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Abstract

We propose a new link metric callednormalized advance (NADV)for geographic routing in multihop wireless

networks. NADV selects neighbors with the optimal trade-off between proximity and link cost. Coupled with the

local next hop decision in geographic routing, NADV enablesan adaptive and efficient cost-aware routing strategy.

Depending on the objective or message priority, applications can use the NADV framework to minimize various

types of link cost.

We present efficient methods for link cost estimation and perform detailed experiments in simulated environ-

ments. Our results show that NADV outperforms current schemes in many aspects: for example, in high noise

environments with frequent packet losses, the use of NADV leads to 81% higher delivery ratio. When compared

to centralized routing under certain settings, geographicrouting using NADV finds paths whose cost is close to

the optimum. We also conducted experiments in Emulab testbed and the results demonstrate that our proposed

approach performs well in practice.

Index Terms
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I. INTRODUCTION

Geographic routing (or position-based routing) uses location information for packet delivery in multihop

wireless networks [1], [2], [3], [4], [5]. Neighbors locally exchange location information obtained through

GPS (Global Positioning System) or other location determination techniques [6]. Since nodes locally

select next hop nodes based on this neighborhood information and the destination location, neither route
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Fig. 1. An example scenario for geographic routing. While among S’s neighbors, nodeA is closest toT , the link betweenS and A is

experiencing a high packet error rate. Consequently, higher performance can be achieved ifS forwards packets toB.

establishment nor per-destination state is required in geographic routing. As large-scale sensor networks

become more feasible, properties such as stateless nature and low maintenance overhead make geographic

routing increasingly more attractive [7]. Also, location-based services such as geocasting [8] can be best

realized using geographic routing.

The most popular strategy for geographic routing is simply forwarding data packets to the neighbor

geographically closest to the destination [1], [2], [3]. Although thisgreedymethod is effective in many

cases, packets may get routed to where no neighbor is closer to the destination than the current node.

Many recoveryschemes have been proposed to route around suchvoidsfor guaranteed packet delivery as

long as a path exists [1], [2], [3], [9]. These techniques typically exploit planar subgraphs (i.e., Gabriel

graph, Relative Neighborhood graph), and packets traversefaces on such graphs using the well-known

right-handrule. Most geographic routing protocols use one-hop information, but generalization to two-hop

neighborhood is also possible [10].

In this paper we propose the use of a new link metric callednormalized advance (NADV)in geographic

routing. Instead of the neighbor closest to the destination, NADV lets us select the neighbor with the best

trade-off between link cost and proximity. In Figure 1, for example, althoughA is closest to destinationT

amongS’s neighbors, the link betweenS andA is experiencing high packet error probability.B is slightly

farther fromT thanA, but provides a higher quality link fromS. In this scenario, forwarding packets toB

is better, and NADV choosesB overA. While this idea has been proposed in other specific contexts[11],

[12], we consider a generalized framework and show that a path chosen by NADV approaches theoptimal

minimum cost path for a broad range of costs in networks with sufficiently high node density. Our proposed

metric is best understood in the context of greedy mode in geographic routing, but it can also be used
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with schemes that route around voids [3], [9] (discussed later in Section VI).

Due to the local rule for next hop decision, the use of NADV in geographic routing provides a unique

opportunity for adaptive routing—a feature not offered by most existing on-demand routing protocols. For

example, suppose that a source uses an on-demand routing protocol (e.g., AODV [13]) to find a minimum

cost path. In dynamic ad hoc networks, it is possible that thelink costs change while the path is still in

use (e.g., due to mobility or environment changes). If the source detects the change and wants to find a

better path, typical on-demand routing protocols require the flooding of a new route discovery message.

This solution may incur high control overhead, and it is alsodifficult to know when the source should

initiate the flooding. In contrast, as long as link cost estimation schemes can track link costs change,

NADV immediately reflects the change, which in turn would result in the selection of the best next hop

in geographic routing.

We present NADV in the context of a general framework for efficient geographic routing. Although a

few recent geographic routing schemes consider link costs in the next hop selection [14], [11], [12], they

are limited to one specific objective. For example, theSP-Powerscheme in [14] focuses exclusively on the

minimization of transmission power consumption. In contrast, the NADV framework can accommodate a

variety of different cost types. Depending on system objectives or message priority, applications can use

the NADV framework to take different routing strategies. For example, an urgent message can be routed

along the path that minimizes the end-to-end latency, and a low-priority message may take a path that

minimizes power consumption to increase the overall network lifetime.

For the effective use of NADV, we present techniques for efficient and adaptive link cost estimation.

Some of previous work uses additional probe messages for link cost estimation in the bootstrapping

phase [15], [16]. However, such control messages consume already scarce network resources. Also,

network environments may change over time (e.g., due to mobility), and old link estimates may become

obsolete. We propose to exploit MAC-level information, so that link cost estimation is adaptive to changing

environments, yet incurs minimal control overhead. We alsoprovide multiple techniques thus enabling

nodes to choose the best scheme for the current network and system setting. In a resource-rich network,

for example, nodes can use a method that uses probe messages.In the case of a dense large-scale network

with limited resources, such probe messages may prove to be costly, and nodes can use an alternate

scheme that uses no extra control messages.
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We have performed extensive experiments in simulated environments to evaluate the effectiveness of

NADV and link cost estimation techniques. When compared to the current geographic routing scheme in

challenging environments with frequent packet losses, NADV leads to 81% higher packet delivery ratio

on average (from 16% to 97%). The number of MAC-level data transmissions and end-to-end delay also

decrease significantly (by up to 60%). The simulation results also show that when link costs change, the

use of NADV in geographic routing enables adaptive path migration, where the quality of found paths is

close to the optimum found by the centralized algorithm. We have also conducted experiments in Emulab

testbed and the results validate that our proposed strategyperforms well in practice.

The rest of this paper is organized as follows. In Section II we define the new link metric. Link

cost types and estimation techniques are described in Section III. We present the simulation results in

Section IV. Section V summarizes experiment results on realtestbeds. Section VI presents related work,

and Section VII concludes.

II. NEW L INK METRIC FORGEOGRAPHICROUTING

In this section, we introduce a new link metric for geographic routing and discuss its optimality in an

ideal setting. Here, we assume link cost is positive and known a priori. We discuss link cost estimation

in Section III.

A. Background

In this paper we differentiate linkcostand linkmetric. An example of linkcostis the power consumption

required for a packet transmission over the link. We define link metric as “degree of preference” in path

selection. For example, even though two neighbors require the same power consumption, in geographic

routing we prefer the neighbor closer to the destination. The goal of this section is to propose a new link

metric for geographic routing that can be generalized to various cost types (e.g., power consumption, link

delay).

In many geographic routing protocols, the current nodeS greedily selects the neighbor that is closest

to destinationT whenever possible [1], [2], [3]. The implicit goal of this strategy is to minimize the hop

count between source and destination. Let us consider the amount of decrease in distance by a neighbor

n, which we call theadvance (ADV)of n [17]:

ADV(n) = D(S)−D(n), (1)
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whereD(x) denotes the distance from nodex to T . Then, the above strategy tries to maximize the ADV

of next hop, and ADV is the link metric in this case. However, this link metric ADV does not take link

cost into account, while different wireless links can have different link costs. For example, Lundgren

et al. [18] identify gray zones, where due to high error probability, nodes cannot exchangelong data

packets in most cases. Therefore, the simple policy using ADV may use poor quality links and lead to

unnecessarily high communication cost [15].

Clearly, when choosing next hops we want to avoid neighbors with very low quality links. At the same

time, we want to gain as large advance as possible for fast andefficient packet delivery. The goal of our

work is to balance the trade-off, so that we can select a neighbor with both large advance and good link

quality. We can achieve this goal by using the new metric proposed next.

B. Normalized Advance

We now introduce a new metric callednormalized advance (NADV). Suppose we can identify the link

costCost(n) of the link to neighborn. Then the normalized advance of neighborn is simply:

NADV(n) =
ADV(n)

Cost(n)
. (2)

Intuitively, NADV denotes the amount of advance achieved per unit cost. For example, suppose we know

that only P succ(n) fraction of data transmissions to neighborn are successful. If we use1/P succ(n) as

link cost, NADV(n) = ADV(n)× P succ(n), which means the expected advance per transmission.

We propose to use NADV as link metric in geographic routing, such that a node forwards packets to the

neighbor with largest NADV. Besides obvious simplicity, NADV has the following desirable properties:

• As shown in Section II-C, the path found by using NADV approaches the optimal path under certain

conditions. The experiment results in Section IV show that the use of NADV significantly improves

path quality in realistic environments as well.

• It is general and accommodates various types of cost metrics, so that applications can utilize the

NADV framework for different objectives. We further describe this feature in Section III.

• Loop freedom is guaranteed as long as we select a node with positive NADV [17].

Using NADV, we can select neighbors that balance the advanceagainst the link cost. Depending on the

link cost values, NADV can select a neighbor with strictly less advance (e.g., nodeB overA in Figure 1).

We further illustrate this feature in Figure 2. Figure 2-(a)shows the degree of packet errors to simulate
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Fig. 2. Illustration of gray zone and corresponding contourmap of NADV. (a) Two inner circles represent the border linesfor 1% and

20% packet error rates (PERs) for a 1024-byte frame, respectively. (b) The corresponding contour map of NADV when the packet error

probability determines link cost. The current node is at (0,0), and the destination is 900 meters away on the X-axis. Values within the plot

denote the NADVs of corresponding lines.

a gray zone.1 In Figure 2-(b), we present the corresponding contour map ofNADV when link cost is a

function of packet error probability. We can observe that compared to their ADV values, points within the

gray zone have relatively low NADV values. As a result, by using NADV, we can easily avoid neighbors

in the gray zone. We next provide the theoretical rationale behind using NADV in geographic routing.

