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Abstract

We propose a new link metric callatbrmalized advance (NADWYr geographic routing in multihop wireless
networks. NADV selects neighbors with the optimal tradEksftween proximity and link cost. Coupled with the
local next hop decision in geographic routing, NADV enaldasadaptive and efficient cost-aware routing strategy.
Depending on the objective or message priority, applicatioan use the NADV framework to minimize various
types of link cost.

We present efficient methods for link cost estimation andgoer detailed experiments in simulated environ-
ments. Our results show that NADV outperforms current sa®iim many aspects: for example, in high noise
environments with frequent packet losses, the use of NADAd$eto 81% higher delivery ratio. When compared
to centralized routing under certain settings, geograpbiting using NADV finds paths whose cost is close to
the optimum. We also conducted experiments in Emulab tds#oel the results demonstrate that our proposed

approach performs well in practice.

Index Terms

Wireless multihop networks; geographic routing; routingtrit; link cost estimation.

I. INTRODUCTION

Geographic routing (or position-based routing) uses looahformation for packet delivery in multihop
wireless networks [1], [2], [3], [4], [5]- Neighbors locglexchange location information obtained through
GPS (Global Positioning System) or other location deteatiim techniques [6]. Since nodes locally

select next hop nodes based on this neighborhood informatia the destination location, neither route



/ closest to T, but frequent packet errors

Fig. 1. An example scenario for geographic routing. WhileoamS’s neighbors, noded is closest toT’, the link betweenS and A is

experiencing a high packet error rate. Consequently, higegformance can be achievedSfforwards packets td.

establishment nor per-destination state is required irgggahic routing. As large-scale sensor networks
become more feasible, properties such as stateless nailiteva maintenance overhead make geographic
routing increasingly more attractive [7]. Also, locatibased services such as geocasting [8] can be best
realized using geographic routing.

The most popular strategy for geographic routing is simgigvarding data packets to the neighbor
geographically closest to the destination [1], [2], [3]t&dugh thisgreedymethod is effective in many
cases, packets may get routed to where no neighbor is closetdestination than the current node.
Many recoveryschemes have been proposed to route aroundwidisfor guaranteed packet delivery as
long as a path exists [1], [2], [3], [9]. These techniqueddslly exploit planar subgraphs (i.e., Gabriel
graph, Relative Neighborhood graph), and packets traviases on such graphs using the well-known
right-handrule. Most geographic routing protocols use one-hop infiran, but generalization to two-hop
neighborhood is also possible [10].

In this paper we propose the use of a new link metric catlednalized advance (NADW) geographic
routing. Instead of the neighbor closest to the destinatikDV lets us select the neighbor with the best
trade-off between link cost and proximity. In Figure 1, foi@enple, although is closest to destinatioh
amongsS’s neighbors, the link betweef and A is experiencing high packet error probabilify.is slightly
farther fromT" than A, but provides a higher quality link frorfi. In this scenario, forwarding packets i
is better, and NADV chooseB over A. While this idea has been proposed in other specific confiis
[12], we consider a generalized framework and show that la gladsen by NADV approaches tbetimal
minimum cost path for a broad range of costs in networks wiffigently high node density. Our proposed

metric is best understood in the context of greedy mode irgggahic routing, but it can also be used



with schemes that route around voids [3], [9] (discusseer lat Section VI).

Due to the local rule for next hop decision, the use of NADV eographic routing provides a unique
opportunity for adaptive routing—a feature not offered bgsnexisting on-demand routing protocols. For
example, suppose that a source uses an on-demand routioggir(e.g., AODV [13]) to find a minimum
cost path. In dynamic ad hoc networks, it is possible thatlitilecosts change while the path is still in
use (e.g., due to mobility or environment changes). If there® detects the change and wants to find a
better path, typical on-demand routing protocols requie ftooding of a new route discovery message.
This solution may incur high control overhead, and it is aféfficult to know when the source should
initiate the flooding. In contrast, as long as link cost eation schemes can track link costs change,
NADV immediately reflects the change, which in turn wouldulésn the selection of the best next hop
in geographic routing.

We present NADV in the context of a general framework for éfit geographic routing. Although a
few recent geographic routing schemes consider link costBa next hop selection [14], [11], [12], they
are limited to one specific objective. For example, 8#Poweischeme in [14] focuses exclusively on the
minimization of transmission power consumption. In cositréhe NADV framework can accommodate a
variety of different cost types. Depending on system objestor message priority, applications can use
the NADV framework to take different routing strategiesrExample, an urgent message can be routed
along the path that minimizes the end-to-end latency, analvapliority message may take a path that
minimizes power consumption to increase the overall ndtvifetime.

For the effective use of NADV, we present techniques for iffit and adaptive link cost estimation.
Some of previous work uses additional probe messages flrdast estimation in the bootstrapping
phase [15], [16]. However, such control messages consuneadyl scarce network resources. Also,
network environments may change over time (e.g., due to libgbiand old link estimates may become
obsolete. We propose to exploit MAC-level information, Battlink cost estimation is adaptive to changing
environments, yet incurs minimal control overhead. We glsavide multiple techniques thus enabling
nodes to choose the best scheme for the current network ateins\setting. In a resource-rich network,
for example, nodes can use a method that uses probe medsatiescase of a dense large-scale network
with limited resources, such probe messages may prove toobiycand nodes can use an alternate

scheme that uses no extra control messages.



We have performed extensive experiments in simulated emvients to evaluate the effectiveness of
NADV and link cost estimation techniques. When comparech&odurrent geographic routing scheme in
challenging environments with frequent packet losses, MA@ads to 81% higher packet delivery ratio
on average (from 16% to 97%). The number of MAC-level datagnaissions and end-to-end delay also
decrease significantly (by up to 60%). The simulation resalso show that when link costs change, the
use of NADV in geographic routing enables adaptive path atign, where the quality of found paths is
close to the optimum found by the centralized algorithm. \&@eehalso conducted experiments in Emulab
testbed and the results validate that our proposed strggedgrms well in practice.

The rest of this paper is organized as follows. In Section # @efine the new link metric. Link
cost types and estimation techniques are described inoBeliti We present the simulation results in
Section IV. Section V summarizes experiment results on testbeds. Section VI presents related work,

and Section VII concludes.

[I. NEwW LINK METRIC FORGEOGRAPHICROUTING

In this section, we introduce a new link metric for geograptauting and discuss its optimality in an
ideal setting. Here, we assume link cost is positive and knavpriori. We discuss link cost estimation

in Section II.

A. Background

In this paper we differentiate linkostand linkmetric An example of linkcostis the power consumption
required for a packet transmission over the link. We defink ihetric as “degree of preference” in path
selection. For example, even though two neighbors reghigesame power consumption, in geographic
routing we prefer the neighbor closer to the destinatiore §bal of this section is to propose a new link
metric for geographic routing that can be generalized t@owarcost types (e.g., power consumption, link
delay).

In many geographic routing protocols, the current nédgreedily selects the neighbor that is closest
to destinatioril” whenever possible [1], [2], [3]. The implicit goal of thisrategy is to minimize the hop
count between source and destination. Let us consider tloeignof decrease in distance by a neighbor

n, which we call theadvance (ADV)f n [17]:

ADV(n) = D(S) — D(n), 1)



where D(x) denotes the distance from nodedo 7'. Then, the above strategy tries to maximize the ADV
of next hop, and ADV is the link metric in this case. Howevéistlink metric ADV does not take link
cost into account, while different wireless links can havifecent link costs. For example, Lundgren
et al. [18] identify gray zoneswhere due to high error probability, nodes cannot exchdongg data
packets in most cases. Therefore, the simple policy usiny Ay use poor quality links and lead to
unnecessarily high communication cost [15].

Clearly, when choosing next hops we want to avoid neighbaiis very low quality links. At the same
time, we want to gain as large advance as possible for fase#iwient packet delivery. The goal of our
work is to balance the trade-off, so that we can select a heighvith both large advance and good link

guality. We can achieve this goal by using the new metric pseg next.

