
GCNav - Generic Configuration Navigation System

Shankaranarayanan Puzhavakath Narayanan
Purdue University

spuzhava@purdue.edu

Seungjoon Lee
AT&T Research

slee@research.att.com

Subhabrata Sen
AT&T Research

sen@research.att.com

Abstract—Configuration navigation and change-auditing is one
of the most complex yet common tasks performed by network op-
erators on a regular basis. Change-auditing router configuration
files accurately is a challenging task due to presence of structure
and hierarchy in the config content. Generic diff tools do not
have the notion of context or syntactic structure while comparing
files and produce diff reports (using minimum edit distance) that
often do not match operator expectations. Moreover, these tools
perform redundant (and expensive) comparison operations across
contextually unrelated sections of the config file which makes
them scale poorly even for config files of moderate size. On the
other hand, vendor specific and customized diff solutions are not
generic enough to be applied uniformly across a heterogeneous
network. Also, modeling the configuration semantics for different
vendors is a non-trivial and expensive process.

In this paper, we introduce GCNav, a system that helps net-
work operators perform general or customized change-auditing
at varying levels of granularity on the network. Unlike existing
solutions, GCNav makes use of the inherent syntactic structure
common to all config files and thereby remains generic without
compromising on the accuracy of results. Our experience with
the deployment of GCNav on a large operational customer-facing
IP network shows that it is able to provide a generic, accurate
and scalable solution for change-auditing router config files.
Our results show that GCNav’s diff results matches operator
expectation while generic diff tools reported at least some
misleading diff in 95% of the files analyzed. We also find that
GCNav performs 7 times faster than customized auditing tools
making it a feasible solution for online and interactive config
auditing.

I. INTRODUCTION

Operators who manage large networks are required to
perform a wide range of evolutionary, operational and mainte-
nance activities which are often realized through modifications
to the router config files. These activities usually cause a flurry
of changes to a number of router config files consisting of tens
of thousands of lines of arcane, complex, low level vendor-
specific code that require a high degree of domain knowledge
about the structure and vendor-specific details to understand
and modify. Any errors in such operational activities can have
serious adverse implications for the operation of the network
ranging from immediate network outages and SLA violations
to “hidden time bomb” latent misconfiguration [18], [10], [19].

Operators usually perform static analysis of their network
device config files (called config auditing) to minimize and
troubleshoot misconfiguration-induced outages. In this paper,
we focus on one of the basic static analysis aspects: finding
the differences between two configs. This is a key task that
network operators perform in outage scenarios (e.g., identify

config changes that occurred prior to the outage). Also, oper-
ators apply this capability to template auditing [4] to ensure
router configs have all the intended configuration policies
(captured in a template).
While conceptually simple, computing the diff of config

files is challenging due to structure and hierarchy of content
in these files, as well as the need to accurately identify the
context of a change. Operators need to understand precisely
where in the hierarchy the changes have occurred (e.g., for
rapid understanding of the context of a change, or because
changes high up in the config hierarchy might have a larger
impact on the configuration). Today operators typically resort
to a laborious, manual-intensive and error-prone approach
involving a combination of “stare and compare” and the use of
UNIX diff tools (like GNUDiff [11]) for comparing two config
files. However generic tools like GNUDiff are poorly suited to
the task as they compute the minimum edit distance between
the two config files and do not have any notion of structure
or hierarchy. As a result these tools often produce misleading
diff results (see Section V-B2). Similar issues are also observed
with the generic diff tools that operate on structured documents
(like XML [23], [8]). While XML helps capture the syntactic
structure of config files, existing XML diff tools compute
minimal edit distance which is inaccurate for our purpose as
we shall see in Section V-B. Also, these generic tools perform
certain computationally expensive content-match operations
(that are redundant when comparing config files) making them
scale poorly for even small config files as we observe in
Section V-C.
There are two broad approaches for a more tailored static

analysis of config files. The first involves using vendor-specific
solutions like [5]. However, these solutions face several chal-
lenges like high development cost, lack of flexibility and
availability for devices from multiple vendors and different
config languages. The second approach is to convert the
various config languages to a common model and compare
them. However, such extensive modeling of device configs
is an extremely expensive process. It is also non-trivial to
design a generic model that captures enough details for subtle
differences in different config languages, especially when
vendors constantly come up with different languages (i.e., OS
upgrades) and new features for enhanced services (e.g., new
policy statements).
In this paper, we present GCNav, a flexible config auditing

system that is accurate yet generic enough to be applicable
to a wide range of config languages and vendor types. Unlike

Fig. 1. GNUDiff does not provide sufficient context when a router config changes.

