overview

The main idea of SAP is to neutralize a Shrew attack by
controlling the drop rates of TCP flows at the application-
aggregate level via the use of differential packet prioritization.
In this paper, for the simplicity of exposition, we use the
destination port in the TCP/IP header of each packet to iden-
tify the application aggregate4. Fig. 2 depicts the high-level
architecture of SAP. The drop rates of application-aggregates,
based on which SAP identifies potential victims are monitored
by Drop Rate Collector (e.g., details are in Section III-B1).
Note that SAP can easily generalize it to other aggregation
levels. Alternatively, as often used in modern routers, SAP can
employ a hash of flow description fields in the packet [14].
While SAP also can consider using different fair drop rates for
different types of applications (e.g., real-time applications vs.
file transfer), in this paper, SAP uses a single fair drop rate for
simplicity which is dynamically adjusted by Fair Drop Rate
Controller (e.g., details are in Section III-B2).

After the fair drop rate is determined, SAP starts to protect
the victims by tagging their TCP packets as high priority to
lower the victims’ drop rate (e.g., controlled by Differential
Tagging module) if their drop rates grow higher than the fair
drop rate (e.g., See details in Section III-B3). Otherwise they
will be tagged as normal (e.g., low priority). All tagged packets
will be passed to the priority AQM module in the router,
which implements preferential packet dropping mechanism
[9], [10], [20]. In our experiments in Section IV, we use
SAP with WRED [6], [20], and our results demonstrate that
SAP can indeed neutralize the impact of Shrew attacks on
all legitimate TCP flows from Shrew attacks. Note that SAP
could be treated as a form of traffic management mechanism
that aims to ensure all application flows experience similar
drop rates when going through the same network link by using
multiple classes/tagging on flow level.

For each aggregate (e.g., destination port), we maintain two
set of counters (for arrival and drop) and use them to identify
victim applications. Since there are at most 216 = 65536
distinct destination ports, SAP can be easily implemented
in hardware. In fact, the number of applications that need
to be monitored are likely to be much smaller in practice
(e.g., there are a few thousands ports that are commonly
used on the Internet). Hence, SAP can be used to protect
all legitimate TCP-based protocols, although our work was
initially motivated in part by the BGP attack scenario [24].
We further elaborate on this aspect in Section III-C.

B. SAP Components

Our proposed SAP architecture can be divided into a control
plane and an execution plane. The drop rate collector and
fair drop rate controller are on the control plane, whereas the
differential tagging component and the preferential dropping
component are on the execution plane.

4If two different flows (even from distinct sources or to distinct destinations)
use the same destination port, our scheme treats them as a single aggregate.

4 IEEE TRANSACTIONS ON NETWORK SERVICE MANAGEMENT, VOL. 7, NO. 1, MARCH 2010

Time
0 ts ………… (wn-1) ts wnts

t

Arrival a(0) a(1) a(wn-1)

2ts

a(wn)a(2)

wn slide window size

Drop d(1) d(wn-1) d(wn)d(0) d(2)

Fig. 3. Drop Rate Collector by using a time-sliding window (TSW)
mechanism.

1) Drop Rate Collector: The role of the drop rate collector
component is to monitor drop rates. We maintain two sets of
counters for each application port: one set for arrivals, and the
other set for drops. The values of these counters are in terms
of cumulative bytes, and we denote their respective values at
time interval t by a(t) and d(t).

In SAP, we use a time-sliding window (TSW) to provide a
smooth estimate of the drop rate for each port, as depicted in
Fig. 3. Each time interval is a fixed duration of ts seconds. In
particular, at the beginning of each time interval t, we initialize
the arrival and drop counters for each port with a(t) = a(t−1)
and d(t) = d(t − 1). Then, during the time interval t, new
byte arrivals or byte drops would increment a(t) or d(t) by
the appropriate amount, respectively. To calculate the average
drop rate for each port over a sliding window of the last wn

time intervals, we can compute it as follows:

p(t) =
Δd(t)
Δa(t)

=
d(t) − d(t − wn)
a(t) − a(t − wn)

To compute average drop rates over a fixed sliding window
of wn time intervals, we simply need to maintain wn pairs of
counters for each port. By using TSW, we can recursively free
and reuse counters using a circular modulo counter allocation,
as depicted in Fig. 3. Therefore, the total number of counters
needed per port is 2wn. The duration of ts should be chosen
small enough to catch the instant high drop rates while wn

should be large enough to consider the previous instant drop
rates. In our experiments, we experiment with various values
and focus on the results when we use ts = 0.1 sec and wn =
10, which results in a sliding window of 0.1 ∗ 10 = 1 sec.

2) Fair Drop Rate Controller: Given the historical drop
rates of all ports collected, the role of the fair drop rate
controller is to determine the fair drop rate threshold pfair

that it wants to limit. This fair drop rate threshold calculation
actually depends on the average total drop rate pavg. This
average drop rate pavg will be updated every ts intervals and
will consider the previous values by using the same TSW
algorithm:

pavg =
∑i=N

i=1 Δdi(t)∑i=N
i=1 Δai(t)

where Δdi(t) and Δai(t) are the cumulative arrival and drop
counts, respectively, for application port i over the last wn

intervals, and N is the number of application ports.
In addition to continuously updating the average total drop

rate pavg , the fair drop rate controller takes one more param-
eters, pmin. The parameter pmin specifies a minimum drop

rate threshold, under which SAP does not intervene. More
specifically, if pavg ≥ pmin, then SAP uses the current average
drop rate to serve as the fair drop rate threshold by setting
pfair = pavg . If pavg < pmin, then SAP sets pfair = pmin.
Since SAP is triggered to protect application ports with high
drop rate, SAP effectively ignores any small fluctuation of
error rates below pmin. Hence, pmin should be set large
enough to tide over small fluctuations and low enough to
trigger SAP quickly to protect victims against Shrew attacks.
In our experiments, we use pmin = 0.1% to evaluate our
protection scheme.

3) Differential Tagging & Preferential Dropping: Given the
drop rate limits determined by the fair drop rate controller, the
role of the differential tagging component is to perform the
tagging of packets according to the determined fair drop rate.
In particular, arrival packets are tagged as high priority if the
instant drop rate of their application port is higher than the fair
drop rate threshold set by the fair drop rate controller, which
is updated every ts intervals. Otherwise, they are tagged as
low priority. These traffic management mechanisms for me-
tering and tagging are commonly available in modern routers
at linespeeds. Because SAP simply requires incrementing a
counter at SRAM, it can easily support wirespeeds of 40 Gb/s
and beyond5.

With packets tagged on arrival, low priority packets can be
dropped preferentially over high priority packets at the output
queue whenever a sustained congestion occurs. Again, this
preferential dropping mechanism [6] is commonly available in
modern routers at linespeeds, for example using WRED [20],
or RIO [9] (e.g., Cisco 120000 Serious Internet Router [8]).
We can simply use these existing mechanisms to implement
SAP. Under normal network conditions, in the absence of
periodic bursty congestion attacks, packets will get forwarded
in the same manner as without SAP.