B. Normalized Advance

We now introduce a new metric calletbrmalized advance (NADVyuppose we can identify the link
costCostn) of the link to neighbom. Then the normalized advance of neighlois simply:

_ ADV(n)

NADV(n) = = )

(2)

Intuitively, NADV denotes the amount of advance achievedypgt cost. For example, suppose we know
that only P*“<“(n) fraction of data transmissions to neighborare successful. If we usk/P*“(n) as
link cost, NADV(n) = ADV(n) x P*“*“(n), which means the expected advance per transmission.
We propose to use NADV as link metric in geographic routingshsthat a node forwards packets to the
neighbor with largest NADV. Besides obvious simplicity, IX has the following desirable properties:
« As shown in Section II-C, the path found by using NADV appiuexthe optimal path under certain
conditions. The experiment results in Section IV show that ase of NADV significantly improves
path quality in realistic environments as well.
« It is general and accommodates various types of cost mesashat applications can utilize the
NADV framework for different objectives. We further dedwei this feature in Section III.
« Loop freedom is guaranteed as long as we select a node wittivedSADV [17].
Using NADV, we can select neighbors that balance the advagast the link cost. Depending on the
link cost values, NADV can select a neighbor with strictlgdeadvance (e.g., node¢over A in Figure 1).

We further illustrate this feature in Figure 2. Figure 2-&ndows the degree of packet errors to simulate
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Fig. 2. lllustration of gray zone and corresponding contmap of NADV. (a) Two inner circles represent the border lifies 1% and
20% packet error rates (PERSs) for a 1024-byte frame, reispéct(b) The corresponding contour map of NADV when the kmtcerror
probability determines link cost. The current node is abY0and the destination is 900 meters away on the X-axis.edaithin the plot

denote the NADVs of corresponding lines.

a gray zoné. In Figure 2-(b), we present the corresponding contour mapADV when link cost is a
function of packet error probability. We can observe thahpared to their ADV values, points within the
gray zone have relatively low NADV values. As a result, byngsNADV, we can easily avoid neighbors

in the gray zone. We next provide the theoretical rationakifd using NADV in geographic routing.

C. Optimality of NADV in an ldealized Environment

We now show that in an idealized environment, paths found $igguNADV are optimal. The goal
of routing in this discussion is to minimize the sum of linkst® along the found path. We make two
assumptions: (1) we can find a node at an arbitrary point, &pdir(k cost is anunknownincreasing
convex function of distance (e.g., transmission power gongion [14], [19]). LetDIST be the distance
between the source and the destination, which we assuméats/ey large. Since the cost function is
increasing, and we can find a node at an arbitrary point, aimapfpath will use only nodes along the
straight line between the source and the destination. Alsage link cost is a convex function of distance,
the sum of link costs is minimized when all links have the satistance. As a result, the optimal policy
is to choose nodes on an equidistant basis along the linectimatects the source and the destination.

The bit error function used here increases rapidly afterréairedistance. A detailed description on the error modehiSection IV-B.



Now, it remains to find the optimal interval. Suppa&®Vy is an interval, andCosty is the corre-

sponding link cost. Then we want to minimize:

Total Cost = (Link Cost)x (Hop Count)

_ Cost x { DIST]
ADVy

Costy

ADVy

~ DISTx ©)

The last line comes from the assumption of lalQEST, which makes the rounding error negligible.

From Eqg. 3 we can find the minimum cost path by iteratively &télg nodes with minimun%g%t, or

equivalentlymaximum NAD\- %.

In practical wireless networks, the above assumptions aligaly to be true. In low-density networks,
nodes may not be able to use the greedy forwarding rule, andettovery procedure will likely result in
performance degradation [3]. Also, although many exissobemes are based on the simplified model,
and there usually exists strong correlation [18], [20], limk cost is not a strict function of distance in
practice. In Section IV and Section V, we use both simulatiand real experiments to show that NADV

significantly improves performance in realistic enviromtgeas well.

Although the concept of NADV is simple, the implementatian practical use involves a number of
challenges. Link cost estimation is one of the most critedaments, and in the next section, we describe

a set of methods to infer various types of link costs and show the NADV framework utilizes them.

[Il. LINK COSTTYPES AND ESTIMATION

For effective link cost inference, we propose a new sublagenedWireless Integration Sublayer Extension
(WIsE) located on top of the MAC layer (See Figure 3). Thes@&/closely coordinates with the MAC layer
for efficient link cost estimation. It also provides simplanpitives for upper layer protocols to retrieve
the inferred performance values. When additional contrebsages are available [15], [16], [21],1%¥
extracts relevant link cost information from them. Othessi WISE exploits MAC-specific information
to infer the communication performance. For example, the&Vetrieves the current transmission power
from the MAC layer and calculates overall power consumptierded for a packet transmission. We note
that this sublayer approach and the estimation schemesvimno be used in any cost-aware wireless

routing.



Probe Routing

Engine Protocols

! [ | 'Y I 3

P Information Link C/OSt P

P from probes query. i
Probei i Y y re_sponse i iData pkts/
msgsi i | Wireless Integration i ibeacons

Sublayer Extension

Py 11 MAC-specific info

MAC Layer

Fig. 3. Wireless Integration Sublayer Extensioni@&) abstracts the performance of wireless link into numericies and provides simple
primitives for upper layer protocols to retrieve specifiafpemance values. For link cost estimation, |8 exploits MAC layer specific

information. If available, WSE can leverage probe messages as well.

To illustrate how to use the NADV framework to meet differgrgrformance objectives, we discuss
three specific types of link cost: packet error rate, linkageland energy consumption. We also describe
how WISE is used to estimate link costs in diverse operating enviemsy This paper focuses on the
independent use of each link cost, and the issue of interdigmee among multiple cost criteria is

discussed in Section VII.

A. Packet Error Rate (PER) Estimation

Most recent attention has been on how to find a high performgath considering wireless link
errors [22], [15]. In this scenario, we use the following alcost: C.,,.., = 1/(1 — PER. It denotes
the expected transmission count (ETX) proposed in {18k use the following link metric, which is the
expected advance per transmission:

ADV
NADV, 1o = = = ADV(1 — PER), (4)

An equivalent link metric is developed in [11], [12], and wisa@lss them in Section VI.
We next describe simple wireless bit error models and ptetamr PER estimation methods for

NADV,...., each of which requires a different degree of control ovadh@nd message format modification.

2The estimation techniques described here can easily incatg ACK frame loss probability as in [15], but here we haiveptified the

description for brevity.
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Fig. 4. Gilbert/Elliot model.G denotesgood state, andB denotesbad state.

1) Existing Bit Error Models:Wireless links are typically more prone to packet errorstivdred ones,
and many theoretical models for wireless packet error haenlproposed [23], [15], [24]. In this paper,
we describe two simple packet error models that can be easéd in real wireless networks.

The independent bit error modeés among the simplest for wireless packet errors. In this ehogkch
bit is corrupted independent of other bits in the packet.cBigally, if the bit error rate isp,, then the

error probability for ani-bit packets is:
PERI) =1—(1-p)" (5)

A number of previous results show that bit errors are oftemetated and occur in a bursty fashion [23],
[24], [25], [26]. Some previous works use finite-state Markonodels to model such correlated bit errors.
Although such a model can have an arbitrary number of stagesimplicity, we use théwo-state Markov
modelproposed by Gilbert and Elliot [25], [26] in this paper. Iretilbert/Elliot (GE) model, a wireless
channel is in one of the following two stategood and bad (Figure 4). If the channel is in good state,
then a bit transmission error occurs with the probabilityepf On the other hand, if the channel is in
bad state, the probability of bit transmission errorejs Prior to the transmission of each new bit, the
channel may change states or remain in the current statare=#y shows the GE model representation
with state-transition probabilities. In this paper, we uge= 0 ande, = 1 for simplicity.

For this model, we can calculate the steady-state probabilibeing ingoodstate ;) andbad state

(Pg) as follows:

1—gq I—p

Po=——1_  Pp=—
“T2_p—yq P o p—q

Note that there are two cases where no bit error occurs in kepagirst, the channel is initially in good

state and remains there for all bit transmissions, and tlbagtility is P; p' for [-bit packet. In the
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other case, the channel is initially in bad state, but thenohhchanges into good state for the first bit
transmission and remains in good state. This probabiliti?;js(1 — ¢)p'~'. A packet error occurs if none

of them happens; therefore, the error probability ofldnt packet is:
PERI) =1— (Pg p' + P (1 — q)p' ™). (6)

2) Using Probe Messages for PER Estimatidha node is already using probe messages [15], [16],
[27], the WISE can extract the link error probability from them. Since mgsbgraphic routing schemes
use periodic message exchange between neighbors, we cansalghe reception ratio to infer the link
error probability. However, such control messages arellysshorter than data packets, and as a result, a
node may experience higher PERs for actual packets [15].bf@iro more accurate link cost estimation,
we need to adjust PER depending on the data packet lengtough more advanced bit error models
may be employed for more accurate PER estimation [24], ia paiper we focus on the two bit error
models described above: the independent and GE models.

