
13-th IEEE International Conference on Peer-to-Peer Computing

Abandonment and its Impact on P2P VoD Streaming

Kyung-Wook Hwang∗, Vijay Gopalakrishnan†, Rittwik Jana†

Seungjoon Lee†, Vishal Misra∗, K.K. Ramakrishnan†,
∗Columbia University, kwhwang@ee.columbia.edu, misra@cs.columbia.edu
†AT&T Labs – Research, {gvijay, rjana, slee, kkrama}@research.att.com

Abstract—Peer-to-Peer (P2P) systems have evolved from being
used for file sharing to delivering streaming video on demand
(VoD). The policies adopted in P2P VoD, however, have not
taken user viewing behavior — that users abandon videos —
into account. We show that abandonment can result in increased
interruptions and wasted resources. As a result, we reconsider
the set of policies to use in the presence of abandonment. Our
goal is to balance the conflicting needs of delivering videos
without interruptions while minimizing wastage. We find that
an Earliest-First chunk selection policy in conjunction with
the Earliest-Deadline peer selection policy allows us to achieve
high download rates. We take advantage of abandonment by
converting peers to “partial seeds”; this increases capacity. We
minimize wastage by using a playback lookahead window. We
use analysis and simulation experiments using real-world traces
to show the effectiveness of our approach.

I. INTRODUCTION

Peer-to-peer (P2P) systems have become part of the main-
stream content distribution environment, and are being consid-
ered for commercial deployment of video-on-demand (VoD)
services [17]. Much of this progress can be attributed to
previous research identifying the set of policies that enable
robust and scalable P2P delivery systems. In this paper, we
consider the problem of viewers abandoning videos part way
through the viewing of the video. While mostly overlooked so
far, we show that abandonment (also called viewer engagement
in other work [10]) is a critical factor to consider since it
directly affects the impact of various policies used for P2P
VoD.

The two most important policies that determine P2P perfor-
mance are the chunk- and peer-selection policies. File sharing
systems have traditionally used a combination of Tit-for-Tat
(TFT) as the peer selection and Rarest-first (RF) as the chunk
selection as this combination offers the best tradeoff in terms of
performance and fairness. Unfortunately, this combination does
not work as well with streaming video, be it live or on-demand,
since a video is generally consumed sequentially. Instead, an
Earliest-First (EF) policy is a more natural chunk selection
policy for video streaming. EF, however, is not compatible
well with TFT as peers in different points of playback have
very little content of mutual interest to exchange with each
other. As a result, there has been a lot of work to identify
hybrid chunk selections strategies (e.g., EF+RF) [6, 7, 11, 22,
23, 28] that find a compromise between the need of streaming
to get sequential data and TFT’s need for diversity.

While the design of EF+RF implicitly assumes that viewers
watch entire videos, recent studies [14, 15] show that viewers
of both short clips and full-length movies often watch only
a small portion of a video and abandon the video part way
through. Such abandonment may be attributed to how users
find movies of interest (e.g., surfing for interesting content) or
the possibility that a viewer loses interest in the content. Such
viewer abandonment of videos has significant implications on

the design of P2P policies. For example, peers using EF+RF
may end up downloading rare chunks that they do not actually
watch later due to abandonment. In this case, it would be more
beneficial to use that upload capacity to deliver chunks that
peer immediately need, to improve video playback experience
and reduce unnecessary bandwidth consumption.

In this paper, we reconsider the set of chunk and peer
selection policies to use in real-world P2P VoD systems with
viewer abandonment (Section II). We show that EF is a more
appropriate chunk selection strategy in the presence of aban-
donment. Instead of using TFT, we introduce Earliest-Deadline
(ED) as the peer selection strategy. In ED, a node picks peers
with the earliest deadline among chunks when deciding which
request to serve. Choosing ED not only gives us substantial
performance improvement (as seen in our experiment results),
but also allows us to break the inter-dependence between
chunk- and peer selection that TFT introduces. While EF itself
reduces wasted download compared to EF+RF, we introduce
the notion of a playback lookahead window (PLA) to further
limit the download rate, as is used in HTTP streaming [2, 21].
The window is sized such that when it is full, the user will not
encounter interruptions. At the same time, users do not request
any more data than needed to avoid “wasting” bandwidth in
case they abandon the video.

Note that while the properties of churn and abandonment
are similar in philosophy, there are still subtle differences. In
particular, with abandonment, users do not necessarily leave
the system. Instead they may stay connected and watch a
different video after a short period of time, or even stay idle
in the system. Instead of treating abandonment as a departure,
we take advantage of the peer’s staying connected by getting
it to continue to participate in the swarm as a “partial seed”
until the user watches the next video. We define a partial
seed as a peer that does not have the entire video, but is
not actively watching (and downloading) the video. These
partial seeds continue to serve requests for the chunks they
have downloaded already, and thus contribute to increasing the
overall system capacity. We show using an analytical model
accounting for abandonment and partial seeds (in Section III)
that the partial seed staying time significantly influences the
swarm’s performance. We evaluate our design using detailed
simulations based on traces of user requests collected from a
nationally deployed VoD service (Section IV).

In this paper we make the following important contribu-
tions:

• Through trace-driven simulations, we show that exist-
ing P2P VoD systems do not perform well in presence
of abandonment. They experience more interruptions
compared to when users watch videos entirely. More
importantly, we show that viewers that watch more of
the video experience severe interruptions.

978-1-4799-0521-8/13/$31.00 c©2013 IEEE

13-th IEEE International Conference on Peer-to-Peer Computing

0 0.5 1
0

0.2

0.4

0.6

0.8

1

normalized length viewed

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Fig. 1: Cumulative distribution of normalized length viewed
of all requests in trace data

• In contrast to previous findings, our results show that
with abandonment, a hybrid policy of EF+RF per-
forms worse and results in longer interruption periods
than EF. With EF, using ED instead of TFT brings
significant performance enhancements.

• We develop a detailed analytical model that accounts
for abandonment and partial seeds and show that
“useful” download rate of EF effectively improves as
partial seeds stay longer.

• We show that the combination of ED, EF, and partial
seeds can significantly improve overall video playback
performance, while PLA further reduces wasted band-
width consumption.

II. ABANDONMENT AND P2P VOD

Recent studies [14, 15, 26] have shown that users abandon
videos before viewing them in their entirety. Our results show
that abandonment has a significant effect on the performance
of P2P VoD streaming systems. In this section, we re-evaluate
some of the key policies and design decisions for P2P VoD
by taking abandonment into account. Using the right chunk
selection policy and peer selection policy, we balance the need
to download the video fast enough to minimize interruptions
and startup delay while also minimizing wastage of network
resources.