C. Optimality of NADV in an Idealized Environment

We now show that in an idealized environment, paths found by using NADV are optimal. The goal

of routing in this discussion is to minimize the sum of link costs along the found path. We make two

assumptions: (1) we can find a node at an arbitrary point, and (2) link cost is anunknownincreasing

convex function of distance (e.g., transmission power consumption [14], [19]). LetDIST be the distance

between the source and the destination, which we assume is relatively large. Since the cost function is

increasing, and we can find a node at an arbitrary point, an optimal path will use only nodes along the

straight line between the source and the destination. Also,since link cost is a convex function of distance,

the sum of link costs is minimized when all links have the samedistance. As a result, the optimal policy

is to choose nodes on an equidistant basis along the line thatconnects the source and the destination.

1The bit error function used here increases rapidly after a certain distance. A detailed description on the error model isin Section IV-B.
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Now, it remains to find the optimal interval. SupposeADVX is an interval, andCostX is the corre-

sponding link cost. Then we want to minimize:

Total Cost = (Link Cost)× (Hop Count)

= CostX ×
⌈ DIST

ADVX

⌉

≈ DIST× CostX
ADVX

. (3)

The last line comes from the assumption of largeDIST, which makes the rounding error negligible.

From Eq. 3 we can find the minimum cost path by iteratively selecting nodes with minimumCost
ADV, or

equivalentlymaximum NADV= ADV
Cost.

In practical wireless networks, the above assumptions are unlikely to be true. In low-density networks,

nodes may not be able to use the greedy forwarding rule, and the recovery procedure will likely result in

performance degradation [3]. Also, although many existingschemes are based on the simplified model,

and there usually exists strong correlation [18], [20], thelink cost is not a strict function of distance in

practice. In Section IV and Section V, we use both simulations and real experiments to show that NADV

significantly improves performance in realistic environments as well.

Although the concept of NADV is simple, the implementation for practical use involves a number of

challenges. Link cost estimation is one of the most criticalelements, and in the next section, we describe

a set of methods to infer various types of link costs and show how the NADV framework utilizes them.

III. L INK COST TYPES AND ESTIMATION

For effective link cost inference, we propose a new sublayernamedWireless Integration Sublayer Extension

(WISE) located on top of the MAC layer (See Figure 3). The WISE closely coordinates with the MAC layer

for efficient link cost estimation. It also provides simple primitives for upper layer protocols to retrieve

the inferred performance values. When additional control messages are available [15], [16], [21], WISE

extracts relevant link cost information from them. Otherwise, WISE exploits MAC-specific information

to infer the communication performance. For example, the WISE retrieves the current transmission power

from the MAC layer and calculates overall power consumptionneeded for a packet transmission. We note

that this sublayer approach and the estimation schemes below can be used in any cost-aware wireless

routing.
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Fig. 3. Wireless Integration Sublayer Extension (WISE) abstracts the performance of wireless link into numeric values and provides simple

primitives for upper layer protocols to retrieve specific performance values. For link cost estimation, WISE exploits MAC layer specific

information. If available, WISE can leverage probe messages as well.

To illustrate how to use the NADV framework to meet differentperformance objectives, we discuss

three specific types of link cost: packet error rate, link delay, and energy consumption. We also describe

how WISE is used to estimate link costs in diverse operating environments. This paper focuses on the

independent use of each link cost, and the issue of interdependence among multiple cost criteria is

discussed in Section VII.

A. Packet Error Rate (PER) Estimation

Most recent attention has been on how to find a high performance path considering wireless link

errors [22], [15]. In this scenario, we use the following as link cost: Cerror = 1/(1 − PER). It denotes

the expected transmission count (ETX) proposed in [15].2 We use the following link metric, which is the

expected advance per transmission:

NADVerror =
ADV
Cerror

= ADV(1− PER). (4)

An equivalent link metric is developed in [11], [12], and we discuss them in Section VI.

We next describe simple wireless bit error models and present four PER estimation methods for

NADVerror, each of which requires a different degree of control overhead and message format modification.

2The estimation techniques described here can easily incorporate ACK frame loss probability as in [15], but here we have simplified the

description for brevity.
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Fig. 4. Gilbert/Elliot model.G denotesgood state, andB denotesbad state.

1) Existing Bit Error Models:Wireless links are typically more prone to packet errors than wired ones,

and many theoretical models for wireless packet error have been proposed [23], [15], [24]. In this paper,

we describe two simple packet error models that can be easilyused in real wireless networks.

The independent bit error modelis among the simplest for wireless packet errors. In this model, each

bit is corrupted independent of other bits in the packet. Specifically, if the bit error rate ispb, then the

error probability for anl-bit packets is:

PER(l) = 1− (1− pb)
l. (5)

A number of previous results show that bit errors are often correlated and occur in a bursty fashion [23],

[24], [25], [26]. Some previous works use finite-state Markov models to model such correlated bit errors.

Although such a model can have an arbitrary number of states,for simplicity, we use thetwo-state Markov

modelproposed by Gilbert and Elliot [25], [26] in this paper. In the Gilbert/Elliot (GE) model, a wireless

channel is in one of the following two states:good and bad (Figure 4). If the channel is in good state,

then a bit transmission error occurs with the probability ofeg. On the other hand, if the channel is in

bad state, the probability of bit transmission error iseb. Prior to the transmission of each new bit, the

channel may change states or remain in the current state. Figure 4 shows the GE model representation

with state-transition probabilities. In this paper, we useeg = 0 andeb = 1 for simplicity.

For this model, we can calculate the steady-state probability of being ingoodstate (PG) andbad state

(PB) as follows:

PG =
1− q

2− p− q
, PB =

1− p

2− p− q
.

Note that there are two cases where no bit error occurs in a packet. First, the channel is initially in good

state and remains there for all bit transmissions, and the probability is PG pl for l-bit packet. In the
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other case, the channel is initially in bad state, but the channel changes into good state for the first bit

transmission and remains in good state. This probability isPB (1− q)pl−1. A packet error occurs if none

of them happens; therefore, the error probability of anl-bit packet is:

PER(l) = 1− (PG pl + PB (1− q)pl−1). (6)

2) Using Probe Messages for PER Estimation:If a node is already using probe messages [15], [16],

[27], the WISE can extract the link error probability from them. Since mostgeographic routing schemes

use periodic message exchange between neighbors, we can also use the reception ratio to infer the link

error probability. However, such control messages are usually shorter than data packets, and as a result, a

node may experience higher PERs for actual packets [15]. To obtain more accurate link cost estimation,

we need to adjust PER depending on the data packet length. Although more advanced bit error models

may be employed for more accurate PER estimation [24], in this paper we focus on the two bit error

models described above: the independent and GE models.

Assuming independent bit errors, we can adjust PER as follows: If we usem-bit probe messages, from

the observedPER(m), we employ Eq. 5 to infer bit error rate as follows:pb = 1 − (1 − PER(m))1/m.

Then, for anL-bit data frame we can use:

PER(L) = 1− (1− PER(m))L/m. (7)

In case we want to use the two-state Markov model shown in Figure 4, we need at least two distinct

PER values observed for different probe message types. In addition to PER(m), considerPER(n) for n-bit

probe messages. Using Eq. 6, we can get one of the state transition probabilities in Figure 4 as follows:

p =

(

1− PER(n)

1− PER(m)

)
1

n−m

.

Then, we can estimate the PER ofL-bit data messages using the following formula:

PER(L) = 1− (1− PER(m))

(

1− PER(n)

1− PER(m)

)
L−m
n−m

(8)

In Section V, we present some measurement results to demonstrate the effectiveness of these estimation

techniques.
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3) Using Signal-to-Noise Ratio for PER Estimation:We can also estimatepb using Signal-to-Noise

Ratio (SNR) and theoretical error models for different modulation schemes [23]. Assuming an AWGN

(Additive White Gaussian Noise) channel, in the case of BPSK(Binary Phase Shift Keying), the bit error

rate is given by:

pb = 0.5× erfc(

√

Pr ×W

N × f
), (9)

wherePr is the received power,W the channel bandwidth,N the noise power,f the transmission bit

rate, anderfc the complementary error function. Most wireless cards typically measure SNR =10 log Pr

N

(dB) for each received packet, and using such SNR values and Eq. 9, a node can calculatepb for its

neighbors. Using an appropriate bit error models [24], we can infer the packet error rate frompb. Then,

due to possibly asymmetric link quality, it should inform its neighbors of respective SNR values. This

can be done either via additional control messages or by modifying the beacon message format to include

the information.

Eq. 9 is useful primarily in free-space environments, but not applicable for indoor environments, where

signal path characteristics are more complex. The measurement results using a rooftop mesh network

show that it is hard to predict link quality using SNR [28]. However, in different measurement studies

using a sensor network and long-distance 802.11b links, Zuniga et al. [20] and Chebrolu et al. [29] report

that empirical results closely match their analytical models.

4) Neighborhood Monitoring for PER Estimation:A node can also use passive monitoring to infer

link PERs as in [30], [27]. For example, in IEEE 802.11 networks, nodeA can monitor frames sent by

neighbors. In that case, using the MAC sequence numberA can count how many frames from neighbor

B it has missed, and infer the PER of link fromB to A. Again, since the quality of two directional links

may differ, A needs to informB of the PER estimation as in the previous scheme.

