
Gold Standard Auditing for Router Configurations

Donald Caldwell, Seungjoon Lee, Shubho Sen, Jennifer Yates

{dfwc, slee, sen, jyates}@research.att.com

AT&T Labs – Research, 180 Park Avenue, Florham Park, NJ 07932, USA

Abstract—Network providers face a huge challenge of running
their network without service disruption in the presence of
constant network change. Such change often involves router
configuration update. The goal of gold standard auditing is to
ensure all field configs are equivalent to a certified gold config.
To handle constant change involving many features configured
for numerous routers at the network edge, we need a scalable
system that can perform gold standard auditing in a timely
fashion. We present the design of GSAT (Gold Standard Audit
Tool) that utilizes the syntactic structure of configs. When there is
difference between gold and field configs, GSAT can provide users
with enough structural hints to understand the context of the
difference. Being technology-independent, GSAT is highly scalable
and extensible. We have been using GSAT to audit customer-facing
routers in a large-scale operational IP network. We present the
implementation details and audit performance of our system.

Index Terms—Configuration management, structured diff, gold
standard auditing

I. INTRODUCTION

Constant change is simply a fact of life for large ISP

networks. Change is introduced for numerous reasons—new

customers are regularly added, new services or features are

introduced, and network hardware is augmented or upgraded.

Realizing such changes often involves making significant

configuration modifications to existing routers. Correctness

of these updates is essential for the network to operate

as intended; misconfigurations have the potential to create

catastrophic service disruptions and other adverse fallouts for

the customer and provider. However, for a large network

consisting of 100s or 1000s of routers each with tens of

thousands of configuration lines, it is a huge challenge to

realize the intended change correctly [9, 11].

Automated generation and update of router configuration

can reduce these risks significantly, if such capabilities are

available. However, automated configuration creation is in

itself an immensely challenging area of active research [9],

and is far from ubiquitous. Even where automated config-

uration generation does exist, it often focuses only on new

deployments as opposed to the more complex task of making

configuration changes. Systems that automatically generate

router configurations are also subject to errors – the inputs

to these systems may be wrong, or there may be failures in

writing the configs to the routers. Thus, in both scenarios (with

or without automated configuration generation), we need to

carefully audit the deployed base of router configurations to

ensure that they match what is intended.

Obviously, manual auditing of individual router configs

is infeasible for large networks—it simply does not scale.

Gold Standard
Config

Field Config

Check whether
two configs

are equivalent

Fig. 1. The goal of gold standard auditing is to ensure all field configs
are equivalent to a gold standard config. In some cases, we are interested
in auditing some portion of configs (marked as boxes inside). If there is
difference, then operators often want to find out exactly what is different, so
that they can promptly repair it.

Caldwell et al. [3] propose creating detailed models of router

configurations for use in configuration auditing. While hugely

useful, such modeling necessarily requires tremendous effort

to model all of the features in use within the network. As

new features are introduced, the model must be updated. Thus,

a developer creating such an auditing system must maintain

an extremely detailed and up-to-date knowledge of the usage

and semantics of the field configs. If we want to audit a

new network that uses a different router technology (e.g.,

new vendor), this approach necessarily incurs a massive start-

up cost. The goal of this paper is to design a configuration

auditing system that can readily embrace new configuration

features and be rapidly applied to different configuration

languages and vendor technologies in a scalable manner. We

achieve this by avoiding the detailed modeling required in

existing approaches.

Let us consider an ideal scenario where we have a per-

router “gold standard configuration” (or gold config for short),

a working configuration file for each individual router that

completely captures the design intent. Then, gold standard

auditing compares a router’s field configuration (called field

config) against its gold config (see Figure 1). However, in

a network with a large number of routers with complex

configuration, it is a tremendous challenge to generate an

accurate gold standard router config file that precisely captures

configuration intent and tracks constant network changes (e.g.,

to provision edge routers for thousands of new customers

every day). However, our analysis of router config files from a

large broadband service network has demonstrated that a large

portion (e.g., ∼50%) of configs for customer facing routers is

highly similar across the network, although there exist slight

differences in a small number of features within the similar

portion. These configurations correspond to important global

and regional policies such as security filters and QoS settings.