A. Abandonment in Trace Data

Using traces from a large scale VoD service provider,
Hwang et al. [14] demonstrate that user abandonment in-
deed occurs. They show that the video watching duration
distribution depends on various aspects such as video length
and popularity. In this paper, we also use trace data from
a nationally deployed VoD service. Our data covers a two
week period in 2010 and has millions of requests. The trace
includes information about users’ interactive operations (e.g,
FastForward, Skip, Rewind, etc.), and we calculate the viewed
length of each user taking into account these specific opera-
tions (more details described in Section IV-A). In Figure 1,
we show the extent of user abandonment by plotting the
cumulative distribution (CDF) of normalized length viewed.
To compare abandonment for movies of different lengths we
divide each viewed length by the original duration of the video.
The figure indicates that only 26% of the sessions consumed
the corresponding videos fully. Thus, the assumption that each
user views the entire video and therefore downloads the entire
video file (as assumed by many existing P2P works), is not
appropriate when considering real-world user behaviors.

B. Chunk Selection Policy

The chunk selection policy determines the order in which a
peer downloads chunks. File sharing systems have traditionally
used Rarest-First (RF) as the chunk selection policy. RF has
several desirable properties including distributing rare chunks
among peers and allowing the seed to quickly offload chunks.
RF however is inherently unsuitable for streaming systems
which require chunks to arrive in order. Instead, a chunk
selection policy that attempts to get chunks close to playback
is a more natural fit for video streaming. In fact, a significant
amount of previous work [6, 7, 11, 22, 23, 28] has shown
that the combination of EF and RF (EF+RF) incorporates
the strengths of each policy and results in the best playback
continuity with P2P VoD.

However, none of these consider the effect of abandonment
by users. We observe that propagating rare chunks, usually
from the latter half of a video, is counter-productive and waste-
ful when abandonment is taken into consideration. Instead, we
could use that bandwidth to transfer chunks that are needed
immediately. As a result, we adopt EF as our chunk selection
strategy. This allows us to download chunks in order and
minimize the possibility of interruption. It also allows us to
control the rate at which chunks are downloaded to minimize
wastage. Our experimental results in Section IV-E confirm that
EF outperforms EF+RF in the presence of abandonment.

C. Peer Selection Policy

The peer selection policy determines the subset of requests
that are served by a peer upon receiving requests. Unlike chunk
selection where multiple options are used in practice, most
systems use TFT as the peer selection policy. TFT works by
forcing peers to upload data in order to download content. This
allows peers to disseminate content quickly to high bandwidth
peers and eliminates free-riding. However, it requires that peers
have content to exchange with each other. This, however,
has the unfortunate side effect of introducing interdependency
between chunk- and peer selection policies. Since peers have
to upload some data in order to be able to download (setting
aside considerations of optimistic unchoking used by TFT),
peers need to have a diverse set of chunks. This is not an
issue with RF as it is designed to create such diversity. With
EF, however, peers at different points of their playback will
not have content of mutual interest to exchange with each
other. In addition, there is growing realization that there are
inefficiencies due to TFT [13, 19] in streaming systems.

For this reason, we complement EF by choosing the peer
with the “Earliest-deadline”. To satisfy a viewer’s uninter-
rupted playback experience, each chunk must be delivered to
the viewer prior to its deadline. In our Earliest-Deadline (ED)
peer selection scheme, a requesting peer specifies a chunk and
its deadline with each request. Then, a potential provider (seed
or peer) receiving chunk requests from multiple connected
peers during a certain interval chooses to serve the peer with
the earliest deadline (with ties broken at random).

Unlike TFT, a peer does not choke another in ED. This
brings up new protocol aspects that we need to address. First,
as a provider, a peer may receive upload requests from all
of its connected peers. To ensure that the per-chunk upload
speed does not become too small, we limit the number of
concurrent uploads from a peer to other peers. Second, as it
is not choked, a downloading peer can have a large number

2

13-th IEEE International Conference on Peer-to-Peer Computing

of parallel downloads. Since all the downloads may share a
single downstream link to the peer, that link may become the
bottleneck. If the number of parallel downloads becomes large,
the per-chunk download rate decreases. This results in longer
start-up delays and frequent interruptions. To address this, each
peer adjusts its maximum number of parallel downloads dy-
namically, based on the availability of its download bandwidth.
Peers can increase the number of parallel downloads until they
use up their download capacity. They stop adding streams
when any additional download has the potential to decrease
the speed of the ongoing downloads.

By serving peers with the most urgent need, ED focuses
on ‘fairness’ of each peer’s streaming performance. While this
notion of fairness is certainly a ‘qualitative’ one, we show in
Section IV-C that ED performs substantially better than TFT
with respect to quantitative metrics such as interruption time.

D. Handling Free Riding

Free riders in P2P systems can significantly impact the
overall system performance and introduce unfairness. TFT
was designed specifically to prevent such free riding. How-
ever, as stated earlier, TFT introduces dependency on chunk
selection that is incompatible with P2P streaming. Hybrid
chunk selection policies seek a middle ground. There have
even been efforts to change seed policies [8] or to cluster
peers at similar playback points and introduce diversity within
these clusters [13]. Unfortunately, abandonment significantly
diminishes the effectiveness of such approaches, as seen in
Section IV.

Our approach in this paper is to deviate from TFT and
instead use ED. While ED does not guarantee against free
riders, ED offers better performance in terms of streaming and
quality-of-experience compared to TFT. The decoupling from
the chunk selection policy allows us to overcome inefficiencies
due to TFT [13, 19] in deployments that do not worry about
free riding (e.g., managed content delivery [17]). In scenarios
where eliminating free-riding is still important, we can adopt
approaches like Contracts [19] or iPASS [16], appropriately
modified, for P2P VoD. We are exploring these strategies as
part of our ongoing work.

E. Using “Partial” Seeds

Using ED as the peer selection policy allows us to eliminate
the artificial bottlenecks that arise from using TFT. It also
allows peers to make progress by favoring chunks with the
smallest deadline. However, it does not eliminate the fact that
seeds can still be overloaded, and thus become the bottleneck
for some peers. We overcome this by taking advantage of the
content that peers have already downloaded. We take advantage
of the fact that with abandonment, there is a period between
consecutive videos (or when the user is performing other
activities) that the node remains connected to the system even
though it is not actively viewing a video.

Consequently, we assume that the abandoning peer be-
comes a partial seed and continues to stay in the system and
shares the portion it has already downloaded. This is akin to a
seed with the entire video, except that this node only has the
partial video. Partial seeds can offload serving the initial parts
of the video (that are presumably requested more frequently),
allowing the seed to serve the later but rare portions to the
few users that remain to watch the video fully. Our analysis

in Section III shows that by having partial seeds stay longer
in the system, we can improve performance significantly.

F. Reducing Wastage by Limiting Playback Lookahead

The primary objective of the chunk selection policies is to
sustain a sufficient rate so that a viewer does not experience
interruptions. Our combination of EF and ED with partial seeds
allows us to achieve a rate comparable, if not better, than
TFT (Figure 16). However, unlike the ED+EF policy, TFT
with RF-based chunk selection (e.g., the hybrid policy EF+RF)
generates wastage by unnecessarily propagating later chunks
that are not likely to be watched when a viewer abandons the
video (Section IV-E).