5) Self Monitoring for PER Estimation:The previous methods require either additional control mes-

sages or the modification of beacon message format. When these are not possible, we suggest the following

technique. Whenever a node transmits a data frame to neighbor n, the MAC-layer informs the WISE

whether the transmission was successful or not. Let us definean indicator variableF ; F = 1 when a

frame exchange failed, andF = 0 otherwise. Then, WISE infers the PER of wireless link to neighborn

as follows:

PERn ← (1− α)PERn + αF, (10)
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whereα denotes the weight parameter. In the simulation study in Section IV, we useα = 0.1, and the

default PER value is set to 0. Note thatF = 1 even when an ACK frame failure occurs in IEEE 802.11

networks [15].

To track the link quality change even when no packets are forwarded ton, we use anagingscheme and

periodically reduce PERs of unused links. When this reduction makes the estimated PER become lower

than the actual one, packets may be forwarded ton, but the estimated PER will increase after transmission

failures. The magnitude and frequency of reduction should balance such overhead and prompt adjustment.

In the simulation, we multiply PERs of unused links by 0.9 every 30 seconds.

B. Delay

If link delay Cdelay is used as link cost to reduce the path end-to-end delay, we can useNADVdelay =

ADV
Cdelay

. We can think of two types of link delay. First, due to the broadcast nature of wireless medium, it

is desirable to minimize themedium time, the time spent in sending a packet over the link [31]. When

the underlying physical medium supports multi-rate transmissions (e.g., the IEEE 802.11 standard), it is a

function of the current transmission rate. The WISE can easily retrieve the current value of transmission

rate from the MAC layer and calculate the necessary medium time to the neighbor.

The other istotal delay, which denotes the time from the packet insertion into the interface queue until

the notification of successful transmission. It includes the queueing delay, backoff timeout, contention

period, and retransmissions due to errors or collisions. Using this value as link cost can potentially enable

packets to detour congested areas. The design of a routing scheme with such detouring capability is a

part of our future work, and we use the medium time asCdelay in this work [32].

C. Power Consumption

Many wireless systems have a control mechanism for transmission power adjustment to save battery

and reduce interference [21], [23]. We assume that using such a mechanism, nodes know the appropriate

transmission power level (ptx) to each neighbor. Then, the WISE can retrieve theptx value and calculate the

actual system power consumptionCpower considering additional components of power consumption [33].

If Cpower is used as link cost, a geographic routing protocol can useNADVpower = ADV
Cpower

to find a path

that minimizes power consumption to deliver packets to a destination.
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So far, we have listed interesting cost types and shown how the NADV framework can incorporate

them. The NADV framework still can include other types of link cost as well (for example,reluctance

metric in [34]). However, in this paper we limit our attention to the cost types discussed above and report

simulation results in the following sections.

IV. SIMULATION RESULTS

In this section we first describe the simulation setup and error model. Then we present the results of

simulation experiments.

A. Simulation Setup

We usens-2 simulations to evaluate the system performance when we employ the proposed NADV

metric and link cost estimation schemes. In this section, wedescribe various aspects of simulation in

detail. We present the simulation results in Section IV.

We place nodes uniformly at random on a 1000m by 1000m square.Unless otherwise stated, 100

static nodes are used in the simulation.3 We usually use only one source-destination pair to capture the

individual performance effects accurately. In this scenario, denoting the lower left corner of the square

as (0, 0), the static source is located at (50, 500). The destination is placed at (50+D, 500), whereD is

the distance between the source and the destination. We usually useD=900. The source generates a CBR

(Constant Bit Rate) flow, which sends a 1024-byte UDP packet every two seconds from 10 seconds to

1000 seconds of simulation time. The maximum transmission rangeR is 250 meters.

For geographic routing, we use the simulation code for GPSR.4 We have slightly modified the next hop

selection algorithm to include NADV. The simulation code for GPSR provides an option about whether to

exploit transmission failure notification from the MAC layer [2]. If a node exploits the option, then upon

receiving a notification, it selects the next best neighbor for retry until the forwarding is successful. This

option leads to higher delivery ratio with higher resource consumption. When not using the notification,

a node does not attempt to retransmit to other neighbors. We explore both cases in the simulation. The

beaconing period in GPSR is set to 1.5 seconds. We use the IEEE802.11b standard for the underlying

3We also experimented using sparser networks with 50 nodes. However, in scenarios with high packet error rates, networksfrequently

became disconnected (e.g., due to repeated beacon message losses).
4Available at http://www-2.cs.cmu.edu/˜bkarp/gpsr/gpsr.html
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Noise power (×1.0e-12 W)

0.8 1.0 1.2 1.4 1.6

(dBm) (-91.0) (-90.0) (-89.2) (-88.5) (-88.0)

BER at 220m 6.0e-8 1.1e-6 7.8e-6 3.2e-5 9.1e-5

BER at 240m 4.4e-6 3.5e-5 1.4e-4 3.9e-4 8.3e-4

TABLE I

BIT ERROR RATE VALUES WITH DIFFERENT LEVELS OF NOISE.

MAC layer protocol [35]. We assume the location of the destination is known to the source. For the

simulation results presented in this paper, the transmission rate is fixed to 1Mbps. We also performed

experiments using different transmission rates in the MAC layer, and the results are available at [32].

B. Error Model

To simulate a lossy channel, we use two different error models. First, assuming the use of BPSK

modulation in the physical layer, we simulate packet errorsusing Eq. 9 as bit error model. (We assume

independent bit errors for simplicity.) In the defaultns-2propagation model, the signal strength is reduced

proportionally tod2 if the distanced is smaller than a certain threshold. Otherwise, the path loss is

proportional tod4. In this experiment scenario the transmit signal power is fixed at 20 mW (or 13dBm)

supported in Cisco Aironet 350 interface cards [36]. Then the received signal strength for a node 250

meters away is -85dBm. The noise channel bandwidth in Eq. 9 isset to 2MHz. In this model, we use

ambient noise environments, where the noise value is identical everywhere. Therefore the quality of a link

depends only on the distance between two nodes, andCerror is a convex function of distance. In Table I

we tabulate the used noise values and corresponding bit error rates (BERs).5

To examine the performance of NADV in the presence of randomness in packet errors [28], we also

perform simulations using a random packet error model. In this model, for each wireless link, we assign a

packet error rate, which is distributed uniformly at randombetween 0 and a maximum value (max-PER).

We vary the maximum packet error probability for different degrees of packet losses. In practice, shorter

packets such as periodic beacons experience lower error probability [15], and we adjust the error probability

for these packets according to Eq. 7. Clearly, link cost is not a function of distance in this model.

5Noise values from more than 20000 measurements in our building range from -91dBm to -73dBm, with the median at -89dBm. The

noise value used in Figure 2 is -89.2dBm.
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In some of our simulations, we compare NADV against another scheme calledblacklisting [37], [11].

This scheme uses a fixed threshold, and when selecting a next hop, a node excludes neighbors with low-

quality link based on the threshold. For example, if we use a threshold value of 0.5, then a node excludes

neighbors that are closer to the destination and belong to the lower half in the link quality. Among the

remaining neighbors, the blacklisting scheme selects the neighbor with largest ADV.

In the rest of this section, we present the results of simulation experiments. We begin with the effect

of wireless link errors. We first assume the perfect knowledge of link error rates when we investigate the

performance. Then we compare the performance when we combine our proposed estimation techniques

with NADV. We then consider the cases when delay and power consumption are used as link costs in

turn. Finally we compare geographic routing using NADV against idealized routing.

C. Experiments with Perfect Estimation of Link Errors

We first present the results when nodes experience packet losses due to wireless link errors. In this

section, we assume that there exists a perfect estimation scheme that provides accurate link cost values,

and compare the performance when NADV and other geographic routing schemes operate based on the

knowledge. We later present results when we combine NADV with the proposed PER estimation techniques

described in Section III-A.

In the first set of experiments, we use the random packet errormodel described in Section IV-B, where

packet error rates are distributed uniformly at random between 0 andmax-PER. Although in this model

the frequency of links at a given error rate is similar to the previous measurement results in [28], this

model does not consider the correlation between the distance and link error. As a result, on average,

packets sent to distant neighbors have the same error probability as those sent to close neighbors. In fact,

this setting is in favor of ADV, because in practice, transmissions to neighbors with large ADV are likely

to suffer from frequent errors [18], [20]. We use an average of ten runs, each with different placement of

stationary nodes and fix the data transmission rate at 1 Mbps in this set of experiments.

In Figure 5, we report the number of MAC-level data transmissions (including retransmissions) per

delivered packet for each scheme when we vary the value ofmax-PER. In this set of experiments, GPSR

employs MAC-level failure notification, and all results arebased on 100% packet delivery. We can observe

that as the packet error rate increases, the data transmission overhead of ADV increases abruptly (up to

71% higher than that of NADV). This is because ADV often selects neighbors with low-quality link,
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Fig. 5. The number of MAC-level data transmissions per delivered packet with different degrees of packet errors.Cerror is used as link

cost. Unless the error rate is low, next hops chosen by ADV cancause multiple retransmissions, and ADV significantly increases the number

of data transmissions. As marked in the bottom, whenmax-PER=0.2, the average path length using ADV is 4.7 hops.

which causes repeated retransmissions. In contrast, NADV intelligently avoids nodes with high PER, and

although the data overhead of NADV increases asmax-PERincreases, the number of data transmissions is

much smaller than that of ADV. Each transmission requires network bandwidth as well as node resources

(e.g. battery power), and NADV uses system resources more efficiently.