In this work, we obtain gold standard configlets (e.g., Figure 2)

for these features and focus on auditing whether (portions of)

the field configs match them.

As the goal of gold standard auditing appears conceptually

simple, one might think that simple text-based tools such as

diff or grep may suffice. While such tools are helpful, their

utility quickly diminishes as the number of routers and their

configuration lines increases. In a typical scenario, to check or

edit the config of a router, network operators use the command

line interface on the router to enter a specific segment of the

config, without the notion of line number in a text file. Thus,

a config audit tool needs to report the logical segment of the

config that is erroneous, rather than reporting the specific line

number(s) of interest. Similarly if a segment of the config

(e.g., a rather lengthy packet filter) is added or deleted, an

operator should be informed of such, rather than specific lines

of config that are added/deleted. However, diff displays only

the textual change and line number (Figures 3 and 4), and the

network operator needs to go through additional steps before

he can get the desired context information. We further discuss

this in more detail in Section II.

In this paper, we present our gold standard auditing system,

GSAT (Gold Standard Audit Tool). GSAT recognizes meaning-

ful configuration entities based on the syntactic structure. GSAT

can use these structural entities to compare the gold config and

a field config. When a difference between the gold config and

a field config is identified, GSAT reports a sufficient structural

context regarding the related config. When a single syntactic

entity that is large in size (e.g., many config lines) is missing

or added, GSAT can provide the summary information about

the change (e.g., by displaying the top level information of

the entity). Since it does not require any detailed modeling in

the semantics level, GSAT is highly flexible and can be readily

extended to different technologies (e.g., new vendors) without

having to pay the large start-up cost of the traditional model-

based auditing approaches [3].

Our system also provides users with the ability to fine-tune

various aspects of the comparison operation without involving

tool developers. For example, after a network upgrade, a

network operator can himself update the set of gold configs

that GSAT uses for auditing, replacing the pre-upgrade gold

configs with the new ones. GSAT also provides a simple

command set by which a user can customize the comparison

operation for certain portions of the configs (e.g., ignoring

changes in interface description fields). We design this feature

to be technology-agnostic, so that the entire system is scalable

and extensible. We present our GSAT design in more detail in

Section III. In Section IV, we present insights and experience

gleaned from the use of GSAT by network operators to audit

edge routers in a large operational network. We review related

work in Section V and conclude in Section VI. Before pre-

senting our system design, we first discuss desired properties

of a gold standard audit system in the following section.

II. DESIGN GOALS

In this paper, we focus on the scenario where network

operators have a set of fixed gold configs and audit field

configs against them. Although the task might sound simple,

achieving the goal in a scalable way calls for a careful system

design, especially to meet a number of user requirements

for handling differences. We next describe some key desired

properties of an auditing system. To provide concrete examples

and also illustrate the limitation of simple tools such as

diff, we use an example gold config shown in Figure 2 that

configures multiple packet filters (also known as access control

lists (ACLs)). Note that many lines have been omitted in the

interest of space and clarity of exposition. In this example, line

ranges 3904− 4594 and 4595− 6480 respectively correspond

to two different filters, 9 and 10. A single packet filter consists

of a series of rules called ”entries”. The first rule in filter 10 is

entry 5 (lines 4597− 4603), which drops any packet with

destination IP matching 10.0.0/8 (lines 4599− 4601).

A. Provide Sufficient Context

In addition to showing the actual differences between the

gold and field configs, it is important for an audit system to

provide sufficient information about those differences such that

the operators can quickly grasp the context of the differences.

For example, suppose in line 4600 in Figure 2, a field

config has dst-ip 192.168.0.0/16 instead of dst-ip

10.0.0.0/8 as in the gold config. Figure 3 shows the output

by diff for this scenario. To fix the destination IP address

value, an operator would need to know that the change belongs

to the matching rule in entry 5 of filter 10. diff just shows

that there is a difference in line 4600, but does not provide

sufficient context information. As a result, the operator would

need to look up the line in question in the original config file

before he can comprehend the relevant context.

B. Suppress Unnecessary Details

Network operators typically have to deal with many routers

each with many lines of configurations, and displaying all the

details about a change is often more confusing then helpful.