Fig. 2. XML config corresponding to inter-
face 0/0 from Figure 1(a)

existing solutions, GCNav makes use of the inherent syntactic
structure in the config files that is not only common to a ma-
jority of routers (and vendor types) but also independent of the
functionality that is associated with the specific configuration
logic. We designed GCNav to work with XML config files
based on the following key observations. (i) XML has rapidly
become the de-facto standard for representing any hierarchical
information that has consistent structure. (ii) All major vendors
in the networking industry have adopted XML config files [6],
[12]. (iii) Large ISPs have already built parsers (e.g. [3]) to
convert the CLI config files to XML config files.
To summarize, our contribution in this paper is GCNav,

a configuration navigation system that provides accurate and
contextual change-audit reports for router config files. We
design GCNav with the goal of achieving the following key
design goals:

• Developing a generic and scalable structured-diffmethod-
ology based on the syntactic and structural properties of
config files that is independent of the semantics of the
config language.

• Building on the existing XML diff techniques and adapt
them to leverage the key structural properties exhibited
by config files.

Our evaluation of GCNav on a large operational customer-
facing enterprise IP network (anonymized as IPNet) show that
it provides accurate diff reports. In comparison, more than 20%

of the diff reported by GNUDiff was misleading in more than
half the config files in the network that had reported some
change. Our evaluation also shows that GCNav is 7 times faster
than GSAT[4] (a domain specific tool developed for template
auditing) while performing the same audit task.

II. BACKGROUND AND PROBLEM MOTIVATION

In this section, we discuss the nature of router config
files and the structural properties exhibited by them. We then
discuss the limited utility of existing diff tools for generating
accurate diff on hierarchical content.

A. Nature of config files

We first illustrate some key properties of router config
files, as noted in a previous work [21]. Figure 1(a) shows
a section of the anonymized CLI (Command Line Interface
e.g., [1]) code from the config files of an Alcatel router
deployed in the IPNet network. This CLI code configures two
ethernet interfaces on the router along with its properties like
description, IP address and mask, an option for SNMP (Simple

Network Management Protocol), and interface status (i.e.,
enabled or not). We make the following important observations
from the example.
Low-level complex code: Router config files consist of
thousands of lines of complex low-level commands. While
we present a straightforward example here for simplicity,
in reality, it is highly challenging to comprehend the intent
and impact of these config code without sufficient domain
knowledge and context information.
Structure and hierarchy: Router config files have some
inherent syntactic structure and hierarchy enforced by the
configuration logic. For example, in Figure 1, the CLI code
can be grouped into logical blocks and sub-blocks such as
interface, ip−address or description. Also the interface
block encloses the ip−address and description blocks. This
structural nature of config files is common to all devices,
vendor types and is completely independent of the semantics
of the config logic. GCNav takes advantage of these properties
to gain accuracy and provide contextual information when
comparing two config files.
Modeling configs as trees: A key abstraction that we use in
GCNav is to utilize syntactic structure of config files and view
them as trees [4]. Figure 3 shows an example of two simple
config snippets modeled as trees where each config tree has
four interfaces and for simplicity, we show only two properties
(i.e., description and IP nodes) for each interface node. While
modeling config files as trees help capture the structure without
having to understand semantics, the next section explains why
computing config diff is still a challenging task with existing
diff tools.

B. Limited utility of existing diff tools

In this section we discuss the existing generic diff tools that
broadly fall into two categories, text and XML diff tools.

1) Text Diff tools: We first focus on GNUDiff [11] which we
shall use extensively for comparison in the rest of this paper.
Though GNUDiff is very different to GCNav in its design
and operation, we find that it was the most frequently used
diff solution by the network operators due to familiarity and
simplicity of the tool. GNUDiff is widely available and can
be used to diff any two text files making it the de-facto diff

tool of choice. We use the comparison between GCNav and
GNUDiff to highlight the lack of accuracy with generic diff
tools and emphasize the need for a novel approach.
Consider the GNUDiff output for the config snapshots

shown in Figure 1. Here, GNUDiff identifies the changes

Fig. 3. Comparing config trees

between the two configs (i.e., IP address change in both
interfaces and status change in the second interface), but does
not associate the change with the corresponding interface. This
is because GNUDiff has no notion of the syntactic structure of
the router config and is therefore unable to provide sufficient
context to detected changes. While making this association is
simple in our small example, as config files become longer
(e.g., thousands of lines), this information becomes critical
for network operators to understand the implications of the
change. Also, GNUDiff reports are often misleading since
computing the minimal edit distance can potentially match
equivalent but contextually unrelated blocks(see Section V-B).