Assuming independent bit errors, we can adjust PER as felltiwve usem-bit probe messages, from
the observedERm), we employ Eq. 5 to infer bit error rate as follows; = 1 — (1 — PERm))"/™.

Then, for anL-bit data frame we can use:
PERL) =1 — (1 — PERm))X/™. (7)

In case we want to use the two-state Markov model shown inr€iguwe need at least two distinct
PER values observed for different probe message typesditi@uto PERm), considePERn) for n-bit

probe messages. Using Eq. 6, we can get one of the statetibanmiobabilities in Figure 4 as follows:

1

1 — PERn) \ ™7
(i=peron)

Then, we can estimate the PER bibit data messages using the following formula:

1 — PERn) >—m

PERL) =1—- (1 —-PERm)) <m (8)

In Section V, we present some measurement results to deratindte effectiveness of these estimation

techniques.
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3) Using Signal-to-Noise Ratio for PER Estimatioe can also estimatg, using Signal-to-Noise
Ratio (SNR) and theoretical error models for different miation schemes [23]. Assuming an AWGN
(Additive White Gaussian Noise) channel, in the case of BRBiKary Phase Shift Keying), the bit error

rate is given by:
P.xW

pp = 0.5 x erfc( N %

); (9)

where P, is the received powel)/ the channel bandwidthy the noise powerf the transmission bit
rate, anderfc the complementary error function. Most wireless cardsdsity measure SNR 0 log %
(dB) for each received packet, and using such SNR values an®Ea node can calculag for its
neighbors. Using an appropriate bit error models [24], we icder the packet error rate from,. Then,
due to possibly asymmetric link quality, it should inforns ibeighbors of respective SNR values. This
can be done either via additional control messages or byfyindithe beacon message format to include
the information.

Eq. 9 is useful primarily in free-space environments, butaqplicable for indoor environments, where
signal path characteristics are more complex. The measnenesults using a rooftop mesh network
show that it is hard to predict link quality using SNR [28]. Wever, in different measurement studies
using a sensor network and long-distance 802.11b linksigauet al. [20] and Chebrolu et al. [29] report

that empirical results closely match their analytical mede

4) Neighborhood Monitoring for PER Estimatio® node can also use passive monitoring to infer
link PERs as in [30], [27]. For example, in IEEE 802.11 netvgpmodeA can monitor frames sent by
neighbors. In that case, using the MAC sequence numbean count how many frames from neighbor
B it has missed, and infer the PER of link froBito A. Again, since the quality of two directional links

may differ, A needs to informB of the PER estimation as in the previous scheme.

5) Self Monitoring for PER EstimationThe previous methods require either additional control-mes
sages or the modification of beacon message format. Whea #énesot possible, we suggest the following
technique. Whenever a node transmits a data frame to neighbthe MAC-layer informs the WSE
whether the transmission was successful or not. Let us definmdicator variablef’; F = 1 when a
frame exchange failed, antl = 0 otherwise. Then, WsE infers the PER of wireless link to neighbar
as follows:

PER, «— (1 — a)PER, + oF, (10)
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where o denotes the weight parameter. In the simulation study ini@edV, we usea = 0.1, and the
default PER value is set to 0. Note thdt= 1 even when an ACK frame failure occurs in IEEE 802.11
networks [15].

To track the link quality change even when no packets aredated ton, we use aragingscheme and
periodically reduce PERs of unused links. When this reduacthakes the estimated PER become lower
than the actual one, packets may be forwarded, tout the estimated PER will increase after transmission
failures. The magnitude and frequency of reduction shoaldrce such overhead and prompt adjustment.

In the simulation, we multiply PERs of unused links by 0.9rgv80 seconds.

B. Delay

If link delay Cj.q, is used as link cost to reduce the path end-to-end delay, weisaNADV,.;,, =
ADV

Cdelay

is desirable to minimize thenedium timethe time spent in sending a packet over the link [31]. When

. We can think of two types of link delay. First, due to the ltoast nature of wireless medium, it

the underlying physical medium supports multi-rate traissions (e.g., the IEEE 802.11 standard), it is a
function of the current transmission rate. Tha3& can easily retrieve the current value of transmission
rate from the MAC layer and calculate the necessary mediom to the neighbor.

The other istotal delay which denotes the time from the packet insertion into therface queue until
the notification of successful transmission. It includes tlueueing delay, backoff timeout, contention
period, and retransmissions due to errors or collisionsngthis value as link cost can potentially enable
packets to detour congested areas. The design of a routiregmec with such detouring capability is a

part of our future work, and we use the medium timeCas,, in this work [32].

C. Power Consumption

Many wireless systems have a control mechanism for trarssomgpower adjustment to save battery
and reduce interference [21], [23]. We assume that using aumechanism, nodes know the appropriate
transmission power levep(,) to each neighbor. Then, the I8 can retrieve the,, value and calculate the
actual system power consumptiah,,.,. considering additional components of power consumpti@j. [3

_ ADV

If Chower 1S USed as link cost, a geographic routing protocol canNBBV,,,., = o to find a path

that minimizes power consumption to deliver packets to dimkgtson.
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So far, we have listed interesting cost types and shown h@wWADV framework can incorporate
them. The NADV framework still can include other types ofkiinost as well (for examplagluctance
metric in [34]). However, in this paper we limit our attentito the cost types discussed above and report

simulation results in the following sections.

V. SIMULATION RESULTS

In this section we first describe the simulation setup andramodel. Then we present the results of

simulation experiments.

A. Simulation Setup

We usens-2 simulations to evaluate the system performance when weamnthe proposed NADV
metric and link cost estimation schemes. In this section,describe various aspects of simulation in
detail. We present the simulation results in Section IV.

We place nodes uniformly at random on a 1000m by 1000m squimkess otherwise stated, 100
static nodes are used in the simulatfowe usually use only one source-destination pair to captuge t
individual performance effects accurately. In this scenadenoting the lower left corner of the square
as (0, 0), the static source is located at (50, 500). Theraggin is placed at (508, 500), whereD is
the distance between the source and the destination. Wdyussa D=900. The source generates a CBR
(Constant Bit Rate) flow, which sends a 1024-byte UDP packetyetwo seconds from 10 seconds to
1000 seconds of simulation time. The maximum transmissamge R is 250 meters.

For geographic routing, we use the simulation code for GP8R. have slightly modified the next hop
selection algorithm to include NADV. The simulation code @PSR provides an option about whether to
exploit transmission failure notification from the MAC layR]. If a node exploits the option, then upon
receiving a notification, it selects the next best neighleorétry until the forwarding is successful. This
option leads to higher delivery ratio with higher resourcmsumption. When not using the notification,
a node does not attempt to retransmit to other neighbors. \pre both cases in the simulation. The
beaconing period in GPSR is set to 1.5 seconds. We use the 88EH 1b standard for the underlying

3We also experimented using sparser networks with 50 nodesieter, in scenarios with high packet error rates, netwdr&guently

became disconnected (e.g., due to repeated beacon messsgs).
4Available at http://www-2.cs.cmu.edu/~bkarp/gpsr/gpsnl
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Noise power &1.0e-12 W)
0.8 1.0 1.2 1.4 1.6
(dBm) (-91.0) (-90.0) (-89.2) (-88.5) (-88.0)
BER at 220m| 6.0e-8 1.1e-6 7.8e-6 3.2e-5 9.1le-5

BER at 240m| 4.4e-6 3.5e-5 1.4e-4 39e-4 8.3e-4
TABLE |

BIT ERROR RATE VALUES WITH DIFFERENT LEVELS OF NOISE

MAC layer protocol [35]. We assume the location of the dedton is known to the source. For the
simulation results presented in this paper, the transonsgate is fixed to 1Mbps. We also performed

experiments using different transmission rates in the MAget, and the results are available at [32].