In order to further limit the wastage with ED+EF, we
adopt a playback lookahead window (PLA) that is measured
in number of chunks. The PLA restricts excessive downloads
of chunks beyond the current playback point. Specifically,
when a peer has downloaded a predefined number (equal to
the PLA window) of consecutive chunks ahead of its current
playback point, it stops requesting further downloads until the
playback progresses and the window ‘opens’ up. The window
also moves forward as the playback progresses. By adjusting
the PLA window size, ED+EF greatly reduces the bandwidth
wastage without hurting playback continuity. We note that
this method of limiting the delivered rate has been widely
used for server-based video streaming protocols such as HTTP
streaming [21], progressive download [12], and adaptive bitrate
streaming [2]. Our results show that P2P systems can also
achieve substantial reduction in wastage by implementing a
rate limiting capability in the form of a playback lookahead.

III. ABANDONMENT ANALYSIS

In this section we analyze how abandonment affects swarm
population and useful download rates for EF and RF schemes.
Aalto et al. [1] analyze a viewer’s abandonment in P2P VoD as
a stochastic queueing model, where leechers abort and leave
the swarm instantly. Thus, they ignore the concept of partial
seeds. Our analysis builds on the work by Qiu et al. [20] and
Parvez et al. [18] but also takes abandonment into account.

We consider a single swarm with leechers, normal seeds,
and partial seeds, where we denote their count at time t
by x(t), y(t), z(t) respectively (or x, y, z for simplicity). A
leecher can have D concurrent download connections and U
simultaneous upload connections, and each connection has a
throughput of C. Leechers enter the system at rate λ and
attempt to play back a video of B byte size that has M chunks.
The leecher views the video fully and becomes a normal seed
with probability β, while with probability 1 − β, it abandons
its video and becomes a partial seed. We consider a demand-
driven system where xD > (x + y + z)U (upload capacity
constrained). We summarize the notations in Table I.

A. Swarm Population

RF swarm size: The total system upload capacity that is useful
to a random leecher (i.e., system goodput) is (x+ y+ δz)UC
where δ indicates the fraction of partial seeds that can upload a
desired chunk for a leecher. With RF, we assume partial seeds
can always upload to leechers (i.e., δ = 1), whereas for EF, δ
depends on the distribution of chunks at a partial seed.

For the system to become the steady state, the rate of data
loss due to the departures of normal seeds and partial seeds

3

13-th IEEE International Conference on Peer-to-Peer Computing

Parameter Definition

B File byte size
M Number of chunks of file
U Max. upload connections
D Max. download connections
C Throughput per connection
λ Leecher arrival rate

1/µ1 Normal seed staying time
1/µ2 Partial seed staying time
x(t) Number of leechers at time t
y(t) Number of normal seeds at time t
z(t) Number of partial seeds at time t
β Fraction of leechers converted to normal seeds
ρ Fraction of the file a partial seed has on average
δ Prob. that a partial seed has chunks available for a leecher
γ Leecher download rate
γ̄ Leecher useful download rate

TABLE I: Parameters and Definition for Analysis

should be equal to the system goodput [4] as follows,

{β + (1− β)ρ}Bλ = (x̄+ ȳ + δz̄)UC (1)

where βBλ is the loss rate due to normal seed departures and
(1 − β)ρBλ is the one due to partial seed departures. From
Equation (1) with δ = 1, the total swarm population of RF is

x̄+ ȳ + z̄ =
{β + (1− β)ρ}Bλ

UC
(2)

which is independent of the normal or partial seed staying
time.

Since our model assumes that the system is upload capacity
constrained, for the model validity we need to compute a
condition on the staying times of partial seeds and normal
seeds. Using Little’s law, ȳ and z̄ in the steady state are

ȳ = β
λ

µ1
(3)

z̄ = (1− β)
λ

µ2
(4)

From Equations (2), (3), and (4), x̄ is

x̄ = λ{
{β + (1− β)ρ}B

UC
−

β

µ1
−

1− β

µ2
} (5)

Therefore, to satisfy x̄ > 0, the model requires the following
condition on µ1 and µ2:

β

µ1
+

1− β

µ2
<

{β + (1− β)ρ}B

UC
(6)

which indicates very large partial or normal seed staying time
can violate our assumption of the upload capacity constraint.

EF swarm size: Following [18], from the viewpoint of any
given peer A, there are younger peers who arrived after A
and older peers who arrived before A. With EF A can only
download from its older peers (with more chunks) and can only
provide content to younger peers. An uploader that receives
more than U requests chooses to serve U requests at random
and rejects the rest.

Consider a peer that has been in the system for time
tm. The probability that the peer is successful in obtaining a
download connection for its next desired chunk is defined as:
p(tm) = Ũ(tm)

D̃(tm)
, where Ũ(tm) and D̃(tm) are the connection

supply and demand at time tm. A peer of age tm requests
a download connection from older peers (t > tm).The total
number of possible upload connections available for this peer

is Ũ(tm) = (x + y + δz − λtm)U . For computing D̃(tm),
we first note that the total number of download requests in the
system is xD and that peers with more chunks (including seeds
and partial seeds) receive higher demand. In [18] D̃(tm) is
indirectly calculated by finding the total number of download
requests handled by peers younger than tm and subtracting
it from xD, and is approximated as D̃(tm) = xD

α where α
depends on the system parameters. However, we approximate
α as a constant, and its range is [1.09, 1.25] for typical
scenarios in [18] (we will provide the upper bound on α to
achieve the steady state system in Inequality (11)).

Using Little’s law, we can derive the average downloading

rate: γEF = 1
T

∫ T

0
Dp(t)Cdt = αUC(y/x + δz/x + 1/2),

where T is session duration. Similar to Equation (1), the rate
of data loss due to leaving seeds should equal the system’s
goodput in the steady state as follows,

{β + (1− β)ρ}Bλ = (
x̄

2
+ ȳ + δz̄)αUC (7)

where the right hand side comes from γEFx. ȳ and z̄ are
independent of chunk selection schemes (i.e., the same as
Equation (3) and (4), respectively). From Equations (3), (4),
and (7) we obtain x̄:

x̄ = 2λ{
{β + (1− β)ρ}B

αUC
−

β

µ1
−

(1− β)δ

µ2
} (8)

Since we assume x̄ > 0, similar to Inequality (6) we have the
following condition on µ1 and µ2 for the EF scheme:

β

µ1
+

(1− β)δ

µ2
<

{β + (1− β)ρ}B

αUC
(9)

The total EF swarm population is

x̄+ ȳ+ z̄ = λ{
2{β + (1− β)ρ}B

αUC
−

β

µ1
−

(2δ − 1)(1− β)

µ2
}

(10)
Unlike with RF policy, the swarm size can increase depending
on how long the partial seeds and the normal seeds reside in
the system.