2) XML diff tools: We shall now see why the generic XML
diff tools are not suitable for the static analysis of XML config
files. Figure 2 shows the XML config snippet corresponding
to Interface 0/0 in CLI sample from Figure 1(a). While
XML helps capture the syntactic structure of config files, the
problem of identifying the diff presents many challenges. Ex-
isting XML and structured diff tools (E.g., [23], [8]) compute
minimal edit distance which is inaccurate for our purpose.
Moreover, these tools try to perform expensive operations
like matching sub-blocks of config code in an entire config
file which does not scale even for small config files (see
Section V-C). Therefore, we design GCNav’s algorithms based
on our insights on the syntactic and structural characteristics of
config files to generate accurate reports in an efficient manner.

III. GCNav ARCHITECTURE

Our design of GCNav takes advantage of the following
properties exhibited by config files.

1) Blocks (nodes in config tree) of config code do not
move to arbitrary sections of the config file. Consider
the config trees in Figure 3. The ip nodes would be a
child of some interface node but would not be the child
of any other arbitrary node such as desc or conf, as
certain config commands are allowed only in relevant
contexts.

2) Two nodes that look similar but have a different sig-
nature (path to the root) can represent contextually
different parts of the config code. For example, an ip

node attached to Int-I2 is contextually different from
the ip node that is attached to Int-I3), even if the
two ip blocks have the same content. This is because
they configure two different interfaces and comparing
them would result in a diff that misleads the network
operators.

Fig. 4. Architecture of GCNav.

We derive these key insights from configuration logic and
syntax of config files that are common to all routers and vendor
types. Since potential matches occur only at nodes that have
similar signatures, GCNav only compares the nodes at the
same depth in the config tree. Conventional tree diff algorithms
[7] typically tend to match the above mentioned cases, which
is both incorrect and expensive. On the other hand, GCNav
benefits from these insights by pruning parts of the tree and
improving the scalability of the system.
Figure 4 shows the block diagram of the architecture of

GCNav. We first present the two core phases that are per-
formed on the XML config files in the following sequence to
obtain the diff: (1) Characterization of the XML files and (2)
Comparing the XML files.

A. Characterization

In order to accurately compare any two config files(trees)
T 1 and T 2, we need to efficiently (1) identify whether for each
node T 1, there exists a corresponding node in T 2 to compare
against and (2) determine if the two corresponding nodes are
identical or different. For this purpose, we annotate every node
of the XML config file with two special attributes (internal to
GCNav) in the Characterization phase. The annotated XML
config file produced by this step (called a characterized XML
file) is used as input to the comparison phase. We further
elaborate on the above two points in this section.
1) Identifying corresponding nodes: Suppose we want to

compare two config trees T 1 and T 2 shown in Figure 3.
The diff process should be able to associate the node Int-
I2 from T 1 with its corresponding node Int-I2 in T 2. Brute-
force approaches like pair-wise comparison (e.g. every child of
Conf1 in T 1 with every child of Conf2 in T 2) can considerably
slow down the diff process. Therefore, we introduce a new
attribute called UID (Unique Identifier) to every node in a
config tree which is used to identify the corresponding nodes
in the comparison phase. For the ease of exposition, we show
a simple UID (e.g., I2) for each interface node in Figure 3,
while we use a MD5 hash in practice.
Computing the UID: If a node in a config file has identifying
attributes such as ID or NAME, then a simple solution for
computing the UID is to use those attributes. However, node
attributes are not always mandatory. The content of child

nodes can sometimes be used as identifiers (e.g., interface
name or IP address for an interface node). This approach
necessitates detailed knowledge of config semantics, which
should be avoided to make GCNav generic and flexible.

GCNav employs heuristics based on the structural properties
of config files to automatically identify nodes that can be used
as UID. To ensure correctness, the heuristic needs to identify
at least one node that can be used to compute the UID. A
simple heuristic is based on the observation that leaf nodes
are often good candidates for UID (e.g., description, ip). A
stronger heuristic that worked very well for our network is
to use the HashValue of non-repeating children to compute
the UID for a given node. This heuristic would identify
the nodes like Naming and description (in Figure 2) that
are used as identifiers even in their semantic model. Apart
from implementing these heuristics, GCNav also provides the
operators the option to explicitly suggest an UID as an external
specification to the system.