B. Error Model

To simulate a lossy channel, we use two different error medEirst, assuming the use of BPSK
modulation in the physical layer, we simulate packet ertm®g Eq. 9 as bit error model. (We assume
independent bit errors for simplicity.) In the defank-2propagation model, the signal strength is reduced
proportionally tod? if the distanced is smaller than a certain threshold. Otherwise, the patk Iss
proportional tod*. In this experiment scenario the transmit signal power isdiat 20 mW (or 13dBm)
supported in Cisco Aironet 350 interface cards [36]. Thea thceived signal strength for a node 250
meters away is -85dBm. The noise channel bandwidth in Eq.tigo 2MHz. In this model, we use
ambient noise environments, where the noise value is iciEregverywhere. Therefore the quality of a link
depends only on the distance between two nodes,(apgd. is a convex function of distance. In Table |
we tabulate the used noise values and corresponding bit @ties (BERSS.

To examine the performance of NADV in the presence of randgsarin packet errors [28], we also
perform simulations using a random packet error model. is riiodel, for each wireless link, we assign a
packet error rate, which is distributed uniformly at randbetween 0 and a maximum valuadx-PER.

We vary the maximum packet error probability for differerdgiees of packet losses. In practice, shorter
packets such as periodic beacons experience lower errbapildy [15], and we adjust the error probability
for these packets according to Eqg. 7. Clearly, link cost isanfunction of distance in this model.

®Noise values from more than 20000 measurements in our hgildinge from -91dBm to -73dBm, with the median at -89dBm. The

noise value used in Figure 2 is -89.2dBm.
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In some of our simulations, we compare NADV against anotlcaesie calledlacklisting[37], [11].
This scheme uses a fixed threshold, and when selecting a apxmode excludes neighbors with low-
quality link based on the threshold. For example, if we userashold value of 0.5, then a node excludes
neighbors that are closer to the destination and belongedaiver half in the link quality. Among the
remaining neighbors, the blacklisting scheme selects #ighbor with largest ADV.

In the rest of this section, we present the results of sinaragxperiments. We begin with the effect
of wireless link errors. We first assume the perfect know&edglink error rates when we investigate the
performance. Then we compare the performance when we centhinproposed estimation techniques
with NADV. We then consider the cases when delay and powesuwoption are used as link costs in

turn. Finally we compare geographic routing using NADV agaiidealized routing.

C. Experiments with Perfect Estimation of Link Errors

We first present the results when nodes experience packa&tdatue to wireless link errors. In this
section, we assume that there exists a perfect estimattms that provides accurate link cost values,
and compare the performance when NADV and other geographiting schemes operate based on the
knowledge. We later present results when we combine NADW Wié proposed PER estimation techniques
described in Section IlI-A.

In the first set of experiments, we use the random packet arcatel described in Section IV-B, where
packet error rates are distributed uniformly at random leetwO andnax-PER Although in this model
the frequency of links at a given error rate is similar to threyious measurement results in [28], this
model does not consider the correlation between the distand link error. As a result, on average,
packets sent to distant neighbors have the same error plitpabk those sent to close neighbors. In fact,
this setting is in favor of ADV, because in practice, transsions to neighbors with large ADV are likely
to suffer from frequent errors [18], [20]. We use an averafjgen runs, each with different placement of
stationary nodes and fix the data transmission rate at 1 Mbgisis set of experiments.

In Figure 5, we report the number of MAC-level data transmoiss (including retransmissions) per
delivered packet for each scheme when we vary the valurao$PER In this set of experiments, GPSR
employs MAC-level failure notification, and all results dr@sed on 100% packet delivery. We can observe
that as the packet error rate increases, the data transmigsgerhead of ADV increases abruptly (up to

71% higher than that of NADV). This is because ADV often seeaeighbors with low-quality link,
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Fig. 5. The number of MAC-level data transmissions per @eid packet with different degrees of packet err@rs.... is used as link
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of data transmissions. As marked in the bottom, wheax-PERO.2, the average path length using ADV is 4.7 hops.

which causes repeated retransmissions. In contrast, NADAlligently avoids nodes with high PER, and
although the data overhead of NADV increasesm@x-PERNcreases, the number of data transmissions is
much smaller than that of ADV. Each transmission requirdsvok bandwidth as well as node resources
(e.g. battery power), and NADV uses system resources méiceeetly.

In Figure 5, we also compare the performance of NADV againsttacklisting scheme described in
Section IV-B. Blacklisting uses a fixed threshold, and to finel best threshold, we consider nine different
blacklisting threshold values between 0.1 and 0.9 with ameiment of 0.1. (The use of threshold value
0.0 in blacklisting corresponds to ADV.) In Figure 5, we plbe best result for blacklisting in each
setting and mark the corresponding threshold value in paesis. We can observe that depending on
the network environment, different threshold values leadést results for blacklisting and that a fixed
threshold value in blacklisting does not work well. When lggtcerrors are frequent, it is better to use a
high threshold value in blacklisting and exclude many neayk with low-quality links. However, when
there are few low-quality links, the use of a high threshaddue may exclude useful neighbors and lead
to longer paths. In contrast, NADV adapts to the changingvagt environment and is able to achieve
low data transmission overhead in all cases.

Repeated retransmissions also affect the packet delalgoddh not displayed here, the end-to-end
latencies of ADV also show an increasing trend similar toulrég5. Specifically, asnax-PERchanges

from 0.2 to 1.0, the average packet latency of ADV increases 54.9ms to 151.6ms. The performance
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Name Description

NADV-Beacon | Using periodic beacon messages (Eq. 7)
NADV-SNR Using SNR (Eq. 9)
NADV-Self Using own data packets (Eqg. 10)

NADV-Perfect | Assuming the perfect knowledge of link cost
TABLE Il

DIFFERENT SCENARIOS WHENNADV AND THE PERESTIMATION TECHNIQUES ARE COMBINED

max-PER
0.6 0.8 1.0

NADV-Self 7.0 (0.6) 7.8(0.8) 8.9 (L.1)
NADV-Beacon | 6.6 (0.7) 7.2 (0.6) 7.8 (1.2)

NADV-Perfect | 6.3 (0.5) 6.7 (0.7) 7.6 (1.2)
TABLE I

THE NUMBER OF DATA TRANSMISSIONS PER DELIVERED PACKET WHENIADV AND PROPOSEDPERESTIMATIONS ARE USED VALUES

IN PARENTHESES ARE THE STANDARD DEVIATIONSWHEN THERE ARE NO LINK ERRORSTHE AVERAGE PATH LENGTH IS4.7 HOPS

degradation by NADV is less severe (increase from 54.9ms1t@rBs). Instead of NADV, we also
experimented using different combination of ADV and linkstcand NADV outperformed them as well.
A more conservative link metric (e.gADV/Cost) results in longer paths, while a different metric such as

ADV/+/Costoften underestimates high-cost links and causes morenssirigsions due to packet errors.

In the previous experiments, we assumed the perfect kngeled link cost. We next investigate the

performance of NADV used with the proposed PER estimatichrigues.

D. Experiments using Proposed PER Estimation Techniques

In Table II, we tabulate three schemes when we use NADV angrbgosed PER estimation techniques
together, in addition to case with the perfect estimatioA@NV-Perfect). Note that none of the three
estimation schemes use extra control messages. Howeube tase of NADV-SNR and NADV-Beacon,
we modify the periodic beacon format to include reverse Iimfermation, and the message length slightly
increases. Storage overhead for the link cost estimatiatssnegligible since each node in GPSR already
maintains neighbor information.

In the first set of experiments, we use the random packet eroatel used in the previous section and
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degradation, but with NADV, the delivery ratios are maintd high.

compare the actual performance of NADV against the case thighperfect knowledge of link cost. In
this model, there is no correlation between SNR and packet este, and we experiment with NADV-
Beacon and NADV-Self only. In Table 1ll, we show the data smassion overhead of NADV schemes
for high-error scenarios. In this table, the overhead of NABeacon and NADV-Self is reasonably close
to that of NADV-Perfect, and we can infer that our proposeldesees provide good link cost estimation.
Although NADV-Self has the most flexibility in deployment.¢e no modification of protocol message

format), its performance is slightly worse than NADV-Beaco

In the previous experiments, we used the random packet eroolel. In the next experiments, we use
the other error model described in Section 1V-B, where a tvdreoccurs according to Eq. 9 (See Table I).
To identify the performance of proposed PER estimation s&s we consider five simulation scenarios.
First, we compare packet delivery ratios when we do not eynpAC-level failure notification. Second,
we change the ambient noise power over time and observe hdwesimation technique adapts to varying
environments. Third, we study the number of MAC-level datm$missions (including retransmissions)
per delivered packet. Fourth, we increase the number of fttates to vary the network contention level.
Fifth, we consider the scenario with node mobility.