In Figure 5, we also compare the performance of NADV against the blacklistingscheme described in

Section IV-B. Blacklisting uses a fixed threshold, and to findthe best threshold, we consider nine different

blacklisting threshold values between 0.1 and 0.9 with an increment of 0.1. (The use of threshold value

0.0 in blacklisting corresponds to ADV.) In Figure 5, we plotthe best result for blacklisting in each

setting and mark the corresponding threshold value in parenthesis. We can observe that depending on

the network environment, different threshold values lead to best results for blacklisting and that a fixed

threshold value in blacklisting does not work well. When packet errors are frequent, it is better to use a

high threshold value in blacklisting and exclude many neighbors with low-quality links. However, when

there are few low-quality links, the use of a high threshold value may exclude useful neighbors and lead

to longer paths. In contrast, NADV adapts to the changing network environment and is able to achieve

low data transmission overhead in all cases.

Repeated retransmissions also affect the packet delay. Although not displayed here, the end-to-end

latencies of ADV also show an increasing trend similar to Figure 5. Specifically, asmax-PERchanges

from 0.2 to 1.0, the average packet latency of ADV increases from 54.9ms to 151.6ms. The performance
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Name Description

NADV-Beacon Using periodic beacon messages (Eq. 7)

NADV-SNR Using SNR (Eq. 9)

NADV-Self Using own data packets (Eq. 10)

NADV-Perfect Assuming the perfect knowledge of link cost

TABLE II

DIFFERENT SCENARIOS WHENNADV AND THE PERESTIMATION TECHNIQUES ARE COMBINED.

max-PER

0.6 0.8 1.0

NADV-Self 7.0 (0.6) 7.8 (0.8) 8.9 (1.1)

NADV-Beacon 6.6 (0.7) 7.2 (0.6) 7.8 (1.2)

NADV-Perfect 6.3 (0.5) 6.7 (0.7) 7.6 (1.2)

TABLE III

THE NUMBER OF DATA TRANSMISSIONS PER DELIVERED PACKET WHENNADV AND PROPOSEDPERESTIMATIONS ARE USED. VALUES

IN PARENTHESES ARE THE STANDARD DEVIATIONS. WHEN THERE ARE NO LINK ERRORS, THE AVERAGE PATH LENGTH IS4.7 HOPS.

degradation by NADV is less severe (increase from 54.9ms to 81.8ms). Instead of NADV, we also

experimented using different combination of ADV and link cost, and NADV outperformed them as well.

A more conservative link metric (e.g.,ADV/Cost2) results in longer paths, while a different metric such as

ADV/
√

Costoften underestimates high-cost links and causes more retransmissions due to packet errors.

In the previous experiments, we assumed the perfect knowledge of link cost. We next investigate the

performance of NADV used with the proposed PER estimation techniques.

D. Experiments using Proposed PER Estimation Techniques

In Table II, we tabulate three schemes when we use NADV and theproposed PER estimation techniques

together, in addition to case with the perfect estimation (NADV-Perfect). Note that none of the three

estimation schemes use extra control messages. However, inthe case of NADV-SNR and NADV-Beacon,

we modify the periodic beacon format to include reverse linkinformation, and the message length slightly

increases. Storage overhead for the link cost estimation isalso negligible since each node in GPSR already

maintains neighbor information.

In the first set of experiments, we use the random packet errormodel used in the previous section and
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compare the actual performance of NADV against the case withthe perfect knowledge of link cost. In

this model, there is no correlation between SNR and packet error rate, and we experiment with NADV-

Beacon and NADV-Self only. In Table III, we show the data transmission overhead of NADV schemes

for high-error scenarios. In this table, the overhead of NADV-Beacon and NADV-Self is reasonably close

to that of NADV-Perfect, and we can infer that our proposed schemes provide good link cost estimation.

Although NADV-Self has the most flexibility in deployment (e.g., no modification of protocol message

format), its performance is slightly worse than NADV-Beacon.

In the previous experiments, we used the random packet errormodel. In the next experiments, we use

the other error model described in Section IV-B, where a bit error occurs according to Eq. 9 (See Table I).

To identify the performance of proposed PER estimation schemes, we consider five simulation scenarios.

First, we compare packet delivery ratios when we do not employ MAC-level failure notification. Second,

we change the ambient noise power over time and observe how each estimation technique adapts to varying

environments. Third, we study the number of MAC-level data transmissions (including retransmissions)

per delivered packet. Fourth, we increase the number of dataflows to vary the network contention level.

Fifth, we consider the scenario with node mobility.

Without MAC-level Failure Notification:In these experiments, we compare packet delivery ratios when

MAC-level failure notification is not employed. In Figure 6,we plot the delivery ratios achieved by

ADV and NADV, respectively, when we vary the noise power values. We use an average of ten runs,
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each with different node placement, and the error bars in thefigure are the standard deviations. When

wireless link errors are rare (noise=-91dBm), the use of ADVin geographic routing leads to relatively

good performance. However, as the channel condition degrades, the performance gap between NADV

and ADV grows larger. For example, when ADV is used with noisepower=-89.2dBm, less than 50%

of packets can reach the destination on average. However, when NADV is used, the delivery ratio is

maintained high (> 97% on average for both NADV schemes). Since NADV-SNR explicitly utilizes the

link characteristic value, it leads to paths of higher-quality links, and the delivery ratios are slightly higher

than those of NADV-Self.

The performance gap between NADV and ADV is explained as follows. The neighbor with maximum

ADV is relatively far from the current node, and the corresponding link may experience a higher PER.

However, when using ADV, the current node blindly uses the neighbor with maximum ADV and suffers

from the poor quality link. In contrast, when using NADV, thelink estimation schemes find out that the

link quality is poor and accordingly reduce the NADV value for the neighbor. Then, the node chooses

a different neighbor with a larger NADV value, and the overall network performance improves. We can

also observe the highvarianceof delivery ratios when ADV is used. For example, when noise power=-

89.2dBm, the delivery ratios of ten runs range between 21.0%and 97.2% for ADV. The reason is that,

in some fortunate cases, all forwarding nodes selected by ADV can possibly be outside of gray zones,

and the forwarding does not experience high PERs. In contrast, NADV selects the neighbor with the best

trade-off and consequently leads to stable performance (> 92% in the worse case).

Changing Noise Power:In these experiments, we investigate the adaptiveness of PER estimation

schemes, and we start with a high noise value, change to a low noise value after 300 seconds, and

change again to a medium noise value after 700 seconds. In Figure 7 we plot the average path lengths

for ADV and NADV when we vary the ambient noise power value. Wedo not employ MAC-level failure

notification in GPSR, and the values in the parentheses show the average delivery ratios for different

scenarios. Since the performance of NADV-Beacon is similarto that of NADV-SNR, we do not show the

result of NADV-Beacon for clarity.

In Figure 7, the length of the path chosen by ADV is always shortest, but the packet delivery performance

is always worse than that of NADV. For example, in the high-error scenarios (noise value=-88dBm), the

difference in packet delivery ratio is more than 81% (16.3% vs. 97.7%). In this scenario, although ADV
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path length found by ADV when noise=-91dBm is 4.8 hops.

does not adapt to the environment, beacons from far neighbors are frequently lost, and the path length

increases. In the case of NADV, the PER estimation schemes dynamically assign appropriate link costs. As

a result, NADV uses different neighbors according to the current environment, and the path length change

is more noticeable. NADV-SNR explicitly utilizes the link characteristic value, and in this simulation

model, NADV-SNR exhibits more accurate estimation and faster convergence. NADV-Self occasionally

employs slightly longer paths than NADV-SNR, but it is also able to adapt to environment changes.
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MAC-level Data Transmissions:In Figure 8, we report the number of MAC-level data transmissions

(including retransmissions) per delivered packet for bothADV and NADV. GPSR employs MAC-level

failure notification in this set of experiments, and all results are based on 100% packet delivery. We

can see that NADV intelligently avoids nodes with high PER, and the number of data transmissions

is accordingly much smaller. Each transmission requires network bandwidth as well as node resources

(e.g. battery power), and NADV uses system resources more efficiently. In contrast, the use of ADV leads

to the waste of system resources due to repeated retransmissions (up to 130% more transmissions than

NADV). Also, the ADV performance degrades rapidly as bit error rates become higher. In contrast, by

leveraging PER estimation, NADV enables graceful performance degradation.

Repeated retransmissions also affect the packet delay. Although not displayed here, the end-to-end

latencies of ADV also show an increasing trend similar to Figure 8. Specifically, as the noise value changes

from -91dBm to -88dBm, the average latency of ADV increases from 52.3ms to 201.6ms. NADV again

exhibits graceful performance degradation (increase from52.0ms to 67.7ms for NADV-Self, and from

51.6ms to 60.2ms for NADV-SNR).

Varying the Number of Data Flows:In the previous experiments, we use only one pair of source and

destination. When we have more source-destination pairs, the network contention increases, in which the

proposed techniques may estimate PER values incorrectly. For example, although received SNR values

may be high, a node can experience high packet error rates dueto increased collisions. To identify the

performance of estimations schemes in this scenario, we vary the the number of data flows in the next set

of experiments. We choose source-destination pairs uniformly at random. As in the previous experiments,

we do not use the MAC-level notification of GPSR and report theaverage packet delivery ratio for each

scenario. Among the values in Table I, we fix the noise value at-89.2dBm, which is the closest to the

median of noise measurements in our building.