Since we use instant drop rates for individual application
ports, SAP enables each port to have some packets tagged
as high priority after a relatively short sequence of packet
losses. For example, suppose that pfair is 5%, and port i has
experienced nine successful transmissions and a packet drop
since the beginning of the current window. Then, because the
instant drop rate of port i is pi = 1/10 = 0.1 > pfair =
0.05, SAP tags next packets for port i as high priority until
pi becomes smaller than pfair, which makes it more likely to
transmit the subsequent packets for port i successfully. This is
in contrast to the behavior of a typical drop-tail queue, where
we typically experience bursty packet losses for the packets
arriving after the output queue becomes full. This property of
SAP helps each port avoid repeated bursty packet drops, which
in turn neutralizes the Shrew Attack. In fact, this property
also makes SAP effectively against various attack scenarios,
on which we further elaborate in Section IV.

Note that there are other legitimate reasons to cause the
drop rates of TCP flows increase. For example on the edge,
there can be lots of packet drops due to service level agree-
ment (SLA) enforcement where it is a negotiated agreement
between two parties (e.g., customer and service provider).

5At 40 Gb/s, a minimum size packet can arrive every 8 ns, which is more
than enough time to increment an SRAM counter.

C. W. CHANG et al.: THE TAMING OF THE SHREW: MITIGATING LOW-RATE TCP-TARGETED ATTACK 5

Therefore it might be interesting to see if SAP is triggered by
other legitimate packet drops or interferes with other router’s
mechanisms where we defer it as our future work.

C. Discussion

a) Attack Flows Using Protected Ports: Since SAP gives
high priority to packets for high-loss ports, an attacker can
send bogus TCP packets to one of the protected ports in order
to exploit the elevated access given to the packets for the port
such that SAP cannot distinguish attack packets and legitimate
packets. Although this type of attack is more effective than an
attack using unprotected TCP packets or UDP packets, SAP
still prevents legitimate TCP flows from session close but with
low throughput. This is because SAP uses adaptive fair drop
rate to serve as protection threshold. In this case, the fair drop
rate is dominated by the attack flows. Therefore, the packets
from attack flows are unlikely protected and stay with low
priority. Instead, the incoming packets from legitimate TCP
flows will be tagged as high priority and protected when they
are going to stop (high drop rates). The detailed discussion
and results are in Section IV-B3.

b) Detecting Misbehaving Flows: While a DoS attack
cannot exploit SAP since it uses dynamically-adjusted fair
drop rate of overall traffic ports, an attacker may attempt
to increase their throughput for a particular port by causing
packet drops for that port and triggering SAP protection.
Since SAP aggregates all the flows using the same port, it
is difficult for SAP to differentiate such misbehaving traffic.
We envision SAP operates with other systems that detect such
anomalous TCP flows [19]. In fact, SAP can inform those
external systems as to which ports are suddenly experiencing
high drop rates, so that these systems can narrow down
their investigation and focus on a reduced set of potential
misbehaving flows.

c) Fairness: In the backbone network, each port typi-
cally has a large number of legitimate TCP flows, while each
TCP flow may have different parameters such as round-trip
time (RTT), bottleneck link throughput, etc. Therefore, it is
important to see if SAP does not change the dynamics of
TCP fairness, especially because flows with fewer packets to
send and a shorter round-trip time might be more vulnerable
to Shrew attacks. We present our experiment results in Sec-
tion IV-B, which illustrate that SAP does not change the TCP
fairness behavior, regardless of the existence of Shrew Attack.

d) State Requirements: Because SAP tracks drop rates
at the application-aggregate levels, the amount of state that it
needs to maintain is limited by the number of TCP application
ports. Suppose we monitor all 216 = 65536 application ports,
and we use a sliding window of wn = 10. Then, we need to
maintain 2∗10∗65536 ≈ 1.3 million counters where the factor
2 stands for one for arrivals, a(t), and the other for drops, d(t).
Although SAP maintains total ≈ 1.3 million counters, there
is only one counter to be updated per packet arrival/drop. The
oldest 2*65536 counters (e.g., ai(0) and di(0), i=1 to 65536)
will be recycled for the newest cumulative bytes calculation
in every ts= 0.1 seconds while only 2 ∗ 2 ∗ 65536 counters
are used (e.g., ai(0), di(0), ai(wn − 1), di(wn − 1), i=1 to
65536) instead of 1.3 million counters (e.g., details are in

N0 N1

S2

10 Mbps, 1ms
100 Mbps, 1ms 100 Mbps, 1ms

S1

T2

T1BGP

10 FTPs, 10 HTTPs

(a) ns-2 testbed

ZebraJuniper Router

P1

P3

P2 (attacker)

10.0.1.130

10.0.1.162

10.0.1.129

10.0.1.161
10.0.1.97

10.0.1.98

10 Mbps

Zebra

(b) Juniper router testbed

Fig. 4. Network topology for experiments

Section III.B.(1)(2)) to calculate the fair drop rate, pfair, and
average drop rate, pavg , which will be updated in every ts ∗
wn= 0.1*10=1.0 seconds.

Using 32-bit counters (4 bytes), then these 1.3 million
counters can be stored with approximately 5 MB of SRAM,
which is well within SRAM technology today. However, the
number of ports that are used by legitimate applications are an
order of magnitude smaller on the Internet (e.g., see IANA list
in [7]). Then the number of counters and the corresponding
SRAM requirements can be reduced to about 0.5MB. With
counters implemented in SRAM with fast access times, SAP
can be readily implemented at Internet backbone wirespeeds.

IV. EVALUATION

A. Experiment Setup

In this section, we describe experiments setup for evaluating
SAP. Since we cannot easily implement our scheme into a
real router, we primarily report simulation results using ns-
2 simulations. However, we do perform a set of controlled
experiments on a real Juniper router testbed to verify that our
simulation setting is realistic. Alternatively, we can also use
existing public infrastructure such as DeterLab (http://www.
deterlab.net) for validation purpose, which we defer to a future
work.

In our experiments, we focus on three TCP applications:
BGP, FTP, and HTTP. We choose them because they repre-
sent low-volume long TCP application sessions, high-volume
long TCP application sessions, and high-volume short TCP
application sessions. We use the FTP and HTTP modules that
are available in the ns-2 package. For BGP, we incorporate
the BGP module developed by Feng et al. [11]. We also use
heterogeneous RTTs in FTP and HTTP modules to create a
mix of high, average and low legitimate traffic rate test-bed
(e.g., details are in IV-B2).

The network topology used in our simulations is shown
in Fig. 4(a). We create two routers (N0 and N1) that are
interconnected via a 10Mbps link. Each router is connected to
two servers via 100Mbps links, labeled as (S1, S2) and (T 1,

6 IEEE TRANSACTIONS ON NETWORK SERVICE MANAGEMENT, VOL. 7, NO. 1, MARCH 2010

TABLE I
DROP RATE COMPARISON BETWEEN JUNIPER TESTBED AND NS-2

SIMULATION EXPERIMENTS.