Without MAC-level Failure Notificationln these experiments, we compare packet delivery ratiosawhe
MAC-level failure notification is not employed. In Figure @e plot the delivery ratios achieved by

ADV and NADV, respectively, when we vary the noise power esuWe use an average of ten runs,
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each with different node placement, and the error bars infithee are the standard deviations. When
wireless link errors are rare (noise=-91dBm), the use of AiD\yeographic routing leads to relatively
good performance. However, as the channel condition degrathie performance gap between NADV
and ADV grows larger. For example, when ADV is used with ngmsver=-89.2dBm, less than 50%
of packets can reach the destination on average. Howevam WADV is used, the delivery ratio is
maintained high$ 97% on average for both NADV schemes). Since NADV-SNR explicitilizes the
link characteristic value, it leads to paths of higher-gydinks, and the delivery ratios are slightly higher
than those of NADV-Self.

The performance gap between NADV and ADV is explained a®¥dl The neighbor with maximum
ADV is relatively far from the current node, and the corresgimg link may experience a higher PER.
However, when using ADV, the current node blindly uses thighmsor with maximum ADV and suffers
from the poor quality link. In contrast, when using NADV, thek estimation schemes find out that the
link quality is poor and accordingly reduce the NADV value tbe neighbor. Then, the node chooses
a different neighbor with a larger NADV value, and the overatwork performance improves. We can
also observe the higharianceof delivery ratios when ADV is used. For example, when noiew/gr=-
89.2dBm, the delivery ratios of ten runs range between 21a@% 97.2% for ADV. The reason is that,
in some fortunate cases, all forwarding nodes selected by &&8n possibly be outside of gray zones,
and the forwarding does not experience high PERs. In cant#DV selects the neighbor with the best
trade-off and consequently leads to stable performanc83% in the worse case).

Changing Noise Poweriln these experiments, we investigate the adaptiveness &f &&imation
schemes, and we start with a high noise value, change to a tse rvalue after 300 seconds, and
change again to a medium noise value after 700 seconds. tmeFigwe plot the average path lengths
for ADV and NADV when we vary the ambient noise power value. &idenot employ MAC-level failure
notification in GPSR, and the values in the parentheses shewaterage delivery ratios for different
scenarios. Since the performance of NADV-Beacon is simbdahat of NADV-SNR, we do not show the
result of NADV-Beacon for clarity.

In Figure 7, the length of the path chosen by ADV is always &by but the packet delivery performance
is always worse than that of NADV. For example, in the higleescenarios (noise value=-88dBm), the

difference in packet delivery ratio is more than 81% (16.38697.7%). In this scenario, although ADV
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path length found by ADV when noise=-91dBm is 4.8 hops.

does not adapt to the environment, beacons from far neighén@r frequently lost, and the path length

increases. In the case of NADV, the PER estimation schemeanaigally assign appropriate link costs. As

a result, NADV uses different neighbors according to theenirenvironment, and the path length change

is more noticeable. NADV-SNR explicitly utilizes the linkharacteristic value, and in this simulation

model, NADV-SNR exhibits more accurate estimation andeiasbnvergence. NADV-Self occasionally

employs slightly longer paths than NADV-SNR, but it is alddeato adapt to environment changes.
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MAC-level Data Transmissiondn Figure 8, we report the number of MAC-level data transioiss
(including retransmissions) per delivered packet for babv and NADV. GPSR employs MAC-level
failure notification in this set of experiments, and all itsware based on 100% packet delivery. We
can see that NADV intelligently avoids nodes with high PERd dhe number of data transmissions
is accordingly much smaller. Each transmission requirdsvork bandwidth as well as node resources
(e.g. battery power), and NADV uses system resources méogeetly. In contrast, the use of ADV leads
to the waste of system resources due to repeated retramsnsigsip to 130% more transmissions than
NADV). Also, the ADV performance degrades rapidly as bitoerrates become higher. In contrast, by
leveraging PER estimation, NADV enables graceful perforogadegradation.

Repeated retransmissions also affect the packet delalgoddh not displayed here, the end-to-end
latencies of ADV also show an increasing trend similar taurég8. Specifically, as the noise value changes
from -91dBm to -88dBm, the average latency of ADV increagsemf52.3ms to 201.6ms. NADV again
exhibits graceful performance degradation (increase f&E#Oms to 67.7ms for NADV-Self, and from
51.6ms to 60.2ms for NADV-SNR).

Varying the Number of Data Flowdn the previous experiments, we use only one pair of sourck an
destination. When we have more source-destination paiesneétwork contention increases, in which the
proposed techniques may estimate PER values incorreatye¥ample, although received SNR values
may be high, a node can experience high packet error ratesodunereased collisions. To identify the
performance of estimations schemes in this scenario, wetharthe number of data flows in the next set
of experiments. We choose source-destination pairs unlfoat random. As in the previous experiments,
we do not use the MAC-level notification of GPSR and reportaherage packet delivery ratio for each
scenario. Among the values in Table I, we fix the noise value8at2dBm, which is the closest to the
median of noise measurements in our building.

In Table IV, we report the average data delivery ratios irfedént scenarios. In these experiments,
all NADV schemes perform similarly. Although the delivergtio appears to decrease when we increase
the number of flows, the amount of degradation is small. Wherexperimented using 16 flows without
packet errors, we observed low delivery ratios due to thevort saturation, and eight data flows in this
setting corresponds to relatively high network utilizatidhese results show that our proposed estimation

techniques work well in the presence of high network load ewtve use ADV, the average delivery ratio
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Number of Flows

1 2 4 8

NADV-Beacon | 98.6 98.7 97.3 97.6
NADV-SNR 99.2 993 979 0981
NADV-Self 98.8 99.0 974 978

ADV 719 738 713 776
TABLE IV

DATA DELIVERY RATIO (IN %) WHEN THE NUMBER OF DATA FLOWS IS VARIED
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Fig. 9. Average end-to-end latency when nodes are mobile... is used as link cost. We changed the pause time for differegtegs

of mobility. NADV and the proposed cost estimation schemesedfective with node mobility.

lies between 70% and 80%, depending on the random node ptatem

Experiments with Mobile Nodedn the previous results, we have shown that our proposediggbs
for PER estimation perform well in static networks. We nowestigate how well they adapt to network
topology changes. In this scenario, the source and destinpair does not move, but the remaining 98
nodes move according to the random waypoint model. The spgeethdomly chosen between 1 and 10
m/s, and we vary the pause time for different degrees of nodhkility. We use the MAC-level failure
notification and fix the ambient noise power at -89.2dBm.

In Figure 9, we present the end-to-end latency results vatlyimg mobility. As mentioned before, the
data transmission overhead shows a similar trend to FigwwéeQbserve that average latencies increase as
node mobility becomes higher. This is because frequenféiihires cause more retransmissions. Compared

to ADV, both NADV schemes achieve lower average latencyhWIADV-SNR, PER estimation is more
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Distance 500m 600m 700m 800m 900m

ADV 22.9 26.5 31.7 36.2 42.9
NADV geray 145 17.3 20.0 22.7 26.2
TABLE V

AVERAGE END-TO-END LATENCY (IN MS) WITH DIFFERENT SOURCEDESTINATION DISTANCES

accurate, and the increase in end-to-end latency is mineavah with the highest mobility (50% lower
compared to ADV). When NADV-Self is used in high mobility segios, most neighboring nodes move
out of range before the estimated values can converge. Asult,rthe performance gain is smaller than in
low mobility cases. Still, its average latency is 15% shuoitti@n that of ADV when nodes move constantly.
NADV-Beacon also requires a certain number of beacon messtyg good estimation, and the results
are similar to those of NADV-Self (within 5% difference inl @ases), which we do not show here for
clarity.