Note that we should limit α such that (x̄+ȳ+z̄)UC ≥ {β+
(1 − β)ρ}Bλ since the left hand side indicates the aggregate
upload bandwidth of all peers in the system and should be
equal to or larger than the system’s goodput (x̄2 + ȳ+δz̄)αUC
in Equation (7). Therefore, using Equations (10), α has the
following upper bound:

α <
2{β + (1− β)ρ}Bµ1µ2

{β + (1− β)ρ}Bµ1µ2 + {(2δ − 1)(1− β)µ1 + βµ2}UC
(11)

B. Useful Download Rates

We define that a chunk download is useful only if the
downloader has already downloaded all other sequentially
earlier chunks. We now compare the useful download rates to
show that EF with abandonment provides quicker download
compared to the RF policy with abandonment.

RF without abandonment: We can get p(t) = Ũ(t)

D̃(t)
= (x+y)U

xD

with RF without abandonment. The download rate is

γRF =
1

T

∫ T

0

Dp(t)Cdt = UC(1 +
y

x
)

4

13-th IEEE International Conference on Peer-to-Peer Computing

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

β

u
s
e
fu

l
d
o
w

n
la

o
d
 r

a
te

µ
2
=.0055

µ
2
=.007

No Abandon

µ
2
=.02

µ
2
=.2

Fig. 2: Useful download rate of EF vs. β
(µ1 = 0.01)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

viewed length (minutes)

c
u

m
u

la
ti
v
e

 p
ro

b
.

Fig. 3: CDF of viewed length for 8 videos

Mon Wed Fri Sun Tue Thu Sat
0

0.2

0.4

0.6

0.8

1

time

n
u

m
b

e
r

o
f

s
e

s
s
io

n
s
 (

n
o

rm
a

liz
e

d
 b

y
 t

h
e

 m
a

x
 v

a
lu

e
)

Fig. 4: Number of concurrent sessions for
a random video in the real trace.

RF with abandonment: Similarly, p(t) = (x+y+z)U
xD (assum-

ing δ = 1 for RF), and

γRF =
1

T

∫ T

0

Dp(t)Cdt = UC(1 +
y

x
+

z

x
)

The useful download rate for RF with abandonment is obtained
by scaling γRF with the probability of useful chunks that have
been downloaded up to time t. This scaling factor is shown to
be 1

M−k+1 [11]. Therefore:

γ̄RF = γRF
1

M − k + 1

where k is the number of chunks that have been downloaded
so far for a file with a total number of M chunks.

EF without abandonment: In EF, since the chunks are
sequentially downloaded, all chunks downloaded are useful.

γ̄EF = γEF = αUC(
y

x
+

1

2
) (12)

EF with abandonment: Similarly,

γ̄EF = γEF = αUC(
y

x
+

δz

x
+

1

2
) (13)

Figure 2 shows the impact of partial seeds on the useful
download rate for EF. Using Equations (12) and (13), we
apply α = 1.2, ρ = 0.5, 1/µ1 = 100,M = 100, U = 4,
and C = 0.001 assuming the unit file size B = 1. We also
set δ = 0.5 assuming the distribution of the number of down-
loaded chunks at each partial seed is uniformly distributed,
and thus on average only half of the partial seeds have chunks
at or beyond the point defined by the desired chunk. Note
that by Equation (9) µ2 > 0.0048 should be satisfied for the
system to remain under the assumption of upload capacity
constraint. When partial seeds stay for a short period of time
(e.g., µ2 ≥ 0.02), the useful download rate with abandonment
is smaller than the case without. As partial seeds continue to
reside for extended periods of time (potentially longer than the
normal seeds), the useful download rate with abandonment is
seen to be significantly higher than without. Thus, in a system
with abandonment, a partial seed’s staying time significantly
influences the useful download rate. In case of µ2 = 0.0055
or 0.007, the useful download rate decreases with increasing β
since normal seed staying time is relatively shorter than partial
seed staying time (note µ1 = 0.01). Comparing EF and RF, as
M becomes larger, EF’s useful download rate is much higher
than for RF (not shown) confirming earlier results.

IV. EVALUATION

A. Data Set

To reflect realistic viewing patterns of a large population
of users, we collected trace data from a nationally deployed
Video-on-Demand service serving millions of customers. We
examine a “heavy-viewing” period of 14 consecutive days in
2010. We focus on the trace from a single large metropolitan
area, totalling approximately 1 million requests. The trace data
contains information for each viewing session: an anonymized
user ID, user request time, video ID, video length, and the
duration viewed. To ensure user privacy, all user data is kept
anonymous and was analyzed in aggregate, without the ability
to identify each user. The trace also has information about
the set of DVD-like operations that the user performed while
watching the video in a given session. We use the duration
viewed in the trace as session duration (time elapsed since
the user request time) in the simulation, at which point the
peer abandons the video. Note that the final playback point
of the video in the simulation may be shorter than the session
duration (due to startup delay, interruptions, etc.). We view this
difference as an indicator of the performance of the system
(smaller the better).

To obtain representative results, we repeat the experiment
independently with 8 different popular videos that have dif-
ferent lengths across a wide range, from 30 to 150 minutes.
They show different abandonment patterns as in Figure 3. They
also show a clear daily pattern in their request volume. For
example, Figure 4 shows the number of concurrent sessions
(i.e., swarm size) of one of the 8 videos. Note that to protect
proprietary information, the Y-axis is normalized by the peak
value. Although the absolute request volume varies, the other
7 videos also follow very similar daily patterns. We report the
average results obtained from these 8 videos in this section.

B. Experiment Setup and Assumptions

To evaluate our approach, we use a discrete event-driven
BitTorrent simulator [5]. We enhance the original P2P file
sharing simulator for video streaming, so that each peer waits
till a playback buffer fills up and then starts playing back as
the download progresses. In addition to original TFT, we also
experiment with ED, EF, and EF+RF to compare the following
set of schemes:

• TFT+EF: using EF chunk selection with original TFT

• TFT+[EF+RF]: using hybrid of EF and RF with TFT

• ED+EF: using EF with ED peer selection

5

13-th IEEE International Conference on Peer-to-Peer Computing

Parameter Default

Number of initial seeds 1
Upload bandwidth of an initial seed 3 Mbps
Peer download/upload bandwidth 5 Mbps/ 1 Mbps
Max. concurrent uploads (seed) 15
Max. concurrent uploads (peer) 5
Video bitrate 1 Mbps
Chunk size 10 seconds
Peer arrival rate (synthetic trace only) λ = 0.05 (Poisson arrival)

TABLE II: Simulation parameters and their default values.

We further enhance EF+RF to reduce the startup delay as
follows. Instead of simply selecting EF or RF based on a
probability [7, 11, 23, 28], a peer in the enhanced scheme
initially uses EF only, but switches to EF+RF only if it has
enough chunks in the playback sequence. In our experiments,
if there are 5 or more chunks, a peer uses EF with probability
of 0.7 and RF with probability of 0.3.