Juniper testbed ns-2 simulation
Peak rate BGP Attack flow BGP Attack flow
15Mbps 17.4% 33.1% 18.1% 35.0%
18Mbps 28.1% 45.2% 28.3% 44.8%
20Mbps 28.2% 50.3% 29.0% 49.8%

T 2), respectively. We set the propagation delay of each link to
be 1ms and the queue size of each router to be 600 packets.
A BGP session is configured between routers N0 and N1
that exchange routing updates according to a real BGP trace
collected from a router in a Tier-1 ISP backbone network.
We also set up 10 FTP and 10 HTTP sessions between S1
and T 1. A Shrew attack is launched from S2 sending attack
traffic destined to T 2. Unless stated otherwise, we use a Shrew
attack traffic with parameters (R, L, T) = (15Mbps, 300ms,
1000ms).

We implement SAP mechanism in the ns-2 simulation code.
When a packet arrives at a router, the arrival counter for
the corresponding port is incremented. Similarly, whenever an
output queue drops a packet, the corresponding drop counter
is incremented. In our simulation, unless otherwise specified,
we use WRED as the queue management scheme, which is
available in ns-2. When SAP is not employed (i.e., when
no differential tagging is used), WRED is the same as RED
since there is only one priority class. While we have exper-
imented with different parameters, we here present results
using ts = 0.1 sec, wn = 10, and minRTO = 1000 ms.
We also set pmin = 0.1% based on the average drop rate in
our simulations when there is no attack. In our experiments,
each simulation run lasts one hour.

1) Validation Using Juniper Router Testbed: Before pre-
senting our simulation results, we compare experimental re-
sults using a real router testbed with simulation results. The
goal here is to evaluate whether the results from our simulation
setup are similar to those from realistic environments. As
illustrated in Fig. 4(b), our testbed consists of a Juniper router,
two ethernet switches, and three PCs. The default minRTO
value for Juniper router is 1000ms. All links are 100Mbps
except the 10Mbps bottleneck link connected to P3. Drop-tail
queues are used in the testbed experiments. In this validation
experiment, we focused on BGP session performance (i.e.,
there is no FTP or HTTP traffic being sent). We run the
Zebra open-source routing software [1] on P3 and configure
a BGP session between the Juniper router and P3. We set up
a Shrew attacker at P2 that sends attack packets to P3. We
fix the burst length L to 300ms and vary the peak rate R from
the attacker. We also perform simulation experiment using the
same settings.

Table I compares the drop rate results between the real
Juniper router testbed and the ns-2 simulation. We observe that
the testbed results are indeed close to the simulation results.
For example, when R = 18Mbps, the difference in the BGP
drop rate is less than 1% (28.1% vs. 28.3%), and that in the
attack traffic drop rate is similar as well (45.2% vs. 44.8%). We
also observe that when R ≥ 18Mbps, the BGP session always
closes except that the closing time differs among experiments.
These results indicate that our simulation environment is

indeed close to real-world scenarios. We next evaluate how
SAP can effectively protect application performance under
Shrew attacks using simulation experiments.

B. Evaluation Results

In this section, we present our evaluation results based on
ns-2 simulations. We focus on two application performance
metrics: end-to-end throughput and drop rate. We first show
that SAP can effectively neutralize a Shrew attack if the attack
uses a port which is not monitored and protected by SAP.
We also examine a number of factors that could impact the
behavior of SAP in various operating environments. Next, we
show that SAP becomes less effective if the Shrew attackers
use one of the SAP protected port to send bogus TCP traffic.
Finally, we show that SAP helps even under other attack
scenarios (e.g., DDoS attacks). Note that, without attack,
SAP performs just like RED because all TCP flows have
similar drop rates6. Therefore SAP won’t change the end-to-
end fairness of TCP applications.

1) Impact of a Shrew Attack on TCP Applications: Fig. 5
shows the results of throughputs and drop rates using average
value for 10-second periods with no attack and under attack.
The insets of Fig. 5 present the same results of TCP applica-
tions in finer scale. We observe that when there is no attack
(see Fig. 5(a)), the BGP session throughput is around 5Kbps.
The FTP sessions and HTTP sessions split the bandwidth, with
each group obtaining about 5Mbps. Fig. 5(b) presents that the
drop rates of those FTP and HTTP sessions are low (around
0.2%), but the drop rate of BGP session is relatively high
(around 6%). This relatively high drop rate for BGP session
is because BGP trace is usually of low volume, but can be
bursty.

Fig. 5(c) and 5(d) show the performance of TCP ap-
plications results under a Shrew attack of (R, L, T) =
(15Mbps, 300ms, 1000ms) without any protection mecha-
nism. Due to repeated packet drops, the BGP session closes
at around 70 seconds. The average drop rates of the FTP and
HTTP flows gradually increase and reach 100% before 400
seconds (Fig. 5(d)), and their throughput is close to zero after
that, despite the attack flow being idle during non-peak periods
and consuming only around 35% of the bandwidth7 These
results show that legitimate TCP application flows can suffer
a high instant drop rate and low throughput (or even session
close) under a Shrew attack. These results are consistent with
observations in [15].

2) Protecting Application Performance Using SAP: We
next illustrate how SAP protects TCP application flows against
Shrew attack by monitoring application drop rates. Fig. 6
shows the performance of TCP applications when SAP is used
to mitigate the Shrew attack and the inset presents the same
results in finer scale. In this experiment, the Shrew attack uses

6Due to the space limitation, we omit these comparisons in most of the
cases but only show a slight difference if application flows have heterogeneous
RTTs in Fig III.

7Since the aggregated attack rate is 15Mbps with bursty cycles (i.e., 0.3s
of 1s) and the link capacity is 10Mbps, the average bandwidth usage can
be calculated as nearly 30% (0.3s/1s). Due to the effect of queue size in
the router (e.g., 600 packets), the real average bandwidth usage of attack is
around 35% (3462Kbps/10Mbps in Table II).

C. W. CHANG et al.: THE TAMING OF THE SHREW: MITIGATING LOW-RATE TCP-TARGETED ATTACK 7

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 400 800 1200 1600 2000 2400 2800 3200 3600

T
hr

ou
gh

pu
t (

K
bp

s)

Time (Sec)

BGP
FTP Group

HTTP Group

 2000

 3000

 4000

 5000

 6000

 0 400 800 1200 1600 2000 2400 2800 3200 3600

(a) Throughput without attack

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 400 800 1200 1600 2000 2400 2800 3200 3600

D
ro

p
ra

te
 (

%
)

Time (Sec)

BGP
FTP Group

HTTP Group

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 400 800 1200 1600 2000 2400 2800 3200 3600

D
ro

p-
ra

tio
 (

%
)

(b) Drop rate without attack

 0.01
 0.1

 1
 10

 100
 1000

 10000

 0 400 800 1200 1600 2000 2400 2800 3200 3600

T
hr

ou
gh

pu
t (

K
bp

s)

BGP
FTP Group

HTTP Group

 0.01
 0.1

 1
 10

 100
 1000

 10000

 0 40 80 120 160 200 240 280 320 360 400

T
hr

ou
gh

pu
t (

K
bp

s)

Attack

 0.01
 0.1

 1
 10

 100
 1000

 10000

 0 40 80 120 160 200 240 280 320 360 400

T
hr

ou
gh

pu
t (

K
bp

s)

Time (Sec)

(c) Throughput under attack

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 400 800 1200 1600 2000 2400 2800 3200 3600

D
ro

p
ra

te
 (

%
) BGP

FTP Group
HTTP Group

Attacker

 20

 40

 60

 80

 100

 0 40 80 120 160 200 240 280 320 360 400
D

ro
p

ra
te

 (
%

)