For instance, consider a case where entire packet filter 10

in Figure 2 is missing in a field config. In this case, diff

would display all thousands of configuration lines for that

filter (Figure 4). In this case, a higher level summary that

just displays the filter number for each missing packet filter

would be much more useful to the operator.

C. Identify Functional Entities

Ideally, an audit tool should be able to identify logically

related lines of configuration (maybe related to a given feature)

and handle them together as a single functional unit for

auditing. Also, there can be multiple different configs that are

functionally equivalent. The audit tool should preferably be

able to recognize these equivalences. For example, in Figure 2,

packet filters are numerically sorted using their filter number

(e.g., 1, 2, ..., 9, 10, 11, ...). Suppose that a field config has

differently sorted packet filters, e.g., alpha-numerically (e.g.,

1, 10, 11, ..., 2, ...). In this case the gold config and the field

config are functionally equivalent. Ideally, an audit tool should

report that. Figure 5 shows that if we compare the two variants

1 configure

2 filter

... (earlier filters omitted)

3904 ip-filter 9 create

3905 description "filter 9"

... (entries omitted)

4594 exit

4595 ip-filter 10 create

4596 description "filter 10"

4597 entry 5 create

4598 description "private IPs"

4599 match

4600 dst-ip 10.0.0.0/8

4601 exit

4602 action drop

4603 exit

... (other entries omitted)

6480 exit

... (other filters omitted)

20937 exit

20938 exit

Fig. 2. Example gold config with multiple packet
filters. Line numbers are shown on the left. The syntax
used here is for Alcatel-Lucent routers [1].

4600c4600

< dst-ip 10.0.0.0/8

> dst-ip 192.168.0.0/16

Fig. 3. diff output when content of an entry
has changed

4595,6480d4594

< ip-filter 10 create

< description "filter 10"

< entry 5 create

< description "private IPs"

< match

< dst-ip 10.0.0.0/8

< exit

< action drop

< exit

...

Fig. 4. diff output when filter 10 is missing.
Part of 1887 lines are shown.

3,4c3,4

< ip-filter 9 create

< description "filter 9"

> ip-filter 10 create

> description "filter 10"

132,135c132,136

< entry 5000 create

...

693,697c848,849

< exit

< ip-filter 10 create

...

1772,1773c1888,1899

...

> ip-filter 9 create

...

Fig. 5. diff output when two files are sorted
differently. Only part of 3592 lines are shown.

using diff, we get a complicated output where differences

are identified in many line ranges. From this output, it is hard

to gauge that the two configs are in fact equivalent, and all the

differences are due to the configuration statements appearing

in different orders.

D. Enable user customization

We observe two cases where it is beneficial for operators

to have flexibility in guiding the audit process. First, after

performing network upgrades, network operators want to spec-

ify what gold standard each router should be audited against.

For instance, an operator may want to audit routers in Texas

against new gold standard G2, while using old gold standard

G1 for routers in California that are not yet upgraded. Second,

network operators often want to specify the exact comparison

and exception rules, which may be different for different

operators. Suppose filter 10 in our example has an entry with

a city-specific value (e.g., different IP address for different

cities). Here an operator may desire that the audit ignore any

differences in the city-specific value between the field and gold

configs. We could certainly build a tool where tool developers

address the different customization requests. However, a better

alternative is a flexible audit tool that can support a range of

different user-initiated customizations without the overhead of

additional development lead times.

E. Scalability and Extensibility

Our primary focus is to build an audit tool that can handle

very large numbers of routers in a network, can accommodate

differences in audit requirements across the network (e.g., rule

for customer facing routers in Texas might be different from

the one for core facing routers in California), and work for

different configuration languages.

In the following section, we present the design of our system

that achieves these goals.

III. GOLD STANDARD AUDIT SYSTEM

In this section, we present the details of our system GSAT

and describe how it satisfies the design goals listed above.