2) Summary information for node content: Once the cor-
responding nodes from given two trees are identified, we
need to determine whether the two nodes are equivalent in
its content (sub-tree) and value (attributes). A simple but
expensive solution is to traverse the two subtrees recursively
and check the equivalence at every level in the tree. To avoid
the expensive tree traversals during the comparison phase,
we calculate a simple MD5 hash on an entire subtree and
annotate the root of the subtree with the hash value. Thus, the
equality of content can be quickly determined for the given
two nodes by comparing the hash values. The HashValue can
be efficiently computed by performing a bottom-up traversal
of the config tree and propagating the HashValue of a node to
its immediate parent node. Computing the UID and HashValue
attributes is independent of the diff process and needs to be
done exactly once for each config file. Therefore, GCNav
performs the characterization as a part of the pre-processing
phase that can be delegated as an offline process.

Putting it together: At a high level, the characterization
algorithm computes and adds the HashValue and UID (com-
puteHash() and computeUID()) for every node in the config
tree using the standard bottom up tree traversal. The annotated
XML file produced by the characterization phase is called the
uxml file.

B. Comparison

The comparison phase is undoubtedly the most important
component of GCNav’s architecture which performs the actual
diff between the two config files that need to be audited. The
comparison phase takes the characterized files as its input and
executes the diff algorithm to produce the diff result as a set of
modifications, additions and deletions. It is important to note
that the comparison phase is generic and totally independent
of the type or vendor of the config files. The output of the
comparison phase is an annotated XML file (dxml file) with
attributes added to each node indicating the added, deleted,
modified or unchanged status of the node.

Algorithm 1 Compare

procedure COMPARE(t1, t2)
if t1.root.hash == t2.root.hash then return No diff

while ∀ node in BFS of t1, t2 do
if node marked for process then

5: (n1, n2) ← (nextNode(t1), nextNode(t2))
(C1, C2) ← (n1.children, n2.children)
for each c1 in C1 do

if c2 = match(c1, C2) then
if c1.hash == c2.hash then

10: c1, c2 equal
for c upto c2 in C2 do

markAdded(c)

else
markModified(c1, c2)

15: else
markDeleted(c1)

if ∀c in C1 seen then
markAdded(Nodes remaining in C2)

markDeleted(Nodes remaining in C1

20: end procedure

At a high level, the comparison algorithm performs a BFS
(Breadth First Search) tree traversal on both the config trees
simultaneously. Based on our observations described earlier
in this section, the algorithm looks for a potential match only
between nodes that have a consistent signature (path from the
root). Among those nodes with the same signature and depth,
the algorithm identifies the corresponding node pairs using
UID and determines the equivalence using HashValue.
The following are the possible cases after a comparison:

1) Nodes have equivalent UID and HashValue and do not
have a diff. Our construction of the HashValue ensures
that the entire subtrees are the same and therefore further
traversal down the subtrees are redundant.

2) There exist corresponding node pairs with the same
signature, depth, and UID, but they have different Hash-
Value values. This indicates a modification (mod) in the
subtree and we further process the subtrees according to
the BFS traversal order.

3) A node that has no corresponding node with a matching
signature, depth, or UID. This indicates an addition or
deletion of the node based on the config tree where the
node is located.

Algorithm 1 shows the pseudo-code of the algorithm used in
the comparison phase of GCNav.

C. Optional Phases

The optional phases of GCNav are the pre-processing and
post-processing phases as shown in the Figure 4.
Pre-processing XML files: Large enterprise or ISP networks
are highly heterogeneous consisting of config files that may
have some redundant or irrelevant config blocks like times-
tamps, version number, device information etc. Diff computed
on such redundant config blocks often prove to be distracting
for the operators. Also evolving networks typically contain
legacy devices that require some special handling before they
can be processed. To address this requirement, we designed
the characterization phase to optionally accept a set of pre-
processing filters (using our filter language described below)

as an external input from the operators. We discuss some of
these aspects in detail in Section IV.

Post-processing XML files: As mentioned in Section II-A,
config files are large, complex and hard for human users to
read and understand. It is therefore important for GCNav to
have the ability to focus on certain sections of the config file
that are important for the operators. For instance, network
operators might want to view changes to the interface blocks
alone and ignore any changes to the description blocks. To
accommodate these requirements, we provide GCNav with
a simple and intuitive filter language which uses include
and exclude constructs to accept filtering queries from the
operators as XPath[24] queries. A sample query expression
for our example from Figure 2 would look like i-//interface:e-
//description, where multiple filter queries are separated by
colon. The first half of the expression indicates whether it
is an (i)nclude or (e)xclude construct and the second half of
the expression gives the actual XPath query to be evaluated.
For the above query, the filtering component would show
diff sections that include interface nodes and excludes the
description nodes from the results.