 20

 40

 60

 80

 100

 0 40 80 120 160 200 240 280 320 360 400

D
ro

p
ra

te
 (

%
)

Time (Sec)

(d) Drop rate under attack

Fig. 5. Throughput and drop rate of TCP applications with/without Shrew attack.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 400 800 1200 1600 2000 2400 2800 3200 3600

T
hr

ou
gh

pu
t (

K
bp

s)

Time (Sec)

BGP SAP
FTP Group SAP

HTTP Group SAP
Attacker SAP

 0
 1000
 2000
 3000
 4000
 5000

 0 600 1200 1800 2400 3000 3600

(a) Throughput under attack (with SAP)

 0

 2

 4

 6

 8

 10

 0 400 800 1200 1600 2000 2400 2800 3200 3600

D
ro

p
ra

te
 (

%
)

BGP SAP

 0

 2

 4

 6

 8

 10

 0 400 800 1200 1600 2000 2400 2800 3200 3600

D
ro

p
ra

te
 (

%
)

FTP Group SAP
HTTP Group SAP

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 400 800 1200 1600 2000 2400 2800 3200 3600

D
ro

p
ra

te
 (

%
)

Time (Sec)

Attacker SAP

(b) Drop rate under attack (with SAP)

Fig. 6. Throughput and drop rate of TCP applications when SAP is used.

TABLE II
PERFORMANCE RESULTS OF USING SAP WITH DIFFERENT FAIR DROP RATES.

Throughput (in Kbps) Drop rate (in %)
FTP HTTP BGP Attack FTP HTTP BGP Attack

Without attack 4996 4995 4.5 - 0.2 0.2 5.8 -
Under RED ≈0 ≈0 ≈0 3462 ≈100.0 ≈100.0 (close) 22.7
Attack SAP 3975 3870 5.4 1784 3.0 3.0 6.1 57.0

SAP-5 3180 3165 5.1 3198 1.2 1.1 4.2 28.5
SAP-0.1 4950 4930 6.6 110 0.2 0.2 1.1 86.0

8 IEEE TRANSACTIONS ON NETWORK SERVICE MANAGEMENT, VOL. 7, NO. 1, MARCH 2010

TCP ports which are not monitored and protected by SAP.
(The results when a Shrew attack uses SAP protected ports
are shown later in this section.) We observe that the BGP flow
stays alive and exchanges routing information even under an
attack. In addition, all FTP/HTTP flows achieve significantly
better performance than the scenario shown in Fig. 5(c).
Specifically,the total throughput of FTP sessions and HTTP
sessions are over 80% of those when there is no Shrew attack
(i.e., 4.0Mbps of 4.9Mbps throughput). The BGP session also
achieve a similar level of throughput as when there is no
attack. Compared with Fig. 5(d), we observe that SAP also
significantly lowers drop rates of BGP, FTP, and HTTP flows
under the Shrew attack. This is because SAP will protect
legitimate TCP application flows once their instant drop rate
is above the fair drop rate. These results clearly demonstrate
that the simple strategy of counter-based priority-tagging used
in SAP can effectively prevent TCP application flows from
losing multiple consecutive packets and experiencing multiple
timeouts when there is a Shrew attack.

Next, we explore a number of factors that could impact the
behavior of SAP in various operating environments: (i) choice
of fair drop rate; (ii) heterogeneity in RTT of application flows;
(iii) heterogeneity in number of application flows using each
port.

One important parameter in SAP is the fair drop rate.
Ideally, if the network administrator can measure the fair
drop rate of different TCP applications, then SAP can directly
use the realtime measured value as the threshold. However,
obtaining such realtime measurement may not always be
feasible. Instead of using the dynamic fair drop rate controller
algorithm described in Section III, we now examine how SAP
performs using fixed fair drop rate. As we have observed
before when there is no Shrew attack, the approximate average
drop rate is 5% for the BGP session and 0.1% for the HTTP
and FTP flows. In this set of experiments, we run SAP with
a fixed fair drop rate of 5% and 0.1%, which we call SAP-5
and SAP-0.1, respectively. The results are provided in Fig. 7.

Note that SAP-0.1 is more aggressive in the sense that
it starts preferential tagging even with a small number of
packet drops. Although SAP-0.1 helps TCP flows achieve high
throughput, it may unnecessarily penalize unprotected flows
(e.g., UDP flows) even in the case of small flash crowds. In
contrast, SAP-5 is more conservative than SAP-0.1 and does
not start preferential tagging until the average drop rate reaches
5%, which results in slightly lower TCP throughput, compared
to SAP-0.1. Table II compares average throughputs and drop
rates of SAP, SAP-5, and SAP-0.1. We observe that SAP
performs reasonably well with fixed fair drop rates. Intuitively,
a lower threshold (e.g., Pfair) usually yields better protection
of TCP applications against Shrew attacks and gives more
link-bandwidth to protected legitimate TCP flows , (e.g., FTP
flows achieve an aggregate throughput of 4.9Mbps with SAP-
0.1, and 3.1Mbps with SAP-5.), potentially at the cost of the
performance degradation of non-protected applications (e.g.,
attack flows and normal UDP flows). Therefore the Pfair in
SAP needs to be dynamically adjusted in order not to over-
protect the legitimate TCP traffic and over-punish the normal
UDP traffic.

Another important factor that affect TCP application perfor-

mance is its RTT(Round-Trip Time). We evaluate the impact
of SAP on the performance of TCP flows of heterogeneous
RTTs. In our experiments, we split each of HTTP and FTP
groups to 2 small groups, where we fix the RTT of one
group at 4ms and vary the RTT of the other group between
4ms, 12ms, and 22ms. Table III compares the performance of
TCP flows of 22ms RTT with those of 4ms RTT. The results
of application flows of 12ms RTT are similar and are not
included in the paper due to space limitation. Without a Shrew
attack, the drop rates of FTP and HTTP flows when SAP is
used are almost the same as the ones when RED is used.
When SAP is used, although flows with shorter RTT achieve
higher throughput than those with longer RTT, we observe that
the difference is smaller than the case of Drop-tail or RED.
However, when there is a Shrew attack, SAP actually protects
TCP-application flows from session close and ensures these
flows have similar throughputs to those in no-attack scenarios.
It is also worth noting that SAP can be used in combination
with any advanced AQM algorithm which supports more than
2 classifications. In addition, different levels of fair drop rates
can be used in SAP to provide more customized protection
abilities. We defer these to our future work.

We also evaluate the impact of the number of application
flows on how SAP performs. In our experiments, we vary
the number of HTTP flows from 10 to 1. We observe that,
even though SAP is a port-based scheme, each application
flow is treated equally. For example, Table IV shows that the
single HTTP flow has approximately the same throughput as
the average throughput of individual FTP flows. This result
illustrates that SAP allows individual flows to share the link
bandwidth, even though it does not use flow-level information.