Structured
Diff

Engine

multiple versions
of gold configs

Gold Standard
Auditing System

field
config

Configlet
Setup

OutputPost
Processing

...G1 G2 Gn

audit
customization

rule

Fig. 6. System overview

A. Overview

In Figure 6, we show the main components of GSAT and

inputs to the system. GSAT heavily leverages the syntactic

structure of configs, and its key component is the structured

diff engine, which compares two configs and outputs the

structural difference. Then, actual users, who are config ex-

perts (e.g., network operators), can look at the difference and

interpret what the change means. In that sense, our system

is semantics-agnostic; it just provides structural hints about

change and relies on human experts to read and understand

them with proper semantics. We designed our system to

work with XML (Extensible Markup Language) configs (e.g.,

Figures 7 and 8) which are supported by many modern routers

and which offer the key benefit of having a well-structured

syntax. For some networks, configs are available only in CLI

(Command Line Interface) format (e.g., early Cisco IOS),

or a user may prefer CLI format (e.g., due to readability).

In such cases, we convert the CLI configs into XML (see

Section III-B). In addition to being able to utilize existing

XML tools [2, 6, 7, 8], our approach of working with generic

syntactic structure based on XML and thus being semantics-

agnostic is key to making GSAT scalable (e.g., new vendor’s

devices or different configuration syntax).

GSAT also allows a user to specify detailed audit customiza-

tion rules. Audit customization rules, field configs, and gold

configs constitute the input to our tool. We next describe each

component of GSAT in detail.

<configure>

<filter>

<ip-filter id="10">

<desc>description "filter 10"</desc>

<entry id="5">

<action>action drop</action>

<desc>description "Private IPs"</desc>

<line>entry 5 create</line>

<match>

<dst-ip>dst-ip 10.0.0/8</dst-ip>

<line>match</line>

</match>

</entry>

<line>ip-filter 10 create</line>

</ip-filter>

</filter>

</configure>

Fig. 7. Example gold config converted to XML. Only entry 5 in filter
10 is shown for brevity.

<configure>

<filter>

<ip-filter id="10">

<desc>description "ip-filter 10"</desc>

<entry id="5">

<action>action drop</action>

<desc>description "Private IPs"</desc>

<line>entry 5 create</line>

<match>

<dst-ip>dst-ip 192.168.0.0/16</dst-ip>

<line>match</line>

</match>

</entry>

<line>ip-filter 10 create</line>

</ip-filter>

</filter>

</configure>

Fig. 8. Example field config. The difference from the gold config is
marked in bold.

B. System Inputs

1) Field and Gold Configs: The structured diff engine

in GSAT uses configs in XML format. When configs are

available only CLI format, our system uses a config parser that

translates CLI configs into XML. Such a parser should also be

semantics-agnostic in order for our entire system to be scalable

and extensible and we discuss this further in Section IV.

2) Audit Customization Rule: GSAT allows users to specify

rules to customize the audit process. Note that there can be

multiple versions of gold configs (e.g., different versions of

packet filters). Also, since we are focusing on gold configs

for the common features across the network, a user must be

able to specify what portion of a field config to audit. First,

using a meta-file provided by GSAT, a user can specify what

version of gold config GSAT should use for a particular field

config. Specifically, the format of the meta-file is as follows:

filter,DLLSTX,/gold/G2,/gold/rule.txt

The above line is comma-separated and has four fields:

audit name, region, gold config location, and file name for

customization rules. Based on this specification, our system

will audit all Dallas routers against the gold config stored in

the location /gold/G2. In the case of network upgrades, a

user (e.g., network operator) can use this feature to ensure

the prompt auditing of Dallas routers against an updated gold

config, without involving tool developer.

Through interactions with network operations teams, we

have found that they often want the capability to fine-tune the

audit process. For instance, a user may want to ignore the text

change in the description field shown in Figure 8. To enable

such customization, we defined four user commands, which

together satisfy the majority of requests from our users: ROOT,

EXCLUDE, IGNORE-VALUE, and IGNORE-ADD. User-specified

rules are stored in a file, which appears in the last field of

the audit customization rule (e.g., /gold/rule.txt). To

further leverage the user’s domain knowledge and achieve sys-

tem scalability, we define an XPath-like syntax for command

parameter [7] that is semantics-agnostic, and yet provides

enough control for config experts to express what they want

to achieve. We show an example in Figure 9. ROOT and

EXCLUDE specify the portion of field config that is audited

ROOT,/configure/filter

EXCLUDE,/configure/filter/ip-filter[@id=‘Y’]/entry[@id=‘X’]

IGNORE-VALUE,/configure/filter/ip-filter/desc

IGNORE-ADD,/configure/filter/ip-filter[@id=‘Z’]/entry

Fig. 9. Example /gold/rule.txt

against gold config. In Figure 9, the user wants to audit

the filter section (ROOT command), but wants to exclude

(EXCLUDE) a certain filter entry (e.g., a location-specific entry

not in gold config). The user also wants to ignore value change

in the filter description (IGNORE-VALUE). In addition, some

routers have location specific entries in ip-filter Z, and

the user wants to ignore those entries in the output (IGNORE-

ADD). We next describe how GSAT handles these inputs.