We use one initial seed that has the complete video to serve
to other requesting peers and stays in the swarm throughout
the simulation. We assume that a peer can play back a chunk
while it is being downloaded (subject to the startup delay and
the appropriate portion being available). However, the peer
cannot share the chunk with other peers until it is completely
downloaded. We assume that a peer downloads only one
chunk at a time from a given uploader. All peers follow the
same chunk- and peer-selection policies. The tracker behavior
remains unchanged from current BitTorrent systems.

For the trace driven simulation, peers make requests for a
video at the time instants specified in the trace. Peers that
download the entire video convert to normal seeds while
those that abandon the video part-way become partial seeds.
Since the trace does not tell us when nodes depart, we model
the staying time of normal seeds and partial seeds as an
exponential distribution with the average of 1/µ1 and 1/µ2

seconds, respectively. After this time, normal or partial seeds
also permanently leave the system.

In all our experiments, each chunk is equal to 10 seconds of
playback. Also, we allow a startup buffer b for each peer, and
define startup delay as the time taken for a peer to download
the first b seconds of the video. We use b = 10 (i.e., 1 chunk)
as the default. We assume that the video playout rate is 1Mbps
for all videos. We summarize the different parameters used in
the simulations and their default values in Table II.

We use playback interruption time as our main metric.
However, since the viewed length by a user varies widely,
instead of just measuring total interruption time of each view,
we normalize it by the viewed length, which we call the
normalized interruption time (NIT). In addition to interruption
time, we also measure the wastage of system-wise bandwidth
due to abandonment. We define wastage as the fraction of bytes
downloaded in the swarm, but not viewed. That is, wastage =

1 −
∑

i∈P
Vi∑

i∈P
Di

, where P is the set of all peers, and Di and

Vi are the total bytes that peer i downloaded and viewed,
respectively. Note that there is no wastage when every viewer
watches the video fully. We will show that a hybrid of EF+RF
causes substantial wastage compared to the EF-only case, in
Section IV-E.

C. Impact of Abandonment

We first investigate how user abandonment affects the
performance of different combinations of chunk selection and

1 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

initial seed capacity (Mbps)

n
o

rm
a

liz
e

d
 i
n

te
rr

u
p

ti
o

n
 t

im
e

TFT+EF, no abandon

TFT+[EF+RF], no abandon
ED+EF, no abandon

TFT+EF, abandon
TFT+[EF+RF], abandon

ED+EF, abandon

Fig. 5: Comparing NITs of different combination of chunk-
and peer- selection policies when user abandonment exists and
when it does not (with 95% confidence interval).

0 1000 2000 3000 4000 5000 6000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

viewed amount (seconds)

n
o

rm
a

liz
e

d
 i
n

te
rr

u
p

ti
o

n
 t

im
e

TFT+EF, abandon
TFT+[EF+RF], abandon
ED+EF, abandon

Fig. 6: Average NITs of each peer group divided based on
viewed length. The initial seed capacity is 3Mbps.

peer selection policies. We vary the initial seed capacity in
Figure 5 and record the resulting NIT. Note that when we
vary the capacity of the initial seed, we accordingly adjust
the maximum number of its concurrent uploads allowed (e.g.,
10 concurrent uploads with 2Mbps upload capacity, 20 with
4Mbps, etc.). Figure 5 shows that all three schemes (TFT+EF,
TFT+[EF+RF], ED+EF) have larger NITs in presence of
abandonment than without abandonment. This indicates that
while the absolute time of interruption might be smaller with
abandonment, the proportional impact of interruption is larger
with abandonment. Proportion is more important because if a
viewer is interrupted for longer, there is the further likelihood
that he/she may abandon the video earlier [10, 15]. Clearly, a
higher seed capacity benefits all the schemes. Also importantly,
many existing works have suggested the desirability of using
a EF+RF hybrid scheme for P2P VoD. However, we observe
that with TFT, EF+RF hybrid actually causes larger NITs
compared to EF when user abandonment exists. This is because
with abandonment, chunks closer to the end of a video are
viewed rarely. Exchanging rare chunks (typically later parts
of the video) which are not watched results in inefficient use
of resources. We observe that our proposed ED+EF com-
bination has the smallest NITs. This shows the importance
of accounting for abandonment; something that earlier works
have overlooked. This also shows that serving peers with most
urgent chunks helps improve overall user experience. We also
measured the startup delay for each approach. We do not
observe a significant difference between different approaches

6

13-th IEEE International Conference on Peer-to-Peer Computing

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

normalized interruption time

c
u

m
u

la
ti
v
e

 p
ro

b
.

ED+EF, no abandonment
ED+EF, abandonment

Fig. 7: Cumulative distribution of NITs
when user abandonment exists and when
it does not, respectively.

0 1 2 3 4 5 6

x 10
4

1

10

100

seconds

fr
a
c
ti
o
n
 o

f
d
e
m

a
n
d
s
 s

e
rv

e
d
 b

y
 i
n
it
ia

l
s
e
e
d
 (

%
)

ED+EF, abandonment
ED+EF, no abandonment

Fig. 8: The fraction of demand (in terms
of bytes) satisfied by the initial seed over
time.

0 500 1000 1500 2000
0

5

10

15

20

25

seconds

n
u
m

b
e
r

o
f
c
o
n
c
u
rr

e
n
t
d
o
w

n
lo

a
d
s

ED+EF, no abandonment
ED+EF, abandonment

Fig. 9: Number of concurrent downloads
of a peer over time. The solid curve ends
at 1610 seconds.

whether there is abandonment or not; this is not surprising as
they all use EF at startup.

In Figure 6, we use one of the longer videos (105 minutes),
group peers based on how much they watched, and plot the
average NIT for each group. Specifically, we divide the video
into 100 second bins, and group the viewers into these bins
based on how much they watch (i.e., the first group includes
peers who watched 0–100 seconds of the video, the next group
watched 101–200 seconds of the video, etc.). The initial seed
upload capacity is 3Mbps. We observe that peers who watch
for a long period have larger NITs than peers who watch for a
shorter interval. We also note that TFT+[EF+RF] reduces NITs
compared to TFT+EF for peers who watch the video longer
than 4800 seconds. However, for most of peers who watch less
than 4800 seconds, TFT+[EF+RF] causes more interruption.
As a result, TFT+[EF+RF] results in larger overall NITs than
TFT+EF in the presence of abandonment, just as we saw in
Figure 5. As before, the use of ED+EF results in consistently
lower interruption than the other two policies.

To understand the cause for these results and their rela-
tionship to abandonment, we first compare NITs of each view
as CDFs in Figure 7 between the case when abandonment
exists and when abandonment does not exist. The initial seed
capacity is 3Mbps, and all peers use ED+EF. We observe that
with abandonment some views have very long NITs, such as
NIT ≥ 1. Therefore, we now focus on the peers who have
NITs larger than 1 to understand how abandonment makes
their playback performance worse.