3) Protection Against Shrew Attacks Using Protected Ports:
So far our experiments have been focused on attacks using
ports that are unprotected by SAP. However, a Shrew attacker
can also launch attack packets using one or more ports that
are monitored and protected by SAP. Here, we compare the
protection capability of SAP against Shrew attacks using
(1) Unprotected-Port (UP) packets, (2) Protected-Port (PP)
packets with randomly chosen ports, and (3) Protected-Port
packets with HTTP port (PP-HTTP) to send bogus TCP
packets. We launch 100 synchronized attack flows at 100sec in
each simulation. Each attack flow has period of 1.0sec, burst
rate of 150Kbps, and burst length of 0.3sec. Therefore, the
total burst rate is 15Mbps lasting for 0.3sec for each period.

The results are shown in Table V. We observe that, when
SAP is not used, all TCP application sessions close regardless
of which port attack packets use. SAP can protect TCP-
application flows from session close even when attackers use
protected ports to send bogus TCP packets. First we performed
experiments where the attacks use the same port as legitimate
TCP flows (e.g., all flows (both legitimate and attack) use the
same HTTP port). Therefore the calculation of drop rate on
port 21 in SAP includes the packets sent by legitimate TCP
flows and the shrew attacks.

In this case, there are 10 legitimate TCP flows with 100
attack flows which all use the same port 80. We launch 100
synchronized attack flows at 100sec in simulation (total is
2000sec). Each attack flow has period of 1.0sec, burst rate of
150Kbps, and burst length of 0.3sec. Therefore, the total burst

C. W. CHANG et al.: THE TAMING OF THE SHREW: MITIGATING LOW-RATE TCP-TARGETED ATTACK 9

 0

 10

 20

 30

 0 400 800 1200 1600 2000 2400 2800 3200 3600

T
hr

ou
gh

pu
t (

K
bp

s)

BGP SAP

 0
 1000
 2000
 3000
 4000
 5000

 0 400 800 1200 1600 2000 2400 2800 3200 3600

T
hr

ou
gh

pu
t (

K
bp

s) FTP GROUP SAP
HTTP GROUP SAP

 0

 1000

 2000

 3000

 4000

 5000

 0 400 800 1200 1600 2000 2400 2800 3200 3600

T
hr

ou
gh

pu
t (

K
bp

s)

Time (Sec)

Attacker SAP

(a) Throughput under attack (with SAP-5)

 0

 1

 2

 3

 4

 5

 0 400 800 1200 1600 2000 2400 2800 3200 3600

D
ro

p
ra

te
 (

%
)

BGP SAP

 0
 0.4
 0.8
 1.2
 1.6

 2

 0 400 800 1200 1600 2000 2400 2800 3200 3600

D
ro

p
ra

te
 (

%
) FTP GROUP SAP

HTTP GROUP SAP

 0

 20

 40

 60

 80

 100

 0 400 800 1200 1600 2000 2400 2800 3200 3600

D
ro

p
ra

te
 (

%
)

Time (Sec)

Attacker SAP

(b) Drop rate under attack (with SAP-5)

 0

 10

 20

 30

 0 400 800 1200 1600 2000 2400 2800 3200 3600

T
hr

ou
gh

pu
t (

K
bp

s)

BGP SAP

 0
 1000
 2000
 3000
 4000
 5000
 6000

 0 400 800 1200 1600 2000 2400 2800 3200 3600

T
hr

ou
gh

pu
t (

K
bp

s)

FTP GROUP SAP
HTTP GROUP SAP

 0

 200

 400

 600

 800

 1000

 0 400 800 1200 1600 2000 2400 2800 3200 3600

T
hr

ou
gh

pu
t (

K
bp

s)

Time (Sec)

Attacker SAP

(c) Throughput under attack (with SAP-0.1)

 0

 1

 2

 3

 4

 5

 0 400 800 1200 1600 2000 2400 2800 3200 3600

D
ro

p
ra

te
 (

%
) BGP SAP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 400 800 1200 1600 2000 2400 2800 3200 3600

D
ro

p
ra

te
 (

%
) FTP GROUP SAP

HTTP GROUP SAP

 0
 20
 40
 60
 80

 100

 0 400 800 1200 1600 2000 2400 2800 3200 3600

D
ro

p
ra

te
 (

%
)

Time (Sec)

Attacker SAP

(d) Drop rate under attack (with SAP-0.1)

Fig. 7. Throughput and drop rate of TCP applications when SAP is used with different fixed fair drop rates.

TABLE III
IMPACT OF SAP ON PERFORMANCE OF APPLICATION FLOWS WITH HETEROGENEOUS RTTS.

Throughput (in Kbps) Drop Rate (in %)
FTP HTTP FTP HTTP BGP Attack FTP HTTP FTP HTTP BGP Attack

Link Delay 22ms 22ms 4ms 4ms 2ms 4ms 22ms 22ms 4ms 4ms 2ms 4ms
Without Drop-tail 568 564 4421 4415 3.7 - 0.3 0.3 0.2 0.2 6.8 -
Attack RED 1861 1832 3171 3145 4.6 - 0.3 0.3 0.3 0.3 5.1 -

SAP 2205 2201 2985 2978 7.1 - 0.3 0.3 0.3 0.3 1.1 -
Under DT/RED ≈0 ≈0 ≈0 ≈0 ≈0 3462 ≈100.0 ≈100.0 ≈100.0 ≈100.0 (close) 22.7
Attack SAP 1885 1853 2523 2518 6.4 1360 3.1 3.1 3.1 3.1 6.4 66.8

SAP-5 1086 1049 1857 1844 5.2 2998 2.2 2.2 1.8 1.8 4.5 33.4
SAP-0.1 2123 2105 2836 2814 6.8 351 0.2 0.2 0.2 0.2 1.1 92.0

TABLE IV
IMPACT OF SAP ON PERFORMANCE WHEN THERE ARE 1 HTTP AND 10 FTP FLOWS.

Throughput (in Kbps) Drop Rate (in %)
FTP HTTP BGP Attack FTP HTTP BGP Attack

Without attack 9069 922 5.68 - 0.07 0.07 2.9 -
Under RED ≈0 ≈0 ≈0 3462 ≈100.0 ≈100.0 (close) 22.7
Attack SAP 6471 674 6.2 2800 2.8 2.8 5.4 37.8

SAP-5 4838 450 5.0 3229 0.9 0.9 5.0 28.3
SAP-0.1 8712 858 6.9 422 0.1 0.1 1.1 90.0

rate is 15Mbps lasting for 0.3sec for each period where the
link bandwidth is 10Mbps. It means the average drop rate for
attack flows is 33%. In Fig. 8, the total legitimate TCP flows
from the same port under SAP protection scheme can occupy
3.8*106*8/10s = 3.0Mbps instead of session close (0kbps)

(e.g., see Fig. 8(a)) where the average throughput for overall
attack flows is (5.8-1.8)*106*8/10s = 3.2Mbps and the link
capacity is 10Mbps. It is because even through the calculation
of drop rate in SAP includes the packets sent by legitimate
TCP flows and the shrew attacks (e.g., SAP cannot segregate

10 IEEE TRANSACTIONS ON NETWORK SERVICE MANAGEMENT, VOL. 7, NO. 1, MARCH 2010

TABLE V
SHREW ATTACKS USING DIFFERENT PORTS.