To summarize, the proposed link estimation schemes aretigtfecven with node mobility, and NADV
combined with them provides an efficient and adaptive gewgcarouting strategy. As the network

environment becomes harsher, the performance of NADV diegrgracefully.

E. Using Delay as Link Cost

In this subsection, we use link delay as link cost and assNAIBV = NADV,,,, in this scenario. We
use the error model using Eg. 9, and ARF is used for rate adprdt In this model, due to the interaction
with ARF, link cost is not a convex function. In this experimewe use a low noise value of -91.0dBm in
this set of simulations. Note that this scenario is in favbADV because with high noise, ADV suffers
from increased end-to-end latency as previously discusBled MAC-level failure notification is used,
and the delivery ratios are 100% in all cases. Each valueignetkperiment is an average of ten runs.

In Table V, we report the average end-to-end latency of ealsrae when we vary the distance between
the source and the destination. As the distance increaaekefs go through more relay nodes, and the
latency increases accordingly. Compared to ADV, NADV diigantly decreases the end-to-end latency
(by up to 35%). It is because when we use ADV, we are likely toode far neighbors to minimize
the distance to the destination. However, the transmissites to such nodes are usually 1 or 2 Mbps,

which causes the transmission to take longer. With the us’A®V, the current node may choose a
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Fig. 10. Average end-to-end delay with multiple flows. ARF a;ci., are used. When NADV is used, the network can support more

flows without significant increase in the latency.

neighbor that is not the closest to the destination, but treesponding link is good enough for a higher
transmission rate such as 11 Mbps. This strategy eventleglys to shorter transmission time.

When usingNADV,,,, in this simulation scenario, the current node usually dsleeighbors close
to itself, which leads to more relay nodes (e.g., 55% in@eabken the distance is 900m). Since this
increase is based only on the local decision to minimize tleeliom time, it may degrade the overall
performance, especially when multiple traffic flows existtive network. To investigate this potential
problem, we perform experiments using different numbersairce-destination pairs, which we select
uniformly at random.

In Figure 10, we plot the average end-to-end latency whenhaage the number of flows in the network.
We can observe that with more flows in the network, ADV incesathe average latency noticeably. This
is because ADV holds the wireless medium longer than negedsading to a higher level of network
contention. In contrast, NADV maintains the aggregate mmediime low enough, such that the network
can support more flows without significant increase in therley. Consequently, compared to ADV,
NADV improves the latency performance even more with highetwork traffic load. Specifically, in the
case of 10 flows, NADV decreases the average latency by 30%yitiu 50 flows the improvement is
48%© In the case of 50 flows, only 2 flows experience slight incrqas€ms) in the end-to-end delay.

®In the experiments for Table IV, we use the fixed data transimisrate of 1 Mbps, and we observe network saturation whersene
more than 8 packets per second. In the experiments for Fiyréhe data transmission rate can be up to 11 Mbps, and NAD\sapport

more data flows without network saturation.
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Fig. 11. Average power consumption with different schemasdense networks, as more neighbors are available, powssuogption

decreases. The power consumption values by NADV and SP+Paowesimilar, which are close to the optimal value.

This experiment result shows that the useNADV,,,,, does not negatively affect the performance of

other traffic in the network.

F. Using Power Consumption as Link Cost

We compardNADV (= NADV,,,.,) against the metric proposed in tB&-Poweischeme [14]. When the
power consumption equation €s,,,.., = 1 + ct,,, NADV needs to know the current transmission power
Pz, Which we assume is available through a control mechanigt¥P&wer requires the exact value of path
loss exponent, which we also assume is available. In pedimvever, the path loss exponent estimation is
not trivial, and depending on the measurement paramelergstimated values can vary significantly [23],
[38]. We assume that both schemes know the proportionaityes, which is a hardware-specific constant.
In the following set of simulations, the distance betweeuarse and destination is 900m, and there are
no packet errors. We vary the node density and use averagesvaf 20 runs for each case. We also
compare the performance of optimal paths found by the dergchalgorithm.

In Figure 11, we plot the average power consumption of eatierse with different node density.
The amount of power consumption in each scheme decreasesdlasdensity increases. This is because
with higher node density, more neighbors become availadé, all schemes likely choose better next

hops. We also observe that compared to ADV, both NADV and 8ReP find paths that reduce overall
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power consumption.The performances of NADV and SP-Power are almost identldADV performs
slightly better. (NADV and SP-Power find the same path in 1&esaout of 20 in the 400-node scenarios.)
Even though we do not report detailed results in this paN&DV,,,.. and SP-Power also show very
similar performance in other settings (e.g., distance tinapus power adjustment, different path loss
exponents, and proportionality constam)s For other aspects of energy consumption (e.g., in idle or
receiving mode), we expect thBtADV,,,.., and SP-Power will consume a similar amount of energy and
that their performance will be close to each other as well.

When the goal of geographic routing is to minimize the pathvgroconsumption, we argue that
NADV, ... is the metric of choiceNADV,,,.. and SP-Power are based on a similar rationale for next
hop selection and exhibit almost identical performanceweleer, as mentioned above, SP-Power needs to
estimate the path loss exponent, which can be difficult ictme. In contrastNADV,,,,.., only requires

tyz, Which nodes can easily determine with the support of exgstiontrol mechanisms [21], [23].

G. Experiments with Generic Cost

Recently, new metrics are being proposed for various nmayltifouting purposes. For example, Draves
et al. [39] propose the WCETT (Weighted Cumulative Expeclemhsmission Time) metric to improve
network throughput in multi-radio mesh networks. As muphwireless networks become more widely
used for different objectives, we expect to see other newirrgumetrics proposed to achieve specific
goals. In this section, we apply NADV to a generic cost metinicee whether the use of NADV can be

generalized to other types of link cost. We use the following cost:

2
Cgeneric =1.0+r <_> , 1<r< 5 (11)

wherer is a uniformly distributed random numbet,is the distance between two nodes, aRds the
maximum transmission range. The above link metric attergptapture both the correlation with distance
and the random property of link quality [28], [20]. In thiskmection, we assume the availability of accurate
and up-to-date link cost information.

We use the following experiment scenario. The source anddéstination are 900 meters apart, and
the source starts to send data packets after 10 seconds. gacddds, we assume that the environment

’In Figure 11, the performance difference between the optoaae and ADV is not large. It is because the constant termgn?2

constitutes a significant power consumption regardlesfi@fttansmission power, as is the case with most existingusted33].
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ADV Non-adaptive NADV  NADV | IDEAL
(AODV) one-hop two-hop

Initial 14.43 11.14 11.28 10.82| 10.32
After change| 18.51 14.30 13.50 12.52| 11.62
TABLE VI

THE AVERAGE COSTS OF PATHS FOUND BY RESPECTIVE ROUTING SCHERIEVHEN LINK COSTS CHANGE

of some part of the network changes (e.g., due to new obstadereased interference, node mobility),
and we randomly select 50% of links and increase their linktxdy 50%. For NADV, we additionally

consider a geographic routing scheme that uses two-hophib@igood information [10]. To compare
NADV against AODV [13], we modify the AODV simulation codeych that AODV finds paths that

minimize the sum of link costs along the paths, not hop count.

In Table VI, we report average path quality of each schemerbednd after the link cost change.
Each value in the table is an average of ten experiments.isntalbble, we can see that using NADV,
geographic routing (both one-hop and two-hop) can find patiraparable to the optimal paths. Not
surprisingly, utilizing two-hop neighborhood informatideads to higher-quality paths than the one-hop
case. The performance of initial paths by AODV lies betwemosé by one-hop NADV and two-hop
NADV. However, even after some link cost values increasera®0 seconds, AODV keeps using the
initial path, and the path performance degrades accorgihgtontrast, the use of NADV enables localized
geographic routing to detect the change and determinerbregte hops, which results in better paths.

In summary, geographic routing with NADV can find paths whossts are comparable to the optimum.

It is also able to adapt to network environment changes, dube localized next hop decision.

V. TESTBED EXPERIMENTS

In this section, we present results from our experimentfop@ed on real testbeds and demonstrate
that our estimation strategy performs well in various wasd environments. After describing experiment
setup, we first show the PER estimation scheme based on ateMarkov model works well in practice,

and then present results when we employ the scheme in the Ni#dDWework in practical scenarios.
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Fig. 12. Partial floorplan for the Emulab wireless testbeddék 1 and 9 cannot directly communicate, and all the othde mpairs can

talk to each other.