C. Configlet Setup

In this component, we apply the audit customization rule

to each field config to obtain a configlet, which in turn is fed

into the diff engine for auditing. First, GSAT uses ROOT and

EXCLUDE parameters to select the particular config portion of

interest. Second, we annotate the configlet based on IGNORE-

VALUE and IGNORE-ADD command parameters. We define

special attributes (not in the XML schema) and appropriately

embed them into the configlet. For example, to implement the

IGNORE-VALUE command in Figure 9, we annotate the field

config in Figure 8 as follows:

<desc ignore-val=‘1’>description "ip-filter

10"</desc>

In GSAT, we add annotations only to field configs and maintain

the gold configs unchanged. We use a similar annotation

approach for IGNORE-ADD commands, which we do not show

here for brevity.

D. Structured Diff Engine

GSAT is based on a key observation that we do not need to

fully understand detailed meanings of configs to perform gold

standard auditing and meet our listed goals. GSAT compares

the syntactic structure of the gold and field XML configs

and reports any structural difference between the two. There

are a number of existing XML diff tools to perform the diff

operation [8, 10, 13]. Figure 10 shows an example diff output

<delta>

<desc ignore-val=’1’>

<path>

<configure><filter><ip-filter id="10"/>

</filter></configure>

</path>

<d>description "filter 10"</d>

<i>description "ip-filter 10"</i>

<ai a=’ignore-val’ v=’1’/>

</desc>

<dst-ip>

<path>

<configure><filter><ip-filter id="10"><match/>

</ip-filter></filter></configure>

</path>

<d>dst-ip 10.0.0.0/8</d>

<i>dst-ip 192.168.0.0/16</i>

</dst-ip>

</delta>

Fig. 10. Example of XML delta.

between the two XML configs in Figures 7 and 8 (using

XyDiff-like syntax [8]). The block for the <desc> change

contains the path, the deleted gold config value (denoted by

<d>), and the inserted field config value (denoted by <i>).

The block also has an element for a new attribute (denoted

by <ai>), which is due to the annotation attribute for audit

customization. We next describe how to process the diff output.

E. Post-Processing

In this step, we first suppress displaying entries with anno-

tation attributes. In Figure 10, the deletion and insertion tags

of the desc block have simple text alone, which indicates

a value change for the desc element. Since the block has

the ignore-val attribute, the post-processing step does not

include this block for display. Although not shown here, if

a block has ignore-add attribute due to IGNORE-ADD and

the insertion tag contains an XML subtree, then we also ignore

the change due to a subtree addition. For the <dst-ip>

block, we have all the structural information to provide enough

context about the change:

/configure/filter/ip-filter 10/entry 5/match/dst-ip:

modified from 10.0.0.0/8 to 192.168.0.0/16

Although not shown here, an insertion or deletion tag (<i> or

<d>) can contain an XML subtree. In such a case, the default

behavior is to show only the root of the subblock and suppress

the details of the block, although GSAT allows a user to choose

to display the entire configuration subtree.

IV. SYSTEM IMPLEMENTATION AND EVALUATION

We have implemented the GSAT system and been using

it for the gold standard auditing of an operational network

that provides high speed Internet and video service to more

than 2 million customers. In this section, we describe the

implementation details and present evaluation results.

A. Current System Implementation

In our current system, we are given CLI configs. To convert

them to XML format, we can use any parsing technique such

as [4]. Our current implementation employs a simple parsing

scheme where we identify configuration blocks and recursively

construct subtrees based on the indentation level. We use the

first token as the element name. Also, if an element contains

a block, then the second token is used as its ID attribute

value, which we use to distinguish multiple children with

the same element name. For instance, we get <ip-filter

id="10"> from CLI line ip-filter 10 create.