Specifically, we conduct an in-depth study step by step
using a simple synthetic trace for a better understanding.
While in the real trace peer arrival patterns are fixed, with
the synthetic trace we have full control over peer arrivals. By
adjusting arrival rates and patterns, we are able to more clearly
explain the impact of abandonment by presenting distinct
trends on the results with less variance. Based on the findings
from the synthetic trace, we will also compare and validate
our observations with the real trace results.

For the synthetic trace experiments, we model the peer
arrival and abandonment patterns as random processes. We
assume that peer arrival follows a Poisson process with rate
λ = 0.05. We use a 30 minute video, and each arriving
peer watches uniformly between 3 and 30 minutes and then
abandons. We measure NITs of 2000 consecutive peers who
arrive in the system after the system reached a steady state

(where the swarm size becomes stable). Also, to compare
NITs more precisely, we remove startup buffer at each peer
so that startup delay is also considered as an interruption and
all contributions of delay are now included in the NIT. Unless
otherwise stated, the synthetic trace experiments use the same
experiment parameters as the real trace experiments in Table II.

First from the synthetic trace results, we compare the load
on the initial seed between with and without abandonment in
Figure 8. With abandonment, the load as a byte fraction of
requests served by the initial seed is larger than without aban-
donment. This is because peers leave early with abandonment
causing loss of upload capacity available. This result indicates
that abandonment imposes more critical role on the initial seed.
Note that the initial large drops till the first 104 seconds for
the both curves indicate that the swarm size is initially not yet
stable but is growing till it becomes stable.

Then, we monitor the number of concurrent chunk down-
loads at each peer over time who has NIT ≥ 1 and observe that
those peers have a similar trend to that presented in Figure 9.
We see that when the peer joins the swarm, it initially has many
providers, 22–23 at max. However, with abandonment the
number of concurrent downloads goes down, and after about
1100 seconds, the number becomes only 1 which is the initial
seed and never increases until the peer abandons the video. On
the other hand, without abandonment, although the peer loses
lots of download connections in a similar manner, it manages
to maintain about 4–6 parallel downloads. Also, the downloads
end at 1610 second without abandonment, which means that
the download finishes earlier than the actual playback. This
trend indicates that with abandonment older peers (i.e., those
who arrived earlier than this peer) have all left at about the
1100 second mark, and therefore this peer loses all its possible
uploaders other than the initial seed. We note that this trend is
strongly related to our EF chunk selection policy since younger
peers cannot help older peers with EF. However, we will show
that although using EF+RF may alleviate this issue, EF+RF
results in more peers having interruptions than EF only, with
abandonment.

More importantly, losing older peers seen in Figure 9 oc-
curs more severely with abandonment because viewers watch
different length of the video. If a peer watches for a longer
period than its older peers, that peer would be more likely
to lose its potential uploaders early. In Figure 10(a) and
10(b) we show NITs of each peer in an arriving order, when

7

13-th IEEE International Conference on Peer-to-Peer Computing

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

peer ID (arriving order)

n
o

rm
a

liz
e

d
 i
n

te
rr

u
p

ti
o

n
 t

im
e

(a) NITs of ED+EF with no abandonment

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

peer ID (arriving order)

n
o
rm

a
liz

e
d
 i
n
te

rr
u
p
ti
o
n
 t
im

e

(b) NITs of ED+EF with abandonment

Fig. 10: NITs of 1000 peers sorted in their arriving order

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

viewed amount (seconds)

n
o
rm

a
liz

e
d
 i
n
te

rr
u
p
ti
o
n
 t
im

e

TFT+EF, abandon
TFT+[EF+RF], abandon
ED+EF, abandon
ED+EF w/ startup delay, abandon

Fig. 11: Average NITs of each peer group
divided based on viewed length. The syn-
thetic trace used.

abandonment does and does not exist, respectively. While a
similar set of peers experience larger NITs in both cases,
we observe that the magnitude is much larger in the case of
abandonment.

In Figure 11, we divide peers into different groups based on
their viewed length, and plot the average NITs of each group
for the synthetic trace, similarly to Figure 6 with the real trace.
Each group has a 40 second range of viewed length. We now
clearly observe that NITs grow superlinearly as a peer watches
the video for a longer time. We also note that TFT+[EF+RF]
reduces NITs compared to TFT+EF for peers who watch for a
very long time (more than 1640 seconds). This is because, by
using RF, older peers have a chance to download from younger
peers as well. However, for most of peers who watch for short
durations, RF causes more interruption by exchanging chunks
closer to the end of the video; but those chunks are rarely
viewed. Peers who watch for a very short time, even smaller
than 500 seconds, have slightly larger NITs than peers who
watch around 500–1200 seconds. This is because, as stated
earlier in this section, we do not consider startup delay for
synthetic trace experiments. To confirm this, we also plot the
results when peers have a startup buffer of 10 seconds of video
just like the experiment with the real trace, and we see that
NITs for peers who watched less than about 1300 seconds
of the video with ED+EF is almost 0. Comparing Figures 11
and 6, although NITs in the real world do not consistently
and smoothly grow with viewed length, but rather fluctuate,
peers with longer views generally suffer more interruptions
than peers with shorter views. Furthermore, we observe exactly
the same performance relationship among the three different
policy combinations.

D. Utilizing Partial Seeds

We also investigate the effect of utilizing partial seeds. To
understand the potential of seeds staying on in practice, we
present results from our request traces collected at the set-top
boxes of viewers. Specifically, for each customer, we calculate
the distribution of the time between the completion of one
video and the start of the next video request. Based on this,
we determine how long each video would be available in a
customer’s set-top box (Figure 12). We observe that in over
45% of the occurrences, there is at least 1000 seconds of time
the seed (whether it is a partial or normal seed) can continue to
stay and serve an existing swarm before the user starts viewing

0 2 4 6 8

x 10
4

0

0.2

0.4

0.6

0.8

1

seed staying time (in seconds)

c
u

m
u

la
ti
v
e

 p
ro

b
.

Fig. 12: Seed staying time from trace

another video.

In Figure 13, we plot NITs of different chunk- and peer-
selection strategies as a function of the average staying time of
partial seeds (1/µ2 in Section III) when the initial seed capacity
is 3Mbps with a maximum of 15 concurrent uploads. Note that
we also make normal seeds who have downloaded the entire
video stay on as long as the partial seeds, i.e., µ1 = µ2. In
the presence of peer abandonment, having peers staying on as
partial seeds benefits all of the strategies. Not surprisingly, the
benefit increases as the staying time of partial seeds increases.
As shown in Figure 14, as the staying time increases, NIT
decreases significantly, especially for the viewers with larger
viewed lengths. For verification, we also repeat the partial seed
experiments with the synthetic trace used in Section IV-C, and
NITs of peers with long views gradually decrease as the partial
seeds stay longer, as shown in Figure 15.