It is important to note that the pre and post processing
phases are optional features that are provided to the operators
to fine tune the system. These phases do not compromise the
generality of our system and accepts a set of filter rules as
its input and generates the diff reports accordingly. As a final
note, GCNav is written completely in Python and uses lxml
[17] for its XML library support.

IV. PRACTICAL CONSIDERATIONS

In this section, we briefly discuss a few practical aspects
that we encountered and needed to resolve while deploying
GCNav on large ISP networks consisting of heterogeneous
devices. This discussion, in particular, highlights the benefit
of designing GCNav as a set of independent phases where
the core phases remains well insulated from the quirks of the
heterogeneous network.

Legacy devices only with CLI config files: Some legacy
devices may not support XML config files. In such cases,
GCNav can piggy-back on tools that can convert the CLI
configs into structured XML configs [3]. For completeness, we
include these solutions as a part of the pre-processing phase.
Errors in the XML files: From our initial experiments, we
found that some config files collected from devices contained
malformed XML constructs. These could have been due to
manual configuration errors or even more systematic issues
such as missing root nodes in the XML files. These issues
can be ignored or fixed by custom or automated scripts in the
pre-processing phase.
Vendor and device specific oddities: XML config files
may have odd constructs that can mislead the comparison
phase. For e.g., a certain config file that we processed had
a timestamp attribute at the root node (wrapping the entire
config file), which changes everyday. While this is a genuine
modification in the config file, if we include that attribute in
the UID and HashValue calculation (see Section III-A), the

root node would be always considered modified, which clearly
is not the desired outcome. For this purpose, in GCNav, we
provide the ability to specify filters or pre-processing rules
in the characterization phase, so that we do not include such
attributes as timestamp in the UID and HashValue calculation.
These pre-processing rules can be provided by the operators
(who have the domain knowledge) as a custom specification
to GCNav as a static metadata. Our experience with GCNav

on IPNet shows that these oddities can be easily addressed
using a few (less than 5) simple filter queries.

V. EVALUATION

We evaluated GCNav on a large, operational, customer
facing IP network consisting of thousands of routers. These
routers have varied functionality and come from a wide range
of prominent vendors like Alcatel, Cisco and Juniper. All
our evaluations are performed on the XML config files of
these routers obtained for a period of two months (January
- February, 2011).
We compare GCNav with the two prominent classes of

existing generic diff solutions that are commonly used (see
Section II-B). We compare GCNav with (i) GNUDiff to
highlight the lack of accuracy with the generic diff tools. (ii)
GSAT [4] (a template auditing tool that uses structured XML
diff) to show the benefit of GCNav’s insights in improving the
performance while retaining its accuracy.

A. Vendor neutrality of GCNav

Fig. 5. Config snippet of an interface

Figure 5 shows an excerpt of the XML code used to
configure an interface from the router config files of two
prominent vendors, Cisco and Alcatel. It can be seen that
though the code samples differ in syntax, they have very
similar syntactic structure which is exploited by GCNav. In
fact, the Alcatel code sample shown here was generated using
a custom developed parser that generates XML from the
CLI code. While we do not show here further details of
configs from different vendors or different languages, we have
extensively evaluated GCNav using router configurations from
three major vendors - Alcatel, Cisco and Juniper. To emphasize
this flexibility, in the following evaluations, we use config
files from Alcatel devices in Section V-B and Cisco routers
in Section V-C.

Fig. 6. Measuring accuracy with symmetric difference

B. Accuracy of GCNav

In this section, we introduce a metric to measure the
accuracy of diff tools when auditing router config files. We
then evaluate the accuracy gained by GCNav by comparing
it with the results produced by GNUDiff for over 3500 field
config files from the IPNet network.

1) Measuring accuracy: The notion of accuracy while
comparing config files is different from that of a traditional
diff. A diff report is accurate if it is able to capture the context
of the change reported. Consider the trees in Figure 3. If the
node I1 is considered added to the tree T 2, then children of I1

(desc and ip) should also be considered implicitly as added.
In other words, the impact of a change high up in the tree
should be reflected in the entire sub-tree.