For the configlet setup phase, we use a simple script to

read audit customization rules to construct an XQuery that

implements the rules [2]. Then we use Galax open-source

XQuery engine (available at http://galax.sourceforge.net) to

run the XQuery on field configs and extract the configlet of

interest. Another possible option to extract configlets is to use

an XML database (e.g., Berkeley DB XML). Such a tool also

supports performance improvement features such as indexing,

which we plan to explore in the future.

For the actual comparison of XML configs, we use a perl

module called SemanticDiff from CPAN (http://search.cpan.

org/dist/XML-SemanticDiff/). We also considered other XML

tools and found them to be unsuitable for our needs, which

we further explain later in this section. The SemanticDiff perl

module satisfies all our requirements after minimal changes.

Specifically, we modified it to handle ID attribute values

differently, such that we can properly handle multiple children

with the same name (e.g., Figure 5). We also modified its

post-processing engine such that it recognizes new attributes

for audit customization rules as described in Section III.

B. Evaluation Results

In the rest of this section, we present evaluation results for

our implementation. We use around 2000 configs for customer-

facing routers from an operational ISP network. We focus

on auditing packet filter and QoS sections, which constitute

a large part of the configs and have various configuration

constructs. Specifically, the QoS gold config includes con-

figurations for rate-limiting queues, scheduling policies, and

parameters for different traffic classes. We run our experiments

on a Sun server running SunOS 5.10.

We first measure the running time of the configlet setup

phase. For the customer facing routers we use, a CLI config

is 1.6 MB on average, and an XML config becomes larger

(around 2.0 MB), which is typical due to extra tags. On

average, a config is around 49 thousand lines in CLI and

61 thousand in XML. The filter section is around 40% of a

config (∼24 thousand lines in XML), and extracting that part

using XQuery takes around 3.4 seconds. In comparison, the

QoS section is much smaller (8–9% of entire config), but the

processing time (2.5 seconds) is comparable to that of filter.

We think that it is mainly because either processing needs to

take an entire pass on each config. We also report that our

simple parser takes around 6 seconds on average to convert a

CLI config to XML.

We next measure the running time of structured diff op-

eration and compare it against GNU diff. In this experiment,

compared to the field config, the actual gold config for filter is

sorted differently, which we call “unsorted” filter. Since we are

using XML, we can use an XQuery to sort the gold config in

diff GSAT GSAT

verbose concise

Running unsorted filter 0.144 64.0 68.4
Time sorted filter 0.135 60.7 61.8

(in sec) QoS 0.070 5.8 8.3

Relative unsorted filter 48187.5 7.6 1
Verbosity sorted filter 10.5 7.6 1

QoS 4912.5 17.1 1

TABLE I
COMPARISON BETWEEN GNU DIFF AND GSAT.

the same order as the field config, which we call “sorted” filter.

While GNU diff can use CLI format, we use XML configs for

the ease of comparison. For GSAT, we consider two variants.

In case of a subtree addition or deletion, GSAT-verbose lists

the whole subtree, and GSAT-concise displays only the root.

In our experiment, we do not use post-processing commands

such as IGNORE-VALUE for fair comparison.

In Table I, we report the average running time to perform

textual and structured diff between a gold config and a field

config. For the filter section, GNU diff takes a fraction of a

second to compare the gold config and an average field config.

We observe that the structured diff engine currently used in

GSAT is slower than diff, especially when the config becomes

larger (e.g., filter). However, GSAT is typically used for off-

line analysis, which does not require immediate diff operation.

Another performance aspect for efficient auditing is accurate

and intuitive output, which we describe next.

GSAT can provide highly concise output. In Table I, we

also report the amount of output by each scheme. We define

relative verbosity as the output line count divided by the output

line count by GSAT-concise. When the gold config for filter

is sorted in a different order from field configs, the output of

diff is orders of magnitude larger than that of GSAT. Such

an output by diff is useless for users to understand what

the difference is. Even when the filters sorted in the same

order, the output for diff is 10+ times larger than GSAT-

concise and comparable to GSAT-verbose. Although we do

not show in the table, we also experimented with XyDiff [8].