In Table IV, we report the average data delivery ratios in different scenarios. In these experiments,

all NADV schemes perform similarly. Although the delivery ratio appears to decrease when we increase

the number of flows, the amount of degradation is small. When we experimented using 16 flows without

packet errors, we observed low delivery ratios due to the network saturation, and eight data flows in this

setting corresponds to relatively high network utilization. These results show that our proposed estimation

techniques work well in the presence of high network load. When we use ADV, the average delivery ratio
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Number of Flows

1 2 4 8

NADV-Beacon 98.6 98.7 97.3 97.6

NADV-SNR 99.2 99.3 97.9 98.1

NADV-Self 98.8 99.0 97.4 97.8

ADV 71.9 73.8 71.3 77.6

TABLE IV

DATA DELIVERY RATIO (IN %) WHEN THE NUMBER OF DATA FLOWS IS VARIED.
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Fig. 9. Average end-to-end latency when nodes are mobile.Cerror is used as link cost. We changed the pause time for different degrees

of mobility. NADV and the proposed cost estimation schemes are effective with node mobility.

lies between 70% and 80%, depending on the random node placement.

Experiments with Mobile Nodes:In the previous results, we have shown that our proposed techniques

for PER estimation perform well in static networks. We now investigate how well they adapt to network

topology changes. In this scenario, the source and destination pair does not move, but the remaining 98

nodes move according to the random waypoint model. The speedis randomly chosen between 1 and 10

m/s, and we vary the pause time for different degrees of node mobility. We use the MAC-level failure

notification and fix the ambient noise power at -89.2dBm.

In Figure 9, we present the end-to-end latency results with varying mobility. As mentioned before, the

data transmission overhead shows a similar trend to Figure 9. We observe that average latencies increase as

node mobility becomes higher. This is because frequent linkfailures cause more retransmissions. Compared

to ADV, both NADV schemes achieve lower average latency. With NADV-SNR, PER estimation is more
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Distance 500m 600m 700m 800m 900m

ADV 22.9 26.5 31.7 36.2 42.9

NADVdelay 14.5 17.3 20.0 22.7 26.2

TABLE V

AVERAGE END-TO-END LATENCY (IN MS) WITH DIFFERENT SOURCE-DESTINATION DISTANCES.

accurate, and the increase in end-to-end latency is minimaleven with the highest mobility (50% lower

compared to ADV). When NADV-Self is used in high mobility scenarios, most neighboring nodes move

out of range before the estimated values can converge. As a result, the performance gain is smaller than in

low mobility cases. Still, its average latency is 15% shorter than that of ADV when nodes move constantly.

NADV-Beacon also requires a certain number of beacon messages for good estimation, and the results

are similar to those of NADV-Self (within 5% difference in all cases), which we do not show here for

clarity.

To summarize, the proposed link estimation schemes are effective even with node mobility, and NADV

combined with them provides an efficient and adaptive geographic routing strategy. As the network

environment becomes harsher, the performance of NADV degrades gracefully.

E. Using Delay as Link Cost

In this subsection, we use link delay as link cost and assumeNADV≡ NADVdelay in this scenario. We

use the error model using Eq. 9, and ARF is used for rate adjustment. In this model, due to the interaction

with ARF, link cost is not a convex function. In this experiment, we use a low noise value of -91.0dBm in

this set of simulations. Note that this scenario is in favor of ADV because with high noise, ADV suffers

from increased end-to-end latency as previously discussed. The MAC-level failure notification is used,

and the delivery ratios are 100% in all cases. Each value in this experiment is an average of ten runs.

In Table V, we report the average end-to-end latency of each scheme when we vary the distance between

the source and the destination. As the distance increases, packets go through more relay nodes, and the

latency increases accordingly. Compared to ADV, NADV significantly decreases the end-to-end latency

(by up to 35%). It is because when we use ADV, we are likely to choose far neighbors to minimize

the distance to the destination. However, the transmissionrates to such nodes are usually 1 or 2 Mbps,

which causes the transmission to take longer. With the use ofNADV, the current node may choose a
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neighbor that is not the closest to the destination, but the corresponding link is good enough for a higher

transmission rate such as 11 Mbps. This strategy eventuallyleads to shorter transmission time.

When usingNADVdelay in this simulation scenario, the current node usually selects neighbors close

to itself, which leads to more relay nodes (e.g., 55% increase when the distance is 900m). Since this

increase is based only on the local decision to minimize the medium time, it may degrade the overall

performance, especially when multiple traffic flows exist inthe network. To investigate this potential

problem, we perform experiments using different numbers ofsource-destination pairs, which we select

uniformly at random.

In Figure 10, we plot the average end-to-end latency when we change the number of flows in the network.

We can observe that with more flows in the network, ADV increases the average latency noticeably. This

is because ADV holds the wireless medium longer than necessary, leading to a higher level of network

contention. In contrast, NADV maintains the aggregate medium time low enough, such that the network

can support more flows without significant increase in the latency. Consequently, compared to ADV,

NADV improves the latency performance even more with highernetwork traffic load. Specifically, in the

case of 10 flows, NADV decreases the average latency by 30%, but with 50 flows the improvement is

48%.6 In the case of 50 flows, only 2 flows experience slight increase(< 2ms) in the end-to-end delay.

6In the experiments for Table IV, we use the fixed data transmission rate of 1 Mbps, and we observe network saturation when wesend

more than 8 packets per second. In the experiments for Figure10, the data transmission rate can be up to 11 Mbps, and NADV can support

more data flows without network saturation.
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Fig. 11. Average power consumption with different schemes.In dense networks, as more neighbors are available, power consumption

decreases. The power consumption values by NADV and SP-Power are similar, which are close to the optimal value.

This experiment result shows that the use ofNADVdelay does not negatively affect the performance of

other traffic in the network.

F. Using Power Consumption as Link Cost

We compareNADV(≡ NADVpower) against the metric proposed in theSP-Powerscheme [14]. When the

power consumption equation isCpower = 1 + c tpx, NADV needs to know the current transmission power

ptx, which we assume is available through a control mechanism. SP-Power requires the exact value of path

loss exponent, which we also assume is available. In practice, however, the path loss exponent estimation is

not trivial, and depending on the measurement parameters, the estimated values can vary significantly [23],

[38]. We assume that both schemes know the proportionality valuec, which is a hardware-specific constant.

In the following set of simulations, the distance between source and destination is 900m, and there are

no packet errors. We vary the node density and use average values of 20 runs for each case. We also

compare the performance of optimal paths found by the centralized algorithm.

In Figure 11, we plot the average power consumption of each scheme with different node density.

The amount of power consumption in each scheme decreases as node density increases. This is because

with higher node density, more neighbors become available,and all schemes likely choose better next

hops. We also observe that compared to ADV, both NADV and SP-Power find paths that reduce overall
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power consumption.7 The performances of NADV and SP-Power are almost identical;NADV performs

slightly better. (NADV and SP-Power find the same path in 15 cases out of 20 in the 400-node scenarios.)

Even though we do not report detailed results in this paper,NADVpower and SP-Power also show very

similar performance in other settings (e.g., distance, continuous power adjustment, different path loss

exponents, and proportionality constantsc). For other aspects of energy consumption (e.g., in idle or

receiving mode), we expect thatNADVpower and SP-Power will consume a similar amount of energy and

that their performance will be close to each other as well.

When the goal of geographic routing is to minimize the path power consumption, we argue that

NADVpower is the metric of choice.NADVpower and SP-Power are based on a similar rationale for next

hop selection and exhibit almost identical performance. However, as mentioned above, SP-Power needs to

estimate the path loss exponent, which can be difficult in practice. In contrast,NADVpower only requires

tpx, which nodes can easily determine with the support of existing control mechanisms [21], [23].

G. Experiments with Generic Cost

Recently, new metrics are being proposed for various multihop routing purposes. For example, Draves

et al. [39] propose the WCETT (Weighted Cumulative ExpectedTransmission Time) metric to improve

network throughput in multi-radio mesh networks. As multihop wireless networks become more widely

used for different objectives, we expect to see other new routing metrics proposed to achieve specific

goals. In this section, we apply NADV to a generic cost metricto see whether the use of NADV can be

generalized to other types of link cost. We use the followinglink cost:

Cgeneric = 1.0 + r

(

d

R

)

2

, 1 ≤ r ≤ 5, (11)

wherer is a uniformly distributed random number,d is the distance between two nodes, andR is the

maximum transmission range. The above link metric attemptsto capture both the correlation with distance

and the random property of link quality [28], [20]. In this subsection, we assume the availability of accurate

and up-to-date link cost information.

We use the following experiment scenario. The source and thedestination are 900 meters apart, and

the source starts to send data packets after 10 seconds. At 30seconds, we assume that the environment

7In Figure 11, the performance difference between the optimal case and ADV is not large. It is because the constant term in Eq. ??

constitutes a significant power consumption regardless of the transmission power, as is the case with most existing products [33].
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ADV Non-adaptive NADV NADV IDEAL

(AODV) one-hop two-hop

Initial 14.43 11.14 11.28 10.82 10.32

After change 18.51 14.30 13.50 12.52 11.62

TABLE VI

THE AVERAGE COSTS OF PATHS FOUND BY RESPECTIVE ROUTING SCHEMES WHEN LINK COSTS CHANGE.

of some part of the network changes (e.g., due to new obstacles, increased interference, node mobility),

and we randomly select 50% of links and increase their link costs by 50%. For NADV, we additionally

consider a geographic routing scheme that uses two-hop neighborhood information [10]. To compare

NADV against AODV [13], we modify the AODV simulation code, such that AODV finds paths that

minimize the sum of link costs along the paths, not hop count.