Since there is no standard measure of correctness of config
diff reports, we verified GCNav’s accuracy based on operator
expectations and feedback. However, we measure the accuracy
gained by GCNav over GNUDiff by introducing a distance
metric which represents the amount of dissimilarity between
the diff results of the two tools. Since GNUDiff computes the
diff by treating the XML config as flat file, we map its result
back to the XML tree to ensure a fair measurement of the
distance. Figure 6 shows the diff trees generated using the
two diff methods. Intuitively, accuracy gained can be defined
as the amount of dissimilarity between the two trees which
can be computed using the symmetric distance (number of
nodes which disagree in their results). The table in Figure
6 shows how a simple symmetric distance is computed for
the diff trees shown above it. Further, to capture the effect of
hierarchy, we associate weights based on the depth of the node
in the config tree while computing the symmetric difference.
The root should have the highest weight value (equal to the
height of the tree) since it indicates a change in the entire
config file, while the leaf would have the least value (a weight
of one).

2) Comparing accuracy of GCNav and GNUDiff: We
evaluated the accuracy gained by GCNav over GNUDiff using
the weighted symmetric difference scheme mentioned above.
Figure 7(a) shows the CDF of the symmetric distance and
weighted distance between the results of GCNav and GNUDiff

for about 3348 routers that had been modified across a period
of 7 days. The graph shows that GCNav and GNUDiff differ
at 20 nodes or more for 40% of the config files (where at

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 40 100 200 500 1000

C
D

F

Distance between GCNav and GNUDiff per config [log scale]

Symmetric Difference
Weighted

(a) Symmetric distance per config file
between the two diff reports

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

C
D

F

Percentage mismatch per config

(b) Percentage of nodes per config file
that do not match across the two diff
reports

Fig. 7. Comparing accuracy of GCNav with GNUDiff

least one of the methods reported a change). An even more
surprising observation is that among the routers that had some
change reported, less than 5% of the routers agreed completely
on their diff results from the two tools. Figure 7(b) shows the
CDF of the percentage of mismatch per config file between the
diff reports of the two tools. It can be observed from the graph
that about 40% of the config files that reported some change
had more than 25% mismatch between the two methods. Our
results show that traditional diff tools are very poorly suited
for change-auditing config files. They also highlight the need
for a system like GCNav which can provide diff reports that
match operator expectations.
We now explain with an example why GNUDiff was in-

accurate when comparing the config files. Consider Figure 8
showing an excerpt from a XML field config file for two days
(a) and (b). Figure 9 shows the comparison of the GNUDiff

output (a) with the ideal (expected) output (b). GNUDiff is
very different from the ideal diff result due to two reasons.
First, it has no notion of structure in the config file and hence
it is not able to associate a change at a node to its sub-tree.
Second, it tries to compute the minimal edit distance which
can lead to incorrect comparison. For instance, it matches node
e1 from (a) with node e2 from (b) as they have a maximal
match and reports the sub-tree of e1 from (a) as added. This
phenomenon skews the GNUDiff output from the expectation
as observed in the example.

C. Response Time of GCNav

We evaluated the performance of GCNav by comparing it
with a template auditing tool called GSAT [4] where the goal

Fig. 8. Config from two days with relevant blocks

Fig. 9. Comparing GNUDiff with the ideal output

of gold standard auditing is to ensure all field configs(XML)
are equivalent to a certified gold config(XML) provided by the
operators. We use GCNav’s filter queries to produce reports
that matched GSAT’s audit reports (i.e., both reports have the
same accuracy) for a fair comparison of their performance.
Though seemingly similar, GCNav is very different from
GSAT in its design and approach. GSAT was developed as
a point solution for a specific problem while GCNav is meant
to be a generic and flexible solution that can cater to a variety
of audit requirements. Also, GSAT (which makes use of a
generic perl module called SemanticDiff) is not scalable and
therefore has limited practical use as a more general tool. In
contrast, GCNav is scalable and can be used for any change-
auditing requirements without compromising on accuracy.

Figure 10(a) shows the CDF comparing the response time
of GCNav and GSAT for computing the diff report for a set of
2500 XML config files in the network. The Y-axis shows the
CDF and X-axis represents time taken in seconds to obtain the
diff (all phases including the pre and post processing phases)
between the corresponding field config and the gold config.
From the graph, it can be seen that GCNav is 7 times faster
than GSAT when computing the diff. Also the response time of
GCNav is well within 5 seconds for all the config files making
it a feasible tool for interactive auditing of router config files.
On the other hand, GSAT takes more than 26 seconds for
processing a diff making it too slow for interactive auditing.
For this reason, GSAT was deployed as an offline tool.