E. Minimizing Wastage

We measure the bandwidth wastage caused by abandon-
ment for the three different policy combinations, and also in-
vestigate how utilizing partial seeds impacts wastage. First, we
investigate how the peer selection policies, TFT and ED impact
wastage. When comparing the download rates of TFT+EF and
ED+EF, we see that the average download rates of TFT+EF are
higher than ED+EF (e.g., 1.57 vs. 1.20 Mbps with abandon-
ment but no partial seed staying). However, the distribution
of download rates is quite revealing. Figure 16 shows that
more than 80% of peers achieve download rates higher than
the video streaming rate (1Mbps) with ED+EF. TFT+EF on
the other hand has higher variability; some peers get high
rates, while many fall below 1Mbps because they struggle to

8

13-th IEEE International Conference on Peer-to-Peer Computing

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

average staying time of partial seeds (seconds)

n
o
rm

a
liz

e
d
 i
n
te

rr
u
p
ti
o
n
 t
im

e

TFT+[EF+RF], abandonment
TFT+EF, abandonment
ED+EF, abandonment

Fig. 13: NITs of three different schemes
in presence of abandonment as a function
of partial seed staying time.

0 1000 2000 3000 4000 5000 6000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

viewed amount (seconds)

n
o
rm

a
liz

e
d
 i
n
te

rr
u
p
ti
o
n
 t
im

e

partial seed staying time=0
200 seconds
400 seconds
600 seconds

Fig. 14: Average NITs of each peer group
divided based on viewed length (µ1 =
µ2). ED+EF used. Real trace used.

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

viewed amount (seconds)

n
o
rm

a
liz

e
d
 i
n
te

rr
u
p
ti
o
n
 t
im

e

partial seed staying time=0
200 seconds
600 seconds
1000 seconds

Fig. 15: Average NITs of each peer group
divided based on viewed length (µ1 =
µ2). ED+EF used. Synthetic trace.

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

leecher download rate (Kbps)

c
u
m

u
la

ti
v
e
 p

ro
b
.

ED+EF, no abandon,1/µ
2
=0s

ED+EF, abandon, 1/µ
2
=0s

ED+EF, abandon, 1/µ
2
=600s

TFT+EF, no abandon, 1/µ
2
=0s

TFT+EF, abandon, 1/µ
2
=0s

TFT+EF, abandon, 1/µ
2
=600s

Fig. 16: CDFs of leecher download rate (µ1 = µ2). 1/µ2 = 0
indicates partial seeds leave immediately after abandoning.

get unchoked, which is a key deficiency of such a policy for
streaming video. Consequently, we have more wastage with
TFT schemes as seen in Figure 17(a). TFT+[EF+RF] causes
more wastage than TFT+EF due to exchanging rare chunks
by RF. ED+EF results in the least amount of wastage. Also,
we see that as partial seeds stay longer in the swarm, wastage
grows for all the schemes, since download rates of both TFT
and ED schemes increase by having partial seeds contribute,
as shown in Figure 16 (with 1/µ2 = 600 secs).

We performed experiments by varying the size of the
playback look-ahead (PLA) window (described in Section
II-F) to achieve a balance between bandwidth wastage (Figure
17(b)) and playback quality (Figure 17(c)). We observe that
with a modest PLA window size (e.g., 5 chunks), ED+EF can
achieve almost the same level of playback performance but
achieve much lower wastage - by almost 85% (reducing from
wastage 26% to 4%). In contrast, a smaller PLA values cause
more playback interruptions.

V. RELATED WORK

Abandonment: Hwang et al. [14] and Li et al. [15] present a
measurement study on viewer’s behavior with abandonment in
a large scale landline-based and mobile-based IPTV services
provider, respectively. They demonstrate that users often watch
only a small portion of a video. We take into account this
effect of abandonment and show that existing schemes for
P2P VoD should be reconsidered to cope with more realistic
demands. Aalto et al. [1] analyze abandonment in P2P VoD

with limited simulation scenarios for model verification. Our
work analyzes the contribution of ”partial seeds” and performs
practical evaluation with real traces to measure impact of
abandonment in the real world.

Chunk selection: To adapt BitTorrent for streaming systems
(either live or VoD), a combination of the rarest first (RF)
chunk selection policy and sequential chunk download (EF)
has been exploited [6, 7, 11, 22, 23, 28]. The specific details
of the proposed schemes vary from simple probabilistic hybrid
models to using sophisticated network coding techniques.
Previous literature claims that achieving balance between
system utilization (by RF) and on-line playback (by EF) can
substantially improve playback quality. However, we show
that with viewers’ abandonment, such a hybrid policy greatly
degrades the playback performance. We further show that using
EF only achieves better playback performance.

Peer selection: BitTorrent’s TFT is effective for file sharing
with its inherent incentive mechanism to encourage a peer’s
contribution. However, several prior works [9, 13, 19, 22, 24,
25, 27]show that TFT is not suitable for streaming applications.
This is primarily because chunk selection using RF is not
suitable for streaming, and TFT without RF makes it difficult
for new peers to contribute to older peers, thus preventing
them from fully helping each other. Various peer selection
approaches have been proposed for streaming. Shah et al. [22]
modify TFT’s optimistic unchoke, D’Acunto et al. [9] make
peers act more altruistically, and Wen et al. [24] group peers
with similar playback points to help each other. To satisfy a
viewer’s uninterrupted playback experience, we replace TFT
with the Earliest-Deadline (ED) policy, which ensures that each
chunk is delivered to the viewer prior to its deadline.

Limiting Rate to Avoid Wastage: Popular VoD services such
as YouTube (using Progressive Download) and Netflix (using
Adaptive Bit Rate) have adopted approaches that limit the
amount of video bytes delivered beyond the current playback
point so as to limit wastage and also reduce the load on
the network for VoD streaming. However, most of these
approaches have been applied for server-based environments
such as HTTP streaming [21], progressive download [3, 12],
and adaptive bitrate streaming [2]. A similar capability is
desired for P2P VoD streaming. We show that our approach of
having a limited ’look-ahead’ window can also reduce wastage
caused by abandonment in P2P systems, while not hurting the
viewer’s playback experience.

9

13-th IEEE International Conference on Peer-to-Peer Computing

0 200 400 600 800 1000
0

10

20

30

40

50

average staying time of partial seeds

w
a

s
ta

g
e

 (
%

)

TFT+[EF+RF], abandonment
TFT+EF, abandonment
ED+EF, abandonment

(a) Wastage and partial seed staying time

2 5 10 15 20
0

5

10

15

20

25

30

PLA size (number of chunks)

w
a
s
ta

g
e
 (

%
)

ED+EF w/o PLA, 1/µ
1
=1/µ

2
=600s

ED+EF, w/ PLA, 1/µ
1
=1/µ

2
=600s

ED+EF w/ PLA, 1/µ
1
=1/µ

2
=200s

ED+EF w/ PLA, 1/µ
1
=1/µ

2
=0s

(b) Wastage and PLA

2 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

PLA size (number of chunks)

n
o
rm

a
liz

e
d
 i
n
te

rr
u
p
ti
o
n
 t
im

e

ED+EF w/ PLA, 1/µ
1
=1/µ

2
=200s

ED+EF w/o PLA, 1/µ
1
=1/µ

2
=200s

ED+EF w/ PLA, 1/µ
1
=1/µ

2
=600s

ED+EF w/o PLA, 1/µ
1
=1/µ

2
=600s

(c) NITs and PLA

Fig. 17: Wastage of different approaches, varying partial seed staying time and PLA window size, with 95% confidence interval.