Throughput (in Kbps) Drop Rate (in %)
FTP HTTP BGP Attack FTP HTTP BGP Attack

Without attack 4996 4995 4.5 - 0.2 0.2 5.8 -
Attack RED ≈0 ≈0 ≈0 3462 ≈100.0 ≈100.0 ≈100.0 22.7
Attack (using UP) SAP 3975 3870 5.4 1784 3.0 3.0 6.1 57.0
Attack (using PP) SAP 83 76 1.8 3410 8.9 9.1 22 23
Attack (using PP-HTTP) SAP 75 1760 1.7 3281 9.0 1.1 22 28

the malicious packets from legitimate packets), SAP actually
protects legitimate flows at least to have average drop rate less
than Pfair (e.g., 33% in this case) by using priority-tagging.
Therefore these legitimate flows can have chance to grow up
during the attack idle period with frequency 0.7sec over 1.0sec
(e.g., see Fig. 8(b)). Compared to the case without SAP, SAP
considers instant packet drop rate and prevents consecutive
packet drops, which gives normal TCP flows more chances to
survive during the attack burst period and grow up during the
attack idle period.

We next experimented with the same attack scenario but
included non-HTTP legitimate TCP flows. We observe that
HTTP flows get higher throughput than other TCP application
flows. The result is presented in the bottom row of Table V.
We also record the accumulated incoming bytes and dropping
bytes of flows in different time scale granularity (i.e., 10s and
0.1s) in Fig. 9. Compared to the Fig. 8, the throughput and
the drop rate of the attack remain the same while the HTTP
sessions are over-protected compared to the FTP sessions and
therefore they have higher probabilities to send more packets.
This is because SAP notices a large number of consecutive
packet drops for the HTTP port during the attack burst period
and keep tagging legitimate HTTP packets high-priority when
the attack is idle even their instant drop rates are higher
than Pfair since the overall average drop rate and Pfair are
dominated by Shrew attacks. Compared to the case where
legitimate and attack flows both use the same ports, the
throughput of FTP flows is significantly lower. Note that SAP
keeps all the legitimate flows alive in this attack scenario.

We also performed the same experiments where the attacks
use one of the monitored and protected ports which is different
than legitimate TCP flows. Fig. 10 records the accumulated
incoming bytes and dropping bytes of flows in different time
scale granularity (i.e., 10s and 0.1s). Before attack starts
(100s), the FTP and HTTP sessions have nearly 5Mbps incom-
ing rate (i.e., 6.2∗106∗8/10s) but down to the 100Kbps after
attack shows (i.e., Fig. 10(a)). The incoming rate of aggregated
attackers is nearly 15Mbps (i.e., 1.8∗105∗8/0.1s) with bursty
cycles (i.e., 0.3s of 1s). We can see that with SAP, the FTP and
HTTP flows can still have irregular growing opportunities to
send packets during the attack idle periods (i.e., Fig. 10(b)).
Unlike Drop-tail and RED where all incoming packets are
dropped if the queue is full, SAP will tag the potential victim
packets high if its instant drop-rate is higher than the adaptive
fair drop rate (i.e., average drop rate), and start dropping low
priority packets that are already in the queue. As a result,
normal TCP flows have more chances to survive during the
attack burst period and be able to send packets during the
attack idle period but the throughput degradation could be
seen in Table V. Again, SAP keeps all TCP sessions alive.

In summary, while the throughput of legitimate flows may
degrade depending on what port the attack flow uses, SAP
can maintain all legitimate flows alive in various scenarios of
Shrew attack, which is important for certain TCP applications
such as BGP [24].

C. Protection Against Different Types of Attack

In this subsection, we evaluate how SAP handles traditional
Distributed Denial of Service (DDoS) attacks and Reduction
of Quality (RoQ) attacks. The difference between them is the
aggregated attack rate. DDos attacks rely on overwhelming
the victim with load that constantly exceeds its link capacity;
RoQ attacks, on the other hand, optimize the attack traffic to
produce the maximum damage, while keeping a low profile
to avoid detection. RoQ attacks do not necessarily result in
a complete denial of service and usually has a lower attack
rate. In the first set of experiments, we use 100 DDoS attack
flows, each sending a constant packet stream at the rate of
150Kbps and each simulation run lasts one hour with all DDoS
attack starting at 100 sec. Therefore, the total traffic demand of
attack flows is 15Mbps. Since the link bandwidth is 10Mbps,
the link is always congested in this attack scenario, which is
different from the previous experiments using Shrew Attack.
We also consider scenarios where attack flows use different
ports as before. From Table VI, when the attack flows use a
non-protected port, SAP allows legitimate flows to achieve
reasonably high throughput, although the values are lower
than those of the Shrew attack case shown in Table V. This
is because in the DDoS attack scenario, attack has no idle
period, and legitimate packets always enter congested queues.
When the attack flows use a protected port or share a port with
legitimate flows, the throughput of legitimate flows becomes
significantly low. We again observe that all legitimate flows
stay alive in this case.

We simulate RoQ attack by reducing the sending rate of
each attack flows from 150Kbps to 80Kbps. Therefore, the
total traffic demand for all 100 RoQ attack flows is 8Mbps
which is less than the link bandwidth, 10Mbps. Table VII
compares results under scenarios where attack flows use differ-
ent ports as before. As expected, the throughput of TCP flows
overall is higher than the case with 15Mbps attack as shown in
Table VI. We observe that when the attack flows use protected
port to attack, SAP yields a similar performance to RED.
In this case, SAP can also alert other counter-attack systems
based on the high drop rate for the particular port used by the
attack. Note that SAP aims to protect TCP applications against
Shrew Attack which sends at sufficiently low average rate to
elude detection by counter-DDoS mechanisms. Therefore it
cannot totally replace the functionality of existed counter-DoS
mechanisms.

C. W. CHANG et al.: THE TAMING OF THE SHREW: MITIGATING LOW-RATE TCP-TARGETED ATTACK 11

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
m

ou
nt

 (
B

yt
es

) HTTP Income
HTTP Drop

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
m

ou
nt

 (
B

yt
es

)

Time (Sec)

Attack(http) Income
Attack(http) Drop

(a) Result plotted in 10s time-scale granularity

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120

A
m

ou
nt

 (
B

yt
es

)

HTTP Income
HTTP Drop

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120

A
m

ou
nt

 (
B

yt
es

)

Time (Sec)

Attack(http) Income
Attack(http) Drop

(b) Zoomed-in result plotted in 0.1s time-scale granularity

Fig. 8. TCP performance when all flows (both legitimate and Shrew attack) uses HTTP port.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
m

ou
nt

 (
B

yt
es

) HTTP Income
HTTP Drop

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
m

ou
nt

 (
B

yt
es

) FTP Income
FTP Drop

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
m

ou
nt

 (
B

yt
es

)

Time (Sec)

Attack(http) Income
Attack(http) Drop

(a) Result plotted in 10s time-scale granularity

 0

 50000

 100000

 150000

 200000

 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120

A
m

ou
nt

 (
B

yt
es

) HTTP Income
HTTP Drop

 0

 50000

 100000

 150000

 200000

 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120

A
m

ou
nt

 (
B

yt
es

) FTP Income
FTP Drop

 0

 50000

 100000

 150000

 200000

 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120

A
m

ou
nt

 (
B

yt
es

)

Time (Sec)

Attack(http) Income
Attack(http) Drop

(b) Zoomed-in result plotted in 0.1s time-scale granularity

Fig. 9. TCP performance when Shrew attack uses the same TCP port monitored by SAP (HTTP).