We now evaluate the performance of GCNav and GSAT
when comparing two versions of the same field config file
across two successive days. Figure 10(b) shows the CDF
comparing the response time of GSAT and GCNav to audit
2500 XML config files across two successive days. The Y-
axis shows the CDF and X-axis represents time taken for
computing the diff (all phases). The graph shows that GCNav

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
D

F

Time(sec)

GCNAV
GSAT

(a) Template auditing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

C
D

F

Time(sec)

GCNAV
GSAT

(b) Regular diff

Fig. 10. CDF comparing the Total response time of GCNav vs GSAT.

Fig. 11. Time vs File size for the two key phases of GCNav.

performs at least 7 times better than GSAT. In particular,
beyond the 50th percentile, GSAT shows exponential trends
while the GCNav’s performance remains steady. Also, GCNav
has a very short tail (and 95th percentile less than 20 seconds)
compared to that of the GSAT (95th percentile greater than
300 seconds). Note that field configs are substantially larger
in size than gold configs and therefore the problems with the
scalability of GSAT becomes exacerbated. For this reason,
GSAT was not practical for more general change-auditing
requirements.

We compared the contribution of the various phases to the
total time taken by GCNav. Our analysis showed that the
characterization phase is the most expensive phase of GCNav,
albeit taking less than 10 seconds for 60% of the 2500 files
processed. A large of part of this time is spent on computing
the UID (requiring traversal of the immediate child nodes)
discussed in Section III-A. However, characterization needs
to be done exactly once for a given config file and can be
performed offline as soon a new snapshot of the config files
arrive. It is important to note that the rest of the phases in
GCNav takes less than 2 seconds for 90% of the files making
it an effective tool even for online and interactive diff session.

We now perform a detailed evaluation on the scalability of
GCNav by plotting the time taken by the characterization and
comparison phases against different config file sizes. We make
use of the XML field config files described in Section V-C for
our evaluation of the scalability of GCNav.

Figure 11(a) shows the scatter plot representing the time
taken by the characterization phase along the Y-axis and
the input file size (field config) along the X-axis. Similarly,
Figure 11(b) shows the scatter plot with the time taken by
the comparison phase along the Y-axis and the input file size
(characterized file) along the X-axis. From the graphs, we
see that the time taken by both the phases increases linearly
with the increase in input file size indicating good scalability
of GCNav. Comparing the file sizes across the two graphs
also reveals the characterization overhead. Characterized files
are approximately thrice the size of the corresponding field
configs due to the annotations that are added as a part of the
characterization phase. GCNav aims to reduce the audit time
by adding annotations to the config files and as a consequence
increases the size of the intermediate files generated. However,
should space requirements become critical, characterization
can be limited to specific sub-trees of the config file using
the filter language described earlier.

VI. RELATED WORK

Change auditing is an important and frequent task per-
formed in all enterprise networks. Many large enterprises
have developed their own customized auditing solutions which
is expensive and requires extensive modeling effort. Vendor
specific solutions like [5] are another class of tools that have
been used for auditing purposes. However, these solutions are
either technology or vendor dependent and are not generic
enough to be applicable for heterogeneous networks. GCNav
on the other hand provides a generic methodology for change
auditing in router configuration files. Configuration auditing
has also been looked into from the perspective of solving
problems like [20], [21], [13], [4]. Works like [16], [15] have
looked at computing diff for Access Control Lists (ACLs) and
firewall configuration. However, these are optimized and built
to solve specific problems which often makes them slow or
unsuitable to be used as a generic tool. On the other hand,
GCNav adopts a more systematic and structured approach
making use of the syntactic structure that is common to all
router configuration files.
XML based router configuration has been explored in

[22], and works like [7] have comprehensively studied the
various algorithms that can be used for computing XML diff
enumerating the features, advantages and disadvantages with
each approach. Structured diff has been explored extensively
in the field of version controlling [9], [2]. However, these
solutions are again customized for versioning and optimized
for merge operations making them unsuitable for auditing
config files. Tools like XANADUE [14] have been used to
detect changes in XML databases. However, unlike GCNav

they are not context oriented, making them unsuitable for our
purpose. GCNav differs from the generic XML diff tools [23],
[8] in the following key design decisions. First, it does not
compute the minimum edit distance which is fundamental to
the accuracy of any config diff. Second, it does not match sub-
trees across different parents which is key to both correctness
and scalability of the solution.