A. Experiment Setup

We have performed our experiments in two open access wiréestbeds: Emulath{t p: / / www.
enul ab. net) and ORBIT fttp://ww. orbit-1ab. org). Although Emulab is often used to
provide emulated network environments for wired netwonkgeziments, the Emulab wireless testbed uses
real air communicatiorthrough IEEE 802.11 wireless interfaces between statjoR& nodes scattered
around a typical office building. We only use the nodes on thel tfloor (Figure 12). Each PC has two
Netgear WAG311 wireless interface cards based on the Ashe2d2 chipset. It uses Redhat 9.0 with 2.4
kernel and the MadWifi open-source device dv@he ORBIT testbed currently consists of 400 wireless
nodes, each equipped with two IEEE 802.11 wireless cardlati in a 20-by-20 grid with approximately
one meter spacing between nearby nodes. Due to the rejativedll deployment area, observed packet
error rates in ORBIT show less diversity [40]. Thus, we foaumsresults from Emulab to illustrate that
the estimation technique performs well for both low-erradaigh-error links.

In our experiments, a sender broadcasts 16, 32, 64, 128,5226and 1024-byte UDP packets every
0.05 seconds in an intermixed fashion to minimize the eftédclink condition variation over time on
the error rates of different message types. In our expetisneme use only one sender at any instant
to minimize the interference and collisions. Each senderndcasts 10000 packets for each size (70000
packets total). All nodes receiving the packets record theket size and sequence number to calculate
the observed PERs for each message type. In this paper, winaisxed transmission rate of 1 Mbps
for all messages. Investigating the impact of differentadattes is an area of our future research. The

8htt p: //www. madwi fi.org
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Fig. 13. Estimated and observed PERs for 1024-byte packetstbe link from node 1 to node 4 in Emulab (Figure 12).

transmit power is fixed at 31 mW, which is the default valueha tevice driver.

We compare the estimation performance of the followingtstigs:

« BASIC(m): This scheme uses the average error ratendbyte probe messages for data packets of
all sizes.

« INDEP(m): This scheme assumes the independent bit error model amnapelates the expected
packet error rate based on Eq. 5 and the statistica-tyte probe messages.

o GE(m, n): This scheme is based on the GE model, which uses Eq. 6 anstdtigtics ofm-byte
andn-byte probe messages.

o OBSERVED This is the actual observed packet error rate.

Only one measurement value is required fSDEP;, GE uses two parameters, and there can be more
possible combinations of the two. For both schemes, propeanpeter choice can be crucial to correct
PER estimation. We consider three different combinatidngavameters foiGE and two different cases

for INDEP and compare the estimation performance.

B. PER Estimation Results

We first consider how well the above estimation strategie®pa. In Figure 13, we plot the observed
error rate for 1024-byte packets and estimated error rayedifferent schemé’s We use a representative
experiment sending 10000 packets for each probe type, atdpsant in the figure is based on cumulative
packet error rates after every 1000 packets. In Figure Eegimation bycE(16,128) closely matches the

®We include additional 84 bytes of lower layer headers in thlewdation.
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Emulab Links

8—-9 1-13 1-»7 1-4 1-8 11-16 16-5

OBSERVED | 0.018 0.135 0.145 0.334 0.375 0.548 0.738

GE(16,128) | 0.021 0131 0145 0.385 0393 0526 0.754

GE(16,64) | 0.025 0.222 0.247 0465 0.332 0415 0.791
GE(16,32) | 0.046 0.154 0.043 0.524 0.243 0.594 0.677
INDEP(128) | 0.052 0.222 0.255 0.629 0.645 0.907 0.996
INDEP(16) | 0.092 0.332 0.383 0.816 0.831 0.993 1.000
BASIC(128) | 0.010 0.047 0.055 0.173 0.180 0.385 0.646

TABLE VII
COMPARISON OF DIFFERENT ESTIMATION TECHNIQUES AGAINST ACTAL PACKET ERROR RATES WE USE10000PACKETS FOR EACH

OF PROBE AND DATA MESSAGE TYPESVALUES IN BOLD REPRESENT THE CASES WITH MINIMUM ESTIMATION EROR.

actual average packet error rate. In general, we obsertehbastimation error foce(16,128) becomes
smaller as we use more probe messages; we discuss this éasuelmore detail.

In our experimentsGE(16,32) does not perform as well a&(16,128). In Figure 13 there is considerable
difference in the estimated value over time, and the measeme error is often relatively large. One
possible explanation is that the estimationdy(16,32) is less robust because we use extrapolation based
on two relatively nearby sample points; a small measurereent can amplify the estimation error. Also,
Kopke et al. [24] find that there is difference in bit error pability depending on the bit position, and
bit errors occur more frequently at the beginning of a packet a result, estimation using short probe
messages alone can potentially lead to higher estimatimmsern Figure 13/NDEP does not estimate
PER correctly, and although not shown in the figure, the egton error byINDEP(16) is larger than that
of INDEP(128). Although we do not show all the results here, we hayeemented with other links and
performed multiple experiments for each link, and the rssate similar. We later present some of them
in Table VII. We have also performed experiments on the OR8Kbed and gotten similar results which
are omitted due to the limited space. Interested readerseéeaed to [40] for more experiment results.

In the rest of this section, we use results from Emulab only.

Experiments with Various Linksn the previous results, we considered results only fromva Ifeks.

We now present results from various wireless links with dieelink quality. In Table VII, we report
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Fig. 14. PER estimation for different packet sizes. We uselittk from node 1 to node 4. Agairge(16,128) performs best for all packet

sizes.

estimated PERs by different schemes as well as observedrates for 1024-byte packéfs We observe
that GE(16,128) estimation is the most accurate in all cases (igigtdd in bold), and the estimation error
is small regardless of link qualitie(16,64) often performs better thag(16,32), but both of them result
in larger estimation errors thame(16,128). As in Figure 13NDEP leads to large estimation errors, while
INDEP(128) performs better thamDEP(16). Although the independent bit error model has served as
reasonable model in [20], it does not seem to reflect the alasiraracteristics correctly in our indoor
experimentsBASIC(128) uses the error rate of 128-byte probe messages astthmatsn for 1024-byte
packets, which results in significant underestimation.dot®n V-C, we illustrate that this underestimation

by BAsIC can lead to significant inefficiency when used with existiogting schemes.

Varying Data Packet Sizedn the previous experiments, we fixed the data packet lergilD24 bytes.
In this set of experiments, we vary the data packet size angpace the estimated and observed error
rates. In this experiment, we use additional packet siz&§,(72200, and 1400 bytes). In Figure 14,
we plot the estimated and actual packet error rates withingrpacket sizes. We use the statistics of
10000 messages for each probe type. Not surprisingly, gegracket error rates increase as data packets
become larger. We observe that(16,128) again performs best in estimating error rates fopacket
sizes. Other schemes show similar trends to FigurecEB16,64) performs worse thabg(16,128), while
INDEP performs worst. This result illustrates that our proposazhhique estimates error rates for various
packet sizes.

®Nodes 5, 11, and 16 are not shown in Figure 12. The full floorjgaavailable aht t ps: / / ww. enul ab. net/ f | oor map. php3.
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Fig. 15. PER estimation based on 1000 packets. We use thdrtéimknode 1 to node 4 again, but the values on the X-axis ardlemma

than those in Figure 13.

Convergence Time for Accurate Estimatio@ne of our goals is to estimate error rates quickly with
small overhead. In this set of experiments, we look into thmer of probe messages needed to achieve
reasonable estimation accuracy. As mentioned before,l snesurement errors in probe messages can
cause large extrapolation errors. However, sending 100bgmessages (to obtain the first point in
Figure 13) takes tens of minutes if we send a probe messagg segeond. In this experiment, we
calculate the estimation using the cumulative statistftsr @very 100 probe messages. One issue with
inferring error rates based on a small number of packetsasttie observed error rate of 16-byte packets
is sometimes higher than that of 128-byte packets, whiclomdgrary to the trend shown in Figure 14. In
that case, when we apply Eq. 6, the estimation is often neg#dr longer data packets. Clearly, it is due
to limited number of samples, and we are unlikely to have adgestimation by blindly applying Eq. 6
with only a small number of probe messages. In such a casesgéhe maximum of the following three
values as the estimated error rate: PER(16), PER(128),lenddtimated PER from Eg. 6.