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
m

ou
nt

 (
B

yt
es

) HTTP Income
HTTP Drop

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
m

ou
nt

 (
B

yt
es

) FTP Income
FTP Drop

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
m

ou
nt

 (
B

yt
es

)

Time (Sec)

Attack(http) Income
Attack(http) Drop

(a) Result plotted in 10s time-scale granularity

 0

 50000

 100000

 150000

 200000

 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120

A
m

ou
nt

 (
B

yt
es

) HTTP Income
HTTP Drop

 0

 50000

 100000

 150000

 200000

 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120

A
m

ou
nt

 (
B

yt
es

) FTP Income
FTP Drop

 0

 50000

 100000

 150000

 200000

 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120

A
m

ou
nt

 (
B

yt
es

)

Time (Sec)

Attack(http) Income
Attack(http) Drop

(b) Zoomed-in result plotted in 0.1s time-scale granularity

Fig. 10. TCP performance when Shrew attack uses other TCP port monitored by SAP.

In summary, our extensive simulation experiments illustrate
that SAP can protect TCP flows when there is an active
Shrew attack or even a DDoS attack. While SAP can always
prevent legitimate TCP flows from closing or getting near-zero
throughput, the degree of performance degradation due to an
attack varies depending on the types and details of the attack.

V. RELATED WORK

There have been a number of mechanisms proposed to
protect against Shrew attack. Kuzmanovic and Knightly first
investigated the use of an active queue management (AQM)
scheme to mitigate Shrew attacks [15]. Although they ex-
perimented with a rather sophisticated scheme called RED-
PD [18], which takes the drop history of each flow into

12 IEEE TRANSACTIONS ON NETWORK SERVICE MANAGEMENT, VOL. 7, NO. 1, MARCH 2010

TABLE VI
APPLICATION PERFORMANCE UNDER TRADITIONAL DDOS ATTACK: 15MBPS

Throughput (in Kbps) Drop rate (in %)
FTP HTTP Attack FTP HTTP Attack

Without attack 4996 4995 - 0.2 0.2 -
Attack Drop-tail/RED ≈0 ≈0 9964 ≈100.0 ≈100.0 33.6
Attack (using UP) SAP 3191 3163 3487 3.2 3.2 77.9
Attack (using PP) SAP 7.9 7.5 9961 21 22 33.8
Attack (using PP-HTTP) SAP 7.4 34.9 9948 23.1 4.9 34.2

TABLE VII
APPLICATION PERFORMANCE UNDER TRADITIONAL ROQ ATTACK: 8MBPS

Throughput (in Kbps) Drop rate (in %)
FTP HTTP Attack FTP HTTP Attack

Without attack 4996 4995 - 0.2 0.2 -
Attack Drop-tail 1286 1272 7379 16 15 8
Attack RED 1430 1418 7185 10 10 11
Attack (using UP) SAP 4817 4815 246 1.1 1.1 95.7
Attack (using PP) SAP 1428 1415 7190 10 10 11
Attack (using PP-HTTP) SAP 584 2407 7021 11.2 1.1 12.3

account, they found that it cannot satisfactorily mitigate the
attack, which also agrees with our own results. Another
method that they explored was to randomize the fixed min-
RTO value in the TCP implementation in an attempt to
mitigate the synchronized attack, which is not sufficient to
fully mitigate the attack. However, randomizing the fixed
minRTO can degrade the TCP connection performance in
the absence of an attack [2], because the value is selected
to eliminate unnecessary TCP timeouts. Also, the minRTO
value is inherently limited in its range, so the randomization
strategy alone is not enough to fully mitigate the attack.
Sun et al. [23] proposed a router-based detection approach
against Shrew attack, which uses auto-correlation among at-
tack packets. Multiple routers in a network need to implement
their scheme, and each router along the path from attacker to
destination must extract periodic signatures of the attack flow.
Then, the routers collectively detect the existence of attack
using a dynamic time warping method. They also proposed
a fair resource allocation mechanism, which minimizes the
number of affected TCP flows and provides sufficient resource
protection in the presence of attack. However, their detection
scheme requires multiple data manipulation steps (e.g., noise
filtering, feature extraction, etc.), which is often prohibitive
for an on-line mechanism due to a huge number of packets
going through high-speed network links.

There are other schemes that have proposed to exploit the
periodic behavior of attack traffic for the detection of attack
flows. Shevtekar et al. [21] proposed an approach to detect
these attack flows at edge routers. Based on the flow history
stored in their light-weight data structure, each edge router
marks a flow as malicious if the flow shows a periodic pattern
with the period equal to minRTO and the burst length is larger
than or equal to the RTTs of other connections. However,
normal TCP flows often exhibit a periodicity behavior as well,
which makes it difficult to distinguish attack flows from well-
behaved TCP flows. Kwok et al. [16] proposed a scheme called
HAWK (Halting Anomaly with Weighted choKing), where
they record attack flows into a small table and drop packets
from those flows to halt the attack. A general drawback of this

type of approaches is that they have difficulty identifying a set
of distributed Shrew attack flows where each flow occupies
a small bandwidth share, while the aggregate bandwidth is
large enough. In particular, although HAWK can possibly
tell whether a Shrew traffic exists among legitimate flows,
it cannot precisely isolate malicious flows. In contrast, SAP
does not attempt to identify the attack flows; it simply controls
the drop rates of victim flows.

In recent years, researchers have also explored the applica-
tion of signal analysis techniques to Shrew attack detection [4],
[17]. Chen et al. [4] used frequency domain spectrum analysis
to identify attacker flows. Since packet arrivals for a TCP flow
typically exhibit a periodicity on its PSD (Power Spectrum
Density) in the frequency domain, the lack of periodicity can
mean that a DoS attack is under way [5]. In addition, the PSD
of multi-source DoS attacks are distinct from normal TCP
flows in that they are mostly distributed in lower frequency
band. Luo et al. [17] proposed a wavelet-based approach
to study the characteristics of low-rate TCP-targeted DoS
attacks. They proposed a two-stage algorithm that detects the
existence of pulse streams by observing anomalous fluctuation
in incoming traffic rates and decreases in outgoing TCP
throughputs. They also validated their approach using ns-2
simulations and experiments on a NIST network testbed. Un-
fortunately, while the wavelet detection outcomes are largely
dependent on the choice of detection parameters, it is unclear
how to find an optimal set of parameters that are sensitive
enough to detect low-rate distributed attacks while maintaining
an acceptable false positive rate. In general, these detection
algorithms are based on complicated signal analysis, which
can be prohibitively expensive to realize at wirespeeds for
high-speed networks. We are unaware of any such solutions
that can effectively mitigate Shrew attacks in real network
environments. By contrast, our proposed SAP requires a small
number of counters, and we expect the hardware implementa-
tion can handle the huge number of packets in today’s high-
speed networks.