VII. CONCLUSIONS

In this paper, we presented GCNav, a configuration navi-
gation system. Our design of GCNav focuses on a generic,
accurate and scalable approach to change auditing in router
configuration files. While existing solutions are customized
towards solving specific problems, GCNav takes a first step
towards developing a structured and general solution that
retains the required accuracy and performance. GCNav uses
the inherent syntactic structure common to all config files
and thereby remains generic without compromising on the
accuracy. GCNav takes advantage of key insights enforced
by the syntactic structure of configuration files to optimize
on performance of the algorithms, thereby making the system
scalable. GCNav’s modular design renders it easily adaptable
to a variety of audit requirements. Our evaluation shows that
GCNav performs significantly better than the two prominent
classes of generic diff solutions used by the operators. In the
future, we also plan to compare the performance of GCNav

with that of point solutions like semantically modeled or
vendor specific tools.
GCNav has been an indispensable tool for change-auditing

in a large operational customer-facing IP network for about a
year and has catered to a variety of audit requirements. We
believe that a system like GCNav which takes a general and
structured approach to change-auditing in router configurations
is a crucial first step that leads to an efficient and robust
network management solution.

REFERENCES

[1] The alcatel cli reference. http://enterprise.alcatel-lucent.com/docs/?id=
12979.

[2] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner. Semistruc-
tured merge: rethinking merge in revision control systems. In ESEC/FSE
2011.

[3] D. Caldwell, S. Lee, and Y. Mandelbaum. Adaptive parsing of router
configuration languages. In INM 2008.

[4] D. Caldwell, S. Lee, S. Sen, and J. Yates. Gold standard auditing for
router configurations. In LANMAN 2010.

[5] Cisco contextual configuration diff utility. http://www.cisco.com/en/US/
docs/ios/12 3t/12 3t4/feature/guide/gt diff.html.

[6] Cisco ios xml reference. http://www.cisco.com/en/US/docs/ios\ xr\
sw/iosxr\ r3.4/xml/program/guide/xl34cnfg.html.

[7] G. Cobéna, T. Abdessalem, and Y. Hinnach. A comparative study for
xml change detection. Research Report, INRIA Rocquencourt, France,
2002.

[8] G. Cobena, S. Abiteboul, and A. Marian. Xydiff tools detecting changes
in xml documents, 2002.

[9] S. Elmougy and W. Al-Adrousy. A structured-based differencing method
for version control system for java codes. In ISSPIT, 2010.

[10] N. Feamster and H. Balakrishnan. Detecting BGP configuration faults
with static analysis. In Proc. of NSDI, May 2005.

[11] Gnu diff. http://www.gnu.org/software/diffutils/diffutils.html.
[12] Junos xml reference. http://www.juniper.net/

techpubs/software/junos/junos94/swconfig-automation/
advantages-of-using-the-junoscript-and-junos-xml-apis.html.

[13] F. Le, S. Lee, T. Wong, H. Kim, and D. Newcomb. Detecting
network-wide and router-specific misconfigurations through data mining.
IEEE/ACM Trans. Netw., 2009.

[14] E. Leonardi and S. Bhowmick. Xanadue: a system for detecting changes
to xml data in tree-unaware relational databases. In SIGMOD 2007.

[15] A. Liu. Firewall policy change-impact analysis. ACM Transactions on
Internet Technology (TOIT), 2012.

[16] A. Liu and M. Gouda. Diverse firewall design. Parallel and Distributed
Systems, IEEE Transactions on, 2008.

[17] The lxml python toolkit. http://lxml.de/.
[18] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP

misconfiguration. In Proc. ACM SIGCOMM, Aug. 2002.
[19] S. Narain. Network configuration management via model finding. In

Proc. LISA, Dec. 2005.
[20] Y. Sung, C. Lund, M. Lyn, S. Rao, and S. Sen. Modeling and under-

standing end-to-end class of service policies in operational networks. In
SIGCOMM 2009.

[21] Y. Sung, S. Rao, S. Sen, and S. Leggett. Extracting network-wide
correlated changes from longitudinal configuration data. PAM, 2009.

[22] L. Vanbever, G. Pardoen, and O. Bonaventure. Towards validated
network configurations with ncguard. In INM 2008.

[23] Y. Wang, D. DeWitt, and J. Cai. X-diff: An effective change detection
algorithm for xml documents.

[24] Xpath query language. http://www.w3schools.com/xpath/default.asp.