In Figure 15, we consider the estimation performance whenseea smaller number of probe messages.
We observe thatGe(16,128) converges after 300 probe messages, Wi#@6,32) shows a substantial
amount of fluctuation. StillGE(16,128) takes several minutes before achieving reasenaivergence
if we send a probe message every second. This amount of tiraeceptable for more static wireless
mesh networks [28], while more dynamic wireless networkshsas ad hoc networks may require faster
convergence. We plan to investigate how to reduce the numfbequired probe messages further in the

future.
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Next | ADV NADV Number of Retransmissions
Hop BASIC(128) GE(16,128) | at source atrelay total
4 19.16 15.85 11.78 536 188 724
7 25.96 24.54 22.19 185 119 304
8 | 30.00 24.61 18.20 768 4 772
13 | 20.55 19.59 17.85 250 171 421

TABLE VIII

ROUTING METRICS BASED ON DIFFERENT ESTIMATION SCHEMES AND ATUAL ROUTING PERFORMANCE VALUES IN BOLD
CORRESPOND TO THE BEST CHOICES UNDER DIFFERENT CRITERIBRHE DELIVERY RATIOS FOR ALL CASES ARE OVER99.9%DUE TO

MAC-LEVEL RETRANSMISSIONS FOR UNICAST MESSAGES

C. Experiment Results with NADV

We have modified the geographic routing implementation ftd8C!* to account for link cost when
choosing next hops. We installed the modified code at thesiekdewn in Figure 12. In our experiments,
node 9 is the destination, and node 1 is the source sendir@yUD® packets (1024 bytes each) at the rate
of 20 packets per second. We use the IEEE 802.11 MAC protacal,the MAC-level transmit data rate
is fixed at 1 Mbps. Depending on the estimation strategiesamebmed with the routing metric, we can
potentially choose different next hops. For each case, wasore the average delivery ratio and number
of total retransmissions (overhead). In some of our expemis, we force the routing code to choose
a particular next hop to compare the performance. We use teamaid variable IlongRetryCountin the
MadWifi device driver to retrieve the total number of MAC-&vetransmissions. To maintain consistency
with the results in Table VII, we use the estimated valueshmtable as fixed link cost when choosing
the next hop. We compare the performance when wesssec(128), INDEP(128), andGE(16,128§2.

In Table VIII, we present (1) routing metrics for each neightirom the source node 1 when using
different estimation schemes and (2) the number of MACHalata retransmissions when choosing
different nodes as the next hop. Node 1 sends 1000 UDP patiteis For the ADV metric, since
we do not consider link quality, we choose node 8, which isedd to the destination node 9. When

Hpvailable atht t p: // enl . usc. edu/ sof tware. ht
2In the implementation we use, periodic messages use 16tHyfe packets. If periodic messages include neighbor inftonasuch as

reverse link quality and location information [10], the esinf periodic message will be easily over 128 bytes even witewaneighbors.

Therefore, our scheme can be implemented without intradueidditional overhead.
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we use NADV based omAsIc(128), error rates for 1024-byte packets are underestomated node
8 is chosen as the best next hop. However, the actual dataetpagkr rate for the link to node 8 is
significantly higher (37.5% for 1024-byte packets vs. 18.f@#128-byte packets), and using node 8 as
relay node leads to multiple packet retransmissions duedsek. In contrast, when we use NADV and
GE(16,128), we can estimate the actual error rate more aayrdfonsequently, we can transfer data
messages with minimum data overhead; when using node 7as vet experience 304 retransmissions,
which is only around 40% of the case of using node 8 as relag (30 772). Although not shown here,
when usingNDEP(128) and NADV, node 7 is still chosen as next hop. Howevés, gblection is based on
incorrect PER estimation (25.5% fawDEP(128) estimation vs. 14.5% for observed PER). Such incbrrec
estimation byNDEP can potentially eliminate the use of links with reasonahlaliy, which will be often
suboptimal. Thus, we expect thedDeP will not work well in other scenarios, and we plan to perform
more experiments in various settings.

Although not comprehensive, we believe the results in thidisn indicate that our proposed scheme

can achieve significant performance improvement in practic

VI. RELATED WORK

Many ideas and techniques have been proposed to find minicastpaths in multihop wireless
networks, and energy-efficient routing has been an areatefisive research. Rodoplu et al. [19] present
a localized algorithm that preserves network connectiahd achieves the globally minimum-energy
topology. In PARO [41], a node becomes a relay node if it firidg the relaying leads to lower energy
consumption. Given traffic flows and node energy levels, Qlaral. [42] find a set of routes that maximize
the system lifetime. More recently, wireless link errorsshdrawn much attention in multihop wireless
networks [18]. Banerjee et al. [22] propose the use of a lirktrio based on link error probability. De
Couto et al. use a similar metric call&TX (Expected Transmission Couitt)real testbed experiments,
and their experiment results show that paths with smalleX p&rform better than shortest paths [15].
These techniques and metrics above typically focus on -@iblen or on-demand routing protocols
(e.g., AODV [13]); in contrast, our work provides a generganmiework to incorporate these metrics
into geographic routing.

Traditional geographic routing schemes use only geomgtfizmation such as the length of projection

(called progres$ and angle value against the straight line between sourdetlam destination (please
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see [5] and the references therein). Instead of a straight Niculescu et al. [4] propose a forwarding
strategy based on a pre-defined curve. More recent schemsgleolink costs in the next hop selection.
Stojmenovic et al. [14] propose a routing metric for pow#iegnt routing. Seada et al. [11] focus on
the minimum energy consumption in lossy environments aopgse threshold-based schemes as well as
a link metric in Eq. 4. Zorzi and Armaroli also propose the saimk metric [12]. Our work is different
from them in that we present a more general framework andigeothe rationale behind the use of
NADV by proving the optimal tradeoff between hop count antklcost.

Greedy forwarding using NADV still can result in the localmmum problem. To route packets around
voids, we can use existing recovery schemes with the NADMimdtor examplefFace Routind1] uses
the right-hand rule in Gabriel graph, and GPSR employs alainscheme callegherimeter modg?2].
Terminode routing use&nchored Geodesic Packet Forwarding (AGRk#ilar to loose source routing [9].
Kuhn et al. present GOAFR+, which is efficient on average £asel worst-case optimal [3]. (Although
GOAFR+ considers link cost, it still chooses the neighbasebt to the destination in greedy mode.)
For example, in recovery mode, Terminode routing and GOARiIRé an intermediate node, to which
packets are forwarded in a greedy manner. Those schemesseaNADV in their recovery phase. In
other cases, recovery algorithms are independent of grémdsarding procedure, so using NADV does
not affect the recovery performance. Also, we believe tlmhgared to ADV, greedy forwarding using
NADV will have a similar frequency of encountering voids ingaven network. The NADV metric can
also be used in geocasting, which is similar to multicast,dalivers data packets to nodes located inside
a certain region [8]. Geographic routing may exploit looatservice systems [7] and location computation

systems [6]. More information about position-based rayttan be found in [5].

VII. CONCLUSIONS ANDFUTURE WORK

We have introduced NADV as link metric for geographic rogtim multihop wireless networks.
Geographic routing with NADV provides an adaptive routirigagegy, which is general and can be used
for various link cost types. We have presented techniquedirfk cost estimation. We have performed
extensive simulation study and testbed experiments taiatalthe effectiveness of NADV and link cost
estimation techniques. In these environments, the cormbmaf NADV and cost estimation techniques
outperforms the current geographic routing scheme. NAD& dinds paths whose cost is close to the

optimum.
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Cost-aware routing schemes including NADV benefit greatiyt fast and accurate link cost estimation,
and we plan to investigate this issue further in the futunethis paper, we have treated each link cost
type independently. However, if we consider multiple idegendent costs simultaneously, choosing the
next hop based on one cost type may not be always the besedaoiother costs. Our future work is to
design a link cost model that balances multiple cost catenhich would allow the NADV framework

to leverage the combined link cost to find a low cost path.
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