C. W. CHANG et al.: THE TAMING OF THE SHREW: MITIGATING LOW-RATE TCP-TARGETED ATTACK 13

VI. CONCLUDING REMARKS

In this paper, we proposed a simple Shrew attack protection
mechanism called SAP. SAP provides network operators with
a broad first line of proactive defense against Shrew attacks,
significantly neutralizing their impact. By monitoring the drop
rates of potential victims, SAP prevents consecutive packet
drops for a victim, which we observe for well-behaved TCP
flows under a Shrew attack. SAP achieves this through differ-
entiated tagging of victims’ packets and preferential admission
to the output queue. Unlike other existing mechanisms, SAP
focuses on protecting victims without explicitly identifying
attackers. SAP is a port-based victim-detection scheme and
readily deployed on top of existing router mechanisms, as SAP
does not rely on any proprietary packet header information
or sophisticated signal analysis techniques. Our results show
that SAP is able to stop the crippling BGP attack scenario
identified in [24]. More broadly, our results show that SAP
is also effective in allowing TCP flows in general to recover
their throughput under a Shrew attack.

REFERENCES

[1] GNU Zebra-routing software. [Online]. Available: http://www.zebra.org.
[2] M. Allman and V. Paxson. “On estimating end-to-end network path

properties," in Proc. ACM SIGCOMM, 1999.
[3] C. W. Chang, S. Lee, B. Lin, and J. Wang. “The taming of the shrew:

Mitigating low-rate TCP-targeted attack," in Proc. IEEE ICDCS, 2009.
[4] Y. Chen, Y.-K. Kwok, and K. Hwang. “Filtering shrew DDoS attacks

using a new frequency-domain approach," in Proc. IEEE LCN Workshop
Netw. Security, 2005.

[5] C.-M. Cheng, H. Kung, and K.-S. Tan. “Use of spectral analysis in
defense against DoS attacks," in Proc. IEEE GLOBECOM, 2002.

[6] Cisco Systems. “Distributed Weighted Random Early Detection,"
[Online]. Available: http://www.cisco.com/univercd/cc/td/doc/product/
software/ios111/cc111/wred.pdf.

[7] “Official port number defined by IANA (Internet Assigned Num-
bers Authority)," [Online]. Available: http://www.iana.org/assignments/
port-numbers.

[8] Cisco Systems. “WRED and MDRR on the Cisco 12000 Series Internet
Router with a Mix of Unicast, Multicast, and Voice Traffic Config-
uration Example," [Online]. Available: http://www.ciscosystems.com/
application/pdf/paws/22561/WRED_config_22561.pdf.

[9] D. Clark and W. Fang. “Explicit allocation of best-effort packet delivery
service." IEEE/ACM Trans. Netw., vol. 6, no. 4, 1998.

[10] M. A. El-Gendy, A. Bose, and K. G. Shin. “Evolution of the internet
QoS and support for soft real-time applications," in Proc. IEEE, 2003.

[11] T. D. Feng, R. Ballantyne, and L. Trajkovic. “Implementation of BGP
in a network simulator," in Applied Telecommun. Symp., 2004.

[12] S. Floyd and K. Fall. “Promoting the use of end-to-end congestion
control in the internet," IEEE/ACM Trans. Netw., 1999.

[13] M. Guirguis, A. Bestavros, I. Matta, and Y. Zhang. “Reduction of quality
(RoQ) attacks on internet end systems," in Proc. IEEE INFOCOM, 2005.

[14] C. Hopps. “Analysis of an equal-cost multi-path algorithm," RFC 2992
(Informational), November 2000.

[15] A. Kuzmanovic and E. W. Knightly. “Low-rate TCP-targeted denial of
service attacks (The shrew vs. the mice and elephants)," in Proc. ACM
SIGCOMM, 2003.

[16] Y. K. Kwok, R. Tripathi, Y. Chen, and K. Hwang. “HAWK: Halting
anomalies with weighted choking to rescue well-behaved TCP sessions
from shrew DoS attacks," in International Conf. Computer Netw. Mobile
Computing, 2005.

[17] X. Luo and R. K. C. Chang. “On a new class of pulsing denial-of-service
attacks and the defense," in Proc. Netw. Distributed Syst. Security Symp.,
2005.

[18] R. Mahajan, S. Floyd, and D. Wetherall. “Controlling high-bandwidth
flows at the congested router," in Proc. International Conf. Netw.
Protocols, 2001.

[19] M. Roesch. “Snort - lightweight intrusion detection for networks," in
LISA ’99: Proc. 13th USENIX Conf. Syst. Administration, pp. 229-238,
Berkeley, CA, USA, 1999. USENIX Assoc..

[20] M. Rupinder, L. Ioannis, H. S. Jamal, S. Nabil, N. Biswajit, and B. Jozef.
“Empirical study of buffer management scheme for diffserv assured
forwarding PHB," in ICCCN, 2000.

[21] A. Shevtekar, K. Anantharam, and N. Ansari. “Low rate TCP denial-
of-service attack detection at edge routers." IEEE Commun. Lett., Apr.
2005.

[22] S. M. Specht and R. B. Lee. “Distributed denial of service: Taxonomies
of attacks, tools, and countermeasures," in Proc. International Conf.
Parallel Distributed Computing Syst., 2004.

[23] H. Sun, J. C. Lui, and D. K. Yau. “Defending against low-rate TCP
attacks: Dynamic detection and protection," in Proc. International Conf.
Netw. Protocols, 2004.

[24] Y. Zhang, Z. M. Mao, and J. Wang. “Low-rate TCP-targeted DoS attacks
disrupts internet routing," in Proc. 14th Annual Netw. Distributed Syst.
Security Symp. (NDSS), 2007.

Chia-Wei Chang received the B.S. and M.S. de-
grees in communication engineering from the Na-
tional Chiao-Tung University, Hsinchu, Taiwan, in
2002 and 2004, respectively. He currently pursues
his Ph.D. degree in electrical, computer engineer-
ing of UCSD from 2005. Mr. Chang received the
2004 Prize of the Graduate Student thesis Contest
from CIEE, Taiwan and Calit2 Fellowship Award
2005 from UCSD. His research interests generally
lie in information and coding theory, multimedia
application, active queue management, security and

anomaly detection.

Seungjoon Lee received his Bachelor’s and Master’s
degrees in Computer Science from Seoul National
University, Seoul, Korea, in 1996 and 2000 and his
Ph. D. in Computer Science from the University of
Maryland in 2006. Currently, he is a senior member
of technical staff in AT&T Labs, Research. His
research interests include wireless networks, mobile
computing, peer-to-peer systems, and multicasting.

Bill Lin holds a BS, a MS, and a Ph.D. degree
in Electrical Engineering and Computer Sciences
from the University of California, Berkeley. He is
currently on the faculty of Electrical and Computer
Engineering at the University of California, San
Diego, where he is actively involved with the Center
for Wireless Communications (CWC), the Center
for Networked Systems (CNS), and the California
Institute for Telecommunications and Information
Technology (CAL-IT2) in industry-sponsored re-
search efforts. His research has led to over 100

journal and conference publications. He also holds 2 awarded patents.

Jia Wang is a principal member of the Networking
Research department in the Internet and Networking
Systems Research Center at AT&T Labs Research.
Her research focuses on Internet routing, network
measurement and management, and network secu-
rity. She received her MS and PhD degrees in Com-
puter Science from Cornell University in May 1999
and January 2001, respectively. She is currently a
senior member of IEEE and a member of ACM.