In Table VI, we report average path quality of each scheme before and after the link cost change.

Each value in the table is an average of ten experiments. In this table, we can see that using NADV,

geographic routing (both one-hop and two-hop) can find pathscomparable to the optimal paths. Not

surprisingly, utilizing two-hop neighborhood information leads to higher-quality paths than the one-hop

case. The performance of initial paths by AODV lies between those by one-hop NADV and two-hop

NADV. However, even after some link cost values increase after 30 seconds, AODV keeps using the

initial path, and the path performance degrades accordingly. In contrast, the use of NADV enables localized

geographic routing to detect the change and determine better next hops, which results in better paths.

In summary, geographic routing with NADV can find paths whosecosts are comparable to the optimum.

It is also able to adapt to network environment changes, due to the localized next hop decision.

V. TESTBED EXPERIMENTS

In this section, we present results from our experiments performed on real testbeds and demonstrate

that our estimation strategy performs well in various wireless environments. After describing experiment

setup, we first show the PER estimation scheme based on two-state Markov model works well in practice,

and then present results when we employ the scheme in the NADVframework in practical scenarios.
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Fig. 12. Partial floorplan for the Emulab wireless testbed. Nodes 1 and 9 cannot directly communicate, and all the other node pairs can

talk to each other.

A. Experiment Setup

We have performed our experiments in two open access wireless testbeds: Emulab (http://www.

emulab.net) and ORBIT (http://www.orbit-lab.org). Although Emulab is often used to

provide emulated network environments for wired networks experiments, the Emulab wireless testbed uses

real air communicationthrough IEEE 802.11 wireless interfaces between stationary PC nodes scattered

around a typical office building. We only use the nodes on the third floor (Figure 12). Each PC has two

Netgear WAG311 wireless interface cards based on the Atheros 5212 chipset. It uses Redhat 9.0 with 2.4

kernel and the MadWifi open-source device driver8. The ORBIT testbed currently consists of 400 wireless

nodes, each equipped with two IEEE 802.11 wireless cards laid out in a 20-by-20 grid with approximately

one meter spacing between nearby nodes. Due to the relatively small deployment area, observed packet

error rates in ORBIT show less diversity [40]. Thus, we focuson results from Emulab to illustrate that

the estimation technique performs well for both low-error and high-error links.

In our experiments, a sender broadcasts 16, 32, 64, 128, 256,512 and 1024-byte UDP packets every

0.05 seconds in an intermixed fashion to minimize the effectof link condition variation over time on

the error rates of different message types. In our experiments, we use only one sender at any instant

to minimize the interference and collisions. Each sender broadcasts 10000 packets for each size (70000

packets total). All nodes receiving the packets record the packet size and sequence number to calculate

the observed PERs for each message type. In this paper, we usethe fixed transmission rate of 1 Mbps

for all messages. Investigating the impact of different data rates is an area of our future research. The

8http://www.madwifi.org
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Fig. 13. Estimated and observed PERs for 1024-byte packets over the link from node 1 to node 4 in Emulab (Figure 12).

transmit power is fixed at 31 mW, which is the default value in the device driver.

We compare the estimation performance of the following strategies:

• BASIC(m): This scheme uses the average error rate ofm-byte probe messages for data packets of

all sizes.

• INDEP(m): This scheme assumes the independent bit error model and extrapolates the expected

packet error rate based on Eq. 5 and the statistics ofm-byte probe messages.

• GE(m, n): This scheme is based on the GE model, which uses Eq. 6 and thestatistics ofm-byte

andn-byte probe messages.

• OBSERVED: This is the actual observed packet error rate.

Only one measurement value is required forINDEP; GE uses two parameters, and there can be more

possible combinations of the two. For both schemes, proper parameter choice can be crucial to correct

PER estimation. We consider three different combinations of parameters forGE and two different cases

for INDEP and compare the estimation performance.

B. PER Estimation Results

We first consider how well the above estimation strategies perform. In Figure 13, we plot the observed

error rate for 1024-byte packets and estimated error rates by different schemes9. We use a representative

experiment sending 10000 packets for each probe type, and each point in the figure is based on cumulative

packet error rates after every 1000 packets. In Figure 13, the estimation byGE(16,128) closely matches the

9We include additional 84 bytes of lower layer headers in the calculation.
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Emulab Links

8→9 1→13 1→7 1→4 1→8 11→16 16→5

OBSERVED 0.018 0.135 0.145 0.334 0.375 0.548 0.738

GE(16,128) 0.021 0.131 0.145 0.385 0.393 0.526 0.754

GE(16,64) 0.025 0.222 0.247 0.465 0.332 0.415 0.791

GE(16,32) 0.046 0.154 0.043 0.524 0.243 0.594 0.677

INDEP(128) 0.052 0.222 0.255 0.629 0.645 0.907 0.996

INDEP(16) 0.092 0.332 0.383 0.816 0.831 0.993 1.000

BASIC(128) 0.010 0.047 0.055 0.173 0.180 0.385 0.646

TABLE VII

COMPARISON OF DIFFERENT ESTIMATION TECHNIQUES AGAINST ACTUAL PACKET ERROR RATES. WE USE10000PACKETS FOR EACH

OF PROBE AND DATA MESSAGE TYPES. VALUES IN BOLD REPRESENT THE CASES WITH MINIMUM ESTIMATION ERROR.

actual average packet error rate. In general, we observe that the estimation error forGE(16,128) becomes

smaller as we use more probe messages; we discuss this issue later in more detail.

In our experiments,GE(16,32) does not perform as well asGE(16,128). In Figure 13 there is considerable

difference in the estimated value over time, and the measurement error is often relatively large. One

possible explanation is that the estimation byGE(16,32) is less robust because we use extrapolation based

on two relatively nearby sample points; a small measurementerror can amplify the estimation error. Also,

Kopke et al. [24] find that there is difference in bit error probability depending on the bit position, and

bit errors occur more frequently at the beginning of a packet. As a result, estimation using short probe

messages alone can potentially lead to higher estimation errors. In Figure 13,INDEP does not estimate

PER correctly, and although not shown in the figure, the estimation error byINDEP(16) is larger than that

of INDEP(128). Although we do not show all the results here, we have experimented with other links and

performed multiple experiments for each link, and the results are similar. We later present some of them

in Table VII. We have also performed experiments on the ORBITtestbed and gotten similar results which

are omitted due to the limited space. Interested readers arereferred to [40] for more experiment results.

In the rest of this section, we use results from Emulab only.

Experiments with Various Links:In the previous results, we considered results only from a few links.

We now present results from various wireless links with diverse link quality. In Table VII, we report
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Fig. 14. PER estimation for different packet sizes. We use the link from node 1 to node 4. Again,GE(16,128) performs best for all packet

sizes.

estimated PERs by different schemes as well as observed error rates for 1024-byte packets10. We observe

that GE(16,128) estimation is the most accurate in all cases (highlighted in bold), and the estimation error

is small regardless of link quality.GE(16,64) often performs better thanGE(16,32), but both of them result

in larger estimation errors thanGE(16,128). As in Figure 13,INDEP leads to large estimation errors, while

INDEP(128) performs better thanINDEP(16). Although the independent bit error model has served asa

reasonable model in [20], it does not seem to reflect the channel characteristics correctly in our indoor

experiments.BASIC(128) uses the error rate of 128-byte probe messages as the estimation for 1024-byte

packets, which results in significant underestimation. In Section V-C, we illustrate that this underestimation

by BASIC can lead to significant inefficiency when used with existing routing schemes.

Varying Data Packet Sizes:In the previous experiments, we fixed the data packet length to 1024 bytes.

In this set of experiments, we vary the data packet size and compare the estimated and observed error

rates. In this experiment, we use additional packet sizes (750, 1200, and 1400 bytes). In Figure 14,

we plot the estimated and actual packet error rates with varying packet sizes. We use the statistics of

10000 messages for each probe type. Not surprisingly, average packet error rates increase as data packets

become larger. We observe thatGE(16,128) again performs best in estimating error rates for all packet

sizes. Other schemes show similar trends to Figure 13;GE(16,64) performs worse thanGE(16,128), while

INDEP performs worst. This result illustrates that our proposed technique estimates error rates for various

packet sizes.

10Nodes 5, 11, and 16 are not shown in Figure 12. The full floorplan is available athttps://www.emulab.net/floormap.php3.
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Fig. 15. PER estimation based on 1000 packets. We use the linkfrom node 1 to node 4 again, but the values on the X-axis are smaller

than those in Figure 13.

Convergence Time for Accurate Estimation:One of our goals is to estimate error rates quickly with

small overhead. In this set of experiments, we look into the number of probe messages needed to achieve

reasonable estimation accuracy. As mentioned before, small measurement errors in probe messages can

cause large extrapolation errors. However, sending 1000 probe messages (to obtain the first point in

Figure 13) takes tens of minutes if we send a probe message every second. In this experiment, we

calculate the estimation using the cumulative statistics after every 100 probe messages. One issue with

inferring error rates based on a small number of packets is that the observed error rate of 16-byte packets

is sometimes higher than that of 128-byte packets, which is contrary to the trend shown in Figure 14. In

that case, when we apply Eq. 6, the estimation is often negative for longer data packets. Clearly, it is due

to limited number of samples, and we are unlikely to have a good estimation by blindly applying Eq. 6

with only a small number of probe messages. In such a case, we use the maximum of the following three

values as the estimated error rate: PER(16), PER(128), and the estimated PER from Eq. 6.