VI. CONCLUSION

In this paper, we demonstrated that user abandonment
of videos can impact P2P VoD streaming performance sig-
nificantly. In all the schemes we considered in this paper,
abandonment caused larger interruptions (NITs), particularly
with peers watching longer as they are isolated with no other
peers to upload from. With abandonment, distributing rare
chunks (by RF or EF+RF hybrid) becomes wasteful and
performs worse than EF, as peers are likely to abandon before
consuming the downloaded rare chunks. Through analysis and
trace-driven simulations we show that our design that combines
ED for peer selection, EF for chunk selection, and the use
of partial seeds outperforms existing well-known schemes by
significantly improving overall video playback performance
and reducing wasted bandwidth consumption. Additionally, we
further reduce wastage by peers having a playback lookahead
window. As part of our future work, we plan to investigate
strategies to eliminate free-riding.

ACKNOWLEDGEMENT

We would like to thank our shepherd, Fabien Mathieu, as
well as the anonymous reviewers for their valuable comments
that helped to improve the paper significantly.

REFERENCES

[1] S. Aalto, P. Lassila, P. Savolainen, and S. Tarkoma. How Impatience
Affects the Performance and Scalability of P2P Video-on-Demand
Systems. In SIGMETRICS MAMA ’11, June 2011.

[2] S. Akhshabi, A. C. Begen, and C. Dovrolis. An Experimental Evaluation
of Rate-Adaptation Algorithms in Adaptive Streaming over HTTP. In
ACM MMSys, 2012.

[3] S. Alcock and R. Nelson. Application Flow Control in YouTube Video
Streams. SIGCOMM Comput. Commun. Rev., 41(2), Apr. 2011.

[4] F. Benbadis, F. Mathieu, N. Hegde, and D. Perino. Playing with the
Bandwidth Conservation Law. In P2P ’08, 2008.

[5] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Analyzing
and Improving a BitTorrent Networks Performance Mechanisms. In
INFOCOM, 2006.

[6] Y. Borghol, S. Ardon, N. Carlsson, and A. Mahanti. Toward Efficient
On-Demand Streaming with BitTorrent. In IFIP Networking, 2010.

[7] N. Carlsson and D. L. Eager. Peer-Assisted On-Demand Streaming of
Stored Media Using BitTorrent-like Protocols. In Networking, 2007.

[8] N. Carlsson, D. L. Eager, and A. Mahanti. Peer-assisted On-demand
Video Streaming with Selfish Peers. In IFIP Networking, 2009.

[9] L. D’Acunto, N. Andrade, J. Pouwelse, and H. Sips. Peer Selection
Strategies for Improved QoS in Heterogeneous BitTorrent-Like VoD
Systems. In ISM, 2010.

[10] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,
and H. Zhang. Understanding the impact of video quality on user
engagement. In ACM SIGCOMM, 2011.

[11] B. Fan, D. G. Andersen, M. Kaminsky, and K. Papagiannaki. Balancing
Throughput, Robustness, and In-Order Delivery in P2P VoD. In
CoNEXT, Dec. 2010.

[12] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis. Trickle: Rate Limiting
YouTube Video Streaming. In USENIX, 2012.

[13] K. Huguenin, A.-M. Kermarrec, V. Rai, and M. Van Steen. Designing a
Tit-for-Tat Based Peer-to-Peer Video-on-Demand System. In NOSSDAV,
2010.

[14] K.-W. Hwang, D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee,
V. Misra, K. K. Ramakrishnan, and D. Swayne. Leveraging Video
Viewing Patterns for Optimal Content Placement. In Networking, 2012.

[15] Y. Li, Y. Zhang, and R. Yuan. Measurement and Analysis of a Large
Scale Commercial Mobile Internet TV System. In IMC, 2011.

[16] C. Liang, Z. Fu, Y. Liu, and C. W. Wu. Incentivized Peer-Assisted
Streaming for On-Demand Services. IEEE Trans. Parallel Distrib. Syst.,
21(9):1354–1367, Sept. 2010.

[17] B. Maggs. A First Look at a Commercial Hybrid Content Delivery Sys-
tem. In Keynote presentation at 15th IEEE Global Internet Symposium,
March 2012.

[18] N. Parvez, C. Williamson, A. Mahanti, and N. Carlsson. Analysis of
BitTorrent-Like Protocols for On-Demand Stored Media Streaming. In
SIGMETRICS, 2008.

[19] M. Piatek, A. Krishnamurthy, A. Venkataramani, R. Yang, D. Zhang,
and A. Jaffe. Contracts: Practical Contribution Incentives for P2P Live
Streaming. In NSDI, 2010.

[20] D. Qiu and R. Srikant. Modeling and Performance Analysis of
BitTorrent-Like Peer-to-Peer Networks. In SIGCOMM ’04, 2004.

[21] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and W. Dabbous.
Network Characteristics of Video Streaming Traffic. In CoNEXT, 2011.

[22] P. Shah and J. francois Paris. Peer-to-Peer Multimedia Streaming Using
BitTorrent. In IPCCC, 2007.

[23] A. Vlavianos, M. Iliofotou, and M. Faloutsos. BiToS: Enhancing
BitTorrent for Supporting Streaming Applications. In 9th IEEE Global

Internet Symposium, April 2006.

[24] Z. Wen, N. Liu, K. L. Yeung, and Z. Lei. Closest Playback-Point
First: A New Peer Selection Algorithm for P2P VoD Systems. In
GLOBECOM. IEEE, 2011.

[25] Y. Yang, A. L. H.Chow, L. Golubchik, and D. Bragg. Improving QoS
in BitTorrent-like VoD systems. In INFOCOM. IEEE Press, 2010.

[26] H. Yin, X. Liu, F. Qiu, N. Xia, C. Lin, H. Zhang, V. Sekar, and G. Min.
Inside the Bird’s Nest: Measurements of Large-Scale Live VoD from
the 2008 Olympics. In ACM IMC, 2009.

[27] H. Zhang, S. Vasudevan, R. Li, and D. Towsley. A Case for Coalitions
in Data Swarming Systems. In ICNP, 2011.

[28] Y. Zhou, D. M. Chiu, and J. Lui. A Simple Model for Analyzing P2P
Streaming Protocols. In ICNP, 2007.

10