In our experiment, XyDiff was not able to provide concise

output for simple change, which was the main reason we

do not use it in our system. For instance, when a simple

block was added to a QoS config, XyDiff reported a large

list of small blocks that are moved and added, which resulted

in an order of magnitude more lines than GSAT-verbose. By

contrast, GSAT provides accurate high-level information about

actual changes. After more than a year of usage, GSAT has

become an essential tool for network operators to identify and

fix unintended configuration changes in the large ISP network.

V. RELATED WORK

NCGuard [12] uses XML configs and XML schema to ex-

press high-level objectives for router config auditing. Decor [5]

abstracts a network as a distributed database and applies

a declarative language framework to network management.

Both NCGuard and Decor require technology-dependent low-

level implementation to realize their high-level abstraction. By

utilizing the syntactic structure of configs, GSAT is technology-

agnostic and requires minimal semantics knowledge.

A number of XML diff tools have been proposed [8, 10, 13].

XyDiff [8] is one of the best known XML diff tools. Instead

of finding the minimum diff tree, it uses a heuristic to find

a reasonably good diff tree efficiently. We plan to investigate

those tools to speed up the structured diff phase in our GSAT

system.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our gold standard audit system

called GSAT. GSAT leverages on the syntactic structure of

router configs to identify functional entities. When a gold

config and a field config are different, GSAT can provide

concise yet sufficient context for config experts to locate and

repair the difference promptly. It also allows users to fine-tune

the comparison operation. Being semantics-agnostic, GSAT

is highly extensible to multiple languages and technologies.

GSAT has been an essential tool to audit configs for a large

operational network for more than a year.

GSAT provides users with a limited capability for fine-tuning

the audit process. One possible generalization of this would

be to allow users to specify their own audit logics in an

interactive manner. We also plan to explore how to further

leverage the syntactic structure of configs for different types

of configuration management tasks.

Acknowledgments The authors thank Steven Perks, Ezell

Smith, Gary Flack, Eric Sung, Joe Benhabib, and Andrew

Gauld for the valuable discussions and feedback.

REFERENCES

[1] Alcatel-Lucent. 7750 SR OS Basic System Configuration Guide, 2007.
http://www.alcatel-lucent.com.

[2] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie,
and J. Siméon. XQuery 1.0: An XML Query Language. W3C
Recommendation, 2007. http://www.w3.org/TR/xquery/.

[3] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and
J. Rexford. The cutting EDGE of IP router configuration. In Proceedings

of ACM HotNets Workshop, 2003.
[4] D. Caldwell, S. Lee, and Y. Mandelbaum. Adaptive parsing of router

configuration languages. In Proceedings of Internet Network Manage-

ment (INM) Workshop, 2008.
[5] X. Chen, Y. Mao, Z. M. Mao, and J. Van der Merwe. Decor: Declaritive

network management and operation. In ACM PRESOT Workshop, 2009.
[6] J. Clark. XSL transformations (XSLT). W3C Recommendation, 1999.

http://www.w3.org/TR/xslt/.
[7] J. Clark and S. DeRose. XML path language (XPath). W3C Recom-

mendation, 1999. http://www.w3.org/TR/xpath/.
[8] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in XML

documents. In Proceedings of IEEE International Conference on Data

Engineering (ICDE), 2002.
[9] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Greenberg,

S. Rao, and W. Aiello. Configuration Management at Massive Scale:
System Design and Experience. In USENIX Annual Technical Confer-

ence, Santa Clara, CA, June 2007.
[10] T. Lindholm, J. Kangasharju, and S. Tarkoma. Fast and simple XML tree

differencing by sequence alignment. In Proceedings of ACM Symposium

on Document Engineering. ACM, 2006.
[11] D. A. Maltz, J. Zhan, G. Xie, H. Zhang, G. Hjálmtýsson, A. Greenberg,

and J. Rexford. Structure preserving anonymization of router configu-
ration data. In Proceedings of IMC. ACM, 2004.

[12] L. Vanbever, G. Pardoen, and O. Bonaventure. Towards validated
network configurations with NCGuard. In Proc. of INM Workshop, 2008.

[13] Y. Wang, D. DeWitt, and J.-Y. Cai. X-diff: An effective change detection
algorithm for XML documents. In Proceedings of IEEE ICDE, 2003.