In Figure 15, we consider the estimation performance when weuse a smaller number of probe messages.

We observe thatGE(16,128) converges after 300 probe messages, whileGE(16,32) shows a substantial

amount of fluctuation. Still,GE(16,128) takes several minutes before achieving reasonable convergence

if we send a probe message every second. This amount of time isacceptable for more static wireless

mesh networks [28], while more dynamic wireless networks such as ad hoc networks may require faster

convergence. We plan to investigate how to reduce the numberof required probe messages further in the

future.
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Next ADV NADV Number of Retransmissions

Hop BASIC(128) GE(16,128) at source at relay total

4 19.16 15.85 11.78 536 188 724

7 25.96 24.54 22.19 185 119 304

8 30.00 24.61 18.20 768 4 772

13 20.55 19.59 17.85 250 171 421

TABLE VIII

ROUTING METRICS BASED ON DIFFERENT ESTIMATION SCHEMES AND ACTUAL ROUTING PERFORMANCE. VALUES IN BOLD

CORRESPOND TO THE BEST CHOICES UNDER DIFFERENT CRITERIA. THE DELIVERY RATIOS FOR ALL CASES ARE OVER99.9%DUE TO

MAC-LEVEL RETRANSMISSIONS FOR UNICAST MESSAGES.

C. Experiment Results with NADV

We have modified the geographic routing implementation fromUSC11 to account for link cost when

choosing next hops. We installed the modified code at the nodes shown in Figure 12. In our experiments,

node 9 is the destination, and node 1 is the source sending 1000 UDP packets (1024 bytes each) at the rate

of 20 packets per second. We use the IEEE 802.11 MAC protocol,and the MAC-level transmit data rate

is fixed at 1 Mbps. Depending on the estimation strategies we combined with the routing metric, we can

potentially choose different next hops. For each case, we measure the average delivery ratio and number

of total retransmissions (overhead). In some of our experiments, we force the routing code to choose

a particular next hop to compare the performance. We use an internal variable (LongRetryCount) in the

MadWifi device driver to retrieve the total number of MAC-level retransmissions. To maintain consistency

with the results in Table VII, we use the estimated values in the table as fixed link cost when choosing

the next hop. We compare the performance when we useBASIC(128), INDEP(128), andGE(16,128)12.

In Table VIII, we present (1) routing metrics for each neighbor from the source node 1 when using

different estimation schemes and (2) the number of MAC-level data retransmissions when choosing

different nodes as the next hop. Node 1 sends 1000 UDP packetstotal. For the ADV metric, since

we do not consider link quality, we choose node 8, which is closest to the destination node 9. When

11Available athttp://enl.usc.edu/software.html
12In the implementation we use, periodic messages use 16-byteUDP packets. If periodic messages include neighbor information such as

reverse link quality and location information [10], the size of periodic message will be easily over 128 bytes even with afew neighbors.

Therefore, our scheme can be implemented without introducing additional overhead.
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we use NADV based onBASIC(128), error rates for 1024-byte packets are underestimated, and node

8 is chosen as the best next hop. However, the actual data packet error rate for the link to node 8 is

significantly higher (37.5% for 1024-byte packets vs. 18.0%for 128-byte packets), and using node 8 as

relay node leads to multiple packet retransmissions due to losses. In contrast, when we use NADV and

GE(16,128), we can estimate the actual error rate more accurately. Consequently, we can transfer data

messages with minimum data overhead; when using node 7 as relay, we experience 304 retransmissions,

which is only around 40% of the case of using node 8 as relay (304 vs. 772). Although not shown here,

when usingINDEP(128) and NADV, node 7 is still chosen as next hop. However, this selection is based on

incorrect PER estimation (25.5% forINDEP(128) estimation vs. 14.5% for observed PER). Such incorrect

estimation byINDEP can potentially eliminate the use of links with reasonable quality, which will be often

suboptimal. Thus, we expect thatINDEP will not work well in other scenarios, and we plan to perform

more experiments in various settings.

Although not comprehensive, we believe the results in this section indicate that our proposed scheme

can achieve significant performance improvement in practice.

VI. RELATED WORK

Many ideas and techniques have been proposed to find minimum-cost paths in multihop wireless

networks, and energy-efficient routing has been an area of intensive research. Rodoplu et al. [19] present

a localized algorithm that preserves network connectivityand achieves the globally minimum-energy

topology. In PARO [41], a node becomes a relay node if it finds that the relaying leads to lower energy

consumption. Given traffic flows and node energy levels, Chang et al. [42] find a set of routes that maximize

the system lifetime. More recently, wireless link errors has drawn much attention in multihop wireless

networks [18]. Banerjee et al. [22] propose the use of a link metric based on link error probability. De

Couto et al. use a similar metric calledETX (Expected Transmission Count)in real testbed experiments,

and their experiment results show that paths with smaller ETX perform better than shortest paths [15].

These techniques and metrics above typically focus on table-driven or on-demand routing protocols

(e.g., AODV [13]); in contrast, our work provides a general framework to incorporate these metrics

into geographic routing.

Traditional geographic routing schemes use only geometricinformation such as the length of projection

(called progress) and angle value against the straight line between source and the destination (please
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see [5] and the references therein). Instead of a straight line, Niculescu et al. [4] propose a forwarding

strategy based on a pre-defined curve. More recent schemes consider link costs in the next hop selection.

Stojmenovic et al. [14] propose a routing metric for power-efficient routing. Seada et al. [11] focus on

the minimum energy consumption in lossy environments and propose threshold-based schemes as well as

a link metric in Eq. 4. Zorzi and Armaroli also propose the same link metric [12]. Our work is different

from them in that we present a more general framework and provide the rationale behind the use of

NADV by proving the optimal tradeoff between hop count and link cost.

Greedy forwarding using NADV still can result in the local minimum problem. To route packets around

voids, we can use existing recovery schemes with the NADV metric. For example,Face Routing[1] uses

the right-hand rule in Gabriel graph, and GPSR employs a similar scheme calledperimeter mode[2].

Terminode routing usesAnchored Geodesic Packet Forwarding (AGPF)similar to loose source routing [9].

Kuhn et al. present GOAFR+, which is efficient on average cases and worst-case optimal [3]. (Although

GOAFR+ considers link cost, it still chooses the neighbor closest to the destination in greedy mode.)

For example, in recovery mode, Terminode routing and GOAFR+find an intermediate node, to which

packets are forwarded in a greedy manner. Those schemes can use NADV in their recovery phase. In

other cases, recovery algorithms are independent of greedyforwarding procedure, so using NADV does

not affect the recovery performance. Also, we believe that compared to ADV, greedy forwarding using

NADV will have a similar frequency of encountering voids in agiven network. The NADV metric can

also be used in geocasting, which is similar to multicast, but delivers data packets to nodes located inside

a certain region [8]. Geographic routing may exploit location service systems [7] and location computation

systems [6]. More information about position-based routing can be found in [5].

VII. CONCLUSIONS ANDFUTURE WORK

We have introduced NADV as link metric for geographic routing in multihop wireless networks.

Geographic routing with NADV provides an adaptive routing strategy, which is general and can be used

for various link cost types. We have presented techniques for link cost estimation. We have performed

extensive simulation study and testbed experiments to evaluate the effectiveness of NADV and link cost

estimation techniques. In these environments, the combination of NADV and cost estimation techniques

outperforms the current geographic routing scheme. NADV also finds paths whose cost is close to the

optimum.
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Cost-aware routing schemes including NADV benefit greatly from fast and accurate link cost estimation,

and we plan to investigate this issue further in the future. In this paper, we have treated each link cost

type independently. However, if we consider multiple interdependent costs simultaneously, choosing the

next hop based on one cost type may not be always the best choice for other costs. Our future work is to

design a link cost model that balances multiple cost criteria, which would allow the NADV framework

to leverage the combined link cost to find a low cost path.

REFERENCES

[1] Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia, “Routing with guaranteed delivery in ad hoc wireless networks,” in

Proceedings of the 3rd International Workshop on Discrete algorithms and methods for mobile computing and communications. 1999,

ACM Press.

[2] Brad Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for wireless networks,” inProceedings of the 6th ACM/IEEE

MobiCom. 2000, pp. 243–254, ACM Press.

[3] Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger, “Geometric ad-hoc routing: of theory and practice,” in Proceedings

of the 22nd annual symposium on Principles of distributed computing. 2003, pp. 63–72, ACM Press.

[4] Dragos Niculescu and Badri Nath, “Trajectory based forwarding and its applications,” inProceedings of the 9th ACM/IEEE MobiCom.

2003, pp. 260–272, ACM Press.

[5] Ivan Stojmenovic, “Position-based routing in ad hoc networks,” IEEE Communications Magazine, pp. 128–134, July 2002.

[6] Jeffrey Hightower and Gaetano Borriello, “Location systems for ubiquitous computing,”IEEE Computer, vol. 34, no. 8, pp. 57–66,

2001.

[7] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert Morris, “A scalable location service for geographic

ad hoc routing,” inProc. of ACM MobiCom, 2000.

[8] Young-Bae Ko and Nitin H. Vaidya, “Geocasting in mobile ad hoc networks: Location-based multicast algorithms,” inProceedings of

the Second IEEE Workshop on Mobile Computer Systems and Applications. 1999, IEEE Computer Society.

[9] L. Blazevic, S. Giordano, and J. Y. Le Boudec, “Self organized terminode routing,”Journal of Cluster Computing, vol. 5, no. 2, April

2002.

[10] I. Stojmenovic and X. Lin, “Loop-free hybrid single-path/flooding routing algorithms with guaranteed delivery for wireless networks,”

IEEE Transactions on Parallel and Distributed Systems, vol. 12, no. 10, pp. 1023–1032, Oct. 2001.

[11] Karim Seada, Marco Zuniga, Ahmed Helmy, and Bhaskar Krishnamachari, “Energy-efficient forwarding strategies forgeographic

routing in lossy wireless sensor networks,” inProceedings of the 2nd international conference on Embedded networked sensor systems.

2004, pp. 108–121, ACM Press.

[12] M. Zorzi and A. Armaroli, “Advancement optimization inmultihop wireless networks,” inProceedings of VTC, Oct. 2003.

[13] C.E. Perkins and E.M. Belding-Royer, “Ad hoc on-demanddistance vector (AODV) routing,” inIEEE Workshop on Mobile Computing

Systems and Applications, Feb. 1999.

[14] Ivan Stojmenovic and Xu Lin, “Power-aware localized routing in wireless networks,”IEEE Trans. Parallel Distrib. Syst., vol. 12, no.

11, pp. 1122–1133, 2001.



37

[15] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris, “A high-throughput path metric for multi-hopwireless

routing,” in Proceedings of the 9th ACM/IEEE MobiCom, 2003.

[16] Abtin Keshavarzin, Elif Uysal-Biyikoglu, Falk Herrmann, and Arati Manjeshwar, “Energy-efficient link assessment in wireless sensor

networks,” inProc. of IEEE Infocom, March 2004.

[17] Tommaso Melodia, Dario Pompili, and Ian F. Akyildiz, “Optimal local topology knowledge for energy efficient geographical routing

in sensor networks,” inProc. of Infocom, March 2004.

[18] Henrik Lundgren, Erik Nordstr, and Christian Tschudin, “Coping with communication gray zones in IEEE 802.11b based ad hoc

networks,” inProceedings of the 5th ACM international workshop on Wireless mobile multimedia, 2002, pp. 49–55.

[19] Volkan Rodoplu and Teresa H. Meng, “Minimum energy mobile wireless networks,”IEEE JSAC, vol. 17, no. 8, pp. 1333–1344, Aug.

1999.

[20] Marco Zuniga and Bhaskar Krishnamachari, “Analyzing the transitional region in low power wireless links,” inProceedings of IEEE

SECON, Oct. 2004.

[21] IEEE 802.11h Standard, “Part 11. Amendment 5: Spectrumand transmit power management extensions in the 5GHz band inEurope,”

2003.

[22] Suman Banerjee and Archan Misra, “Minimum energy pathsfor reliable communication in multi-hop wireless networks,” in Proceedings

of the 3rd ACM MobiHoc, 2002, pp. 146–156.

[23] Theodore Rappaport,Wireless Communications: Principles and Practice (2nd Edition), Prentice Hall, 2001.

[24] Andreas Kopke, Andreas Willig, and Holger Karl, “Chaotic maps as parsimonious bit error models of wireless channels,” in Proceedings

of Infocom, Apr. 2003.

[25] E. N. Gilbert, “Capacity of a burst-noise channel,”Bell Systems Technical Journal, vol. 39, pp. 1253–1265, 1960.

[26] E. O. Elliot, “Estimates of error rates for codes on burst-noise channels,”Bell Systems Technical Journal, vol. 42, pp. 1977–1997,

1963.

[27] Kyu-Han Kim and Kang G. Shin, “On accurate measurement of link quality in multi-hop wireless mesh networks,” inMobiCom ’06:

Proceedings of the 12th annual international conference onMobile computing and networking, New York, NY, USA, 2006, pp. 38–49,

ACM.

[28] Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Judd,and Robert Morris, “Link-level measurements from an 802.11b mesh network,”

in ACM SIGCOMM, Sept. 2004.

[29] Kameswari Chebrolu, Bhaskaran Raman, and Sayandeep Sen, “Long-distance 802.11b links: performance measurements and

experience,” inMobiCom ’06: Proceedings of the 12th annual international conference on Mobile computing and networking, New

York, NY, USA, 2006, pp. 74–85, ACM.

[30] Seungjoon Lee, Suman Banerjee, and Bobby Bhattacharjee, “The case for multi-hop wireless local area network,” inProceedings of

Infocom, Mar. 2004.

[31] Baruch Awerbuch, David Holmer, and Herbert Rubens, “High throughput route selection in multi-rate ad hoc wirelessnetworks,” in

First Working Conference on Wireless On-demand Network Systems (WONS), 2004.

[32] Seungjoon Lee, Bobby Bhattacharjee, and Suman Banerjee, “Efficient geographic routing in multihop wireless networks,” in Proceedings

of MobiHoc, 2005, pp. 230–241.

[33] Rex Min and Anantha Chandrakasan, “Top five myths about the energy consumption of wireless communication,”SIGMOBILE Mob.

Comput. Commun. Rev., vol. 7, no. 1, pp. 65–67, 2003.



38

[34] Suresh Singh, Mike Woo, and C. S. Raghavendra, “Power-aware routing in mobile ad hoc networks,” inProceedings of the 4th

ACM/IEEE MobiCom. 1998, pp. 181–190, ACM Press.

[35] IEEE 802.11 Standard, “Wireless LAN medium access control (MAC) and physical layer (PHY) specifications,” 1999.

[36] “Cisco aironet 350 series client adapters data sheet,”June 2003, Cisco Systems Inc. Available at http://www.cisco.com/.

[37] Omprakash Gnawali, Mark Yarvis, John Heidemann, and Ramesh Govindan, “Interaction of retransmission, blacklisting, and routing

metrics for reliability in sensor network routing,” inProceedings of the First IEEE Conference on Sensor and Ad hocCommunication

and Networks, Santa Clara, California, USA, October 2004.

[38] Scott Y. Seidel, Theodore S. Rappaport, Sanjiv Jain, Micheal L. Lord, and Rajendra Singh, “Path loss, scattering, and multipath delay

statistics in four European cities for digital cellular andmicrocellular raiodtelephone,”IEEE Transactions on Vehicular Technology,

vol. 40, no. 4, pp. 721–730, November 1991.

[39] Richard Draves, Jitendra Padhye, and Brian Zill, “Routing in multi-radio, multi-hop wireless mesh networks,” inMobiCom ’04:

Proceedings of the 10th annual international conference onMobile computing and networking. 2004, pp. 114–128, ACM Press.

[40] Bo Han and Seungjoon Lee, “Efficient packet error rate estimation in wireless networks,” inProceedings of the 3rd IEEE/CREATE-NET

International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (TridentCom

2007), May 2007.

[41] J. Gomez, A. Campbell, M. Naghshineh, and C. Bisdikian,“PARO: Supporting transmission power control for routing in wireless ad

hoc networks,”ACM/Baltzer Journal on Mobile Networks, 2002.

[42] Jae-Hwan Chang and L. Tassiulas, “Energy conserving routing in wireless ad-hoc networks,” inProc. of IEEE Infocom, 2000.



39

Seungjoon Lee

Seungjoon Lee received his Bachelor’s and Master’s degrees in Computer Science from Seoul National Uni-

versity, Seoul, Korea, in 1996 and 2000 and his Ph. D. in Computer Science from the University of Maryland

in 2006. Currently, he is a senior member of technical staff in AT&T Labs, Research. His research interests

include wireless networks, mobile computing, peer-to-peer systems, and multicasting.

Bobby Bhattacharjee

Bobby Bhattacharjee received Bachelor’s degrees in Computer Science and Mathematics from Georgia College

in 1994 and his Ph. D. in Computer Science from the College of Computing at Georgia Tech. in 1999. He is

currently an Associate Professor in the Department of Computer Science at the University of Maryland. Dr.

Bhattacharjee’s research interests are in the design and implementation of wide-area networking, distributed

systems, and security protocols. His current focus is on the design of decentralized secure systems for multi-party

applications especially in the context of peer-to-peer and overlay systems.

Suman Banerjee

Suman Banerjee received the B.Tech. degree in computer science and engineering from the Indian Institute of

Technology, Kanpur, India, in 1996, and the M.S. and Ph.D. degrees in computer science from the University of

Maryland, College Park, in 1999 and 2003, respectively. He has been an Assistant Professor in the Department of

Computer Sciences, University of Wisconsin-Madison since January 2004. He received an NSF Career Award in

2008. He currently leads the WiNGS laboratory at UW-Madison that conducts research in wireless and mobile

networking systems. His other areas of interest include overlay architectures, peer-to-peer systems, network

measurements, and security.

Bo Han

Bo Han received the Bachelor’s degree in Computer Science and Technology from Tsinghua University in 2000

and the M.Phil. in Computer Science from City University of Hong Kong in 2006. He is currently a Ph.D.

student in the Department of Computer Science at the University of Maryland, College Park. He worked as

research intern at AT&T Labs, Research for summer 2007 and 2008. His research interests include wireless

communication, distributed algorithms and internet computing.


