
Cloud is not a silver bullet: A Case Study of Cloud-based
Mobile Browsing

Ashiwan Sivakumar†, Vijay Gopalakrishnan‡, Seungjoon Lee ‡, Sanjay Rao†,

Subhabrata Sen‡ and Oliver Spatscheck‡

† Purdue University ‡ AT&T Labs - Research

ABSTRACT

In recent years, there has been growing interest in both in-
dustry and academia in augmenting mobile web browsing
with support from the cloud [4, 1, 3, 16, 18]). These ef-
forts are motivated by the goals of lowering costs of data
transfer, and reducing web latencies and device energy con-
sumption. While these efforts have adopted different ap-
proaches to cloud-based browsing, there isn’t a systematic
understanding of the rich design space due to the proprietary
nature of many of the solutions. In this paper, we take a
step towards obtaining a better understanding by evaluat-
ing an extreme point in the design space that involves cloud
support for most browsing functionality including execution
of JavaScript (JS), and for compaction of data (e.g., image
transcoding and compression). Our study is conducted in
the context of Cloud Browser (CB), a popular commercially
available browser that embodies this design point. Our re-
sults indicate that CB does not provide clear benefits over
Direct (a device-based browser) either in energy or down-
load time. For e.g. while CB decreases the download time
compared to Direct for 38.87% of pages, it increases it by
as much as 29.8s for other pages. Similarly while CB de-
creases the total energy by up to 20.77J compared to Direct
for 52.7% of the pages, it increases it by up to 21.31J for
other pages. Interestingly, even though CB does JS execu-
tion in the cloud, it increases the CPU and network energy
for close to 50% of the pages. Overall our study indicates
that cloud-based browsing is not always a win, and there are
important trade-offs that must be carefully considered when
moving functionality to the cloud.

1 Introduction

Mobile internet users are growing rapidly given the spread
of higher speed cellular technologies like 3G and LTE. By
2014, it is predicted that mobile internet usage will surpass
desktop internet usage [2]. There has been much interest
in using cellular-connected devices such as smart-phones to
perform network-related tasks and the market has responded

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM HotMobile’14, February 26–27, 2014, Santa Barbara, CA, USA.
Copyright 2014 ACM 978-1-4503-2742-8 ...$15.00.

with a wide variety of applications that serve this growing
need.

In recent years, there has been much interest in both
academia (e.g., [16], [18], [12]) and industry (e.g., [4], [1],
[3], [5]) in using the cloud to augment mobile web browsing,
in order to overcome the processing and energy limitations
of mobile devices. These efforts are related to but distinct
from efforts like [15, 8, 10, 7, 11, 14] which develop frame-
works for offloading code of applications (e.g., face recogni-
tion) that primarily run on the mobile device to the cloud.
In contrast, in mobile web browsing, data naturally flows
into mobile devices from remote servers, and cloud servers
could potentially be on the data path from the server to
the device. The potential benefits with cloud-based mobile
browsing include improving data download time, reducing
device energy consumption, and reducing data usage and
costs. The technology has sufficiently matured that there
are a number of cloud-based mobile web browsers that are
available in the market – popular ones include Opera Mini
[4], Amazon Silk [1], Sky Fire [5] and Chrome beta [3].

The existing approaches to cloud-based web browsing rep-
resent a range of points in a rich design space. At one end of
the design spectrum we have the traditional mobile browser
that performs all browsing functionality in the client. At the
other end of the spectrum, there are many cloud browsers
that take a ‘cloud-heavy thin-client‘ approach (e.g., [18, 4,
5]) relying on cloud support for most functionality including
parsing and rendering web pages, JavaScript (JS) execution,
and compaction of data (e.g., data compression, transcoding
images). Other approaches move a subset of browser func-
tionality to the cloud – e.g., [3] executes JS at the client but
uses the cloud to fetch individual objects and perform data
compaction, while [16] has argued for offloading parts of the
page load process, though a specific design is not provided.
Overall there is limited understanding in the community to-
day of the trade-offs between these different design points.

In this paper we take a first step towards understanding
the performance implications of mobile cloud browsing solu-
tions by comparing the two extreme points – one that does
not use the cloud at all, and another that primarily relies on
the cloud. Our evaluation is conducted in the context of a
popular commercially available cloud-based mobile browser
(as per recent reports it has about 300 million unique users),
that uses the cloud for performing JS execution and data
compaction. To keep the focus on the scientific aspects
of our study, we anonymize the browser and call it Cloud
Browser (CB). We compare CB with a traditional browser
that runs locally in the device (which we refer to as Direct).

Direct Browser
O

bj
ec

t I
D

1

O
bj

ec
t I

D

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Connect Time
Wait Time
Download Time

 0 1 2 3 4 5 6
Time (sec)

Cloud Browser

Time (sec)

Figure 1: Waterfall diagrams showing the network ac-
tivity for a page download with Direct and CB.

Our evaluation focuses on two metrics: (i) page download
time, and (ii) device energy consumption. While the former
directly impacts user experience, the latter captures the en-
ergy consumed by both the CPU and the network (the power
consumed by the radio interface is known to contribute a
considerable fraction of the total device power [9]). We
consider this metric to be relevant for the foreseeable future
since even though processing capabilities of mobile devices
have dramatically improved in recent years, battery capacity
remains a major resource limitation.

Our evaluations indicate that neither Direct nor CB is
better under all scenarios. For e.g. while CB decreases the
download time compared to Direct for 38.87% of pages, it in-
creases it by as much as 29.8s for other pages. Similarly CB
increases energy usage by up to 21.31J compared to Direct
for some pages. While CB saves CPU energy by offloading
JS to the cloud and network energy by not sending the JS
to the client, interestingly it does worse for many pages that
are heavy on JS processing. Further, the benefits of running
JS in the cloud are less clear over user sessions that involve
extensive client interactivity.

We also isolate the impact of data compaction through
experiments with pages without JS content. We find that
for such pages, CB does better than Direct in total energy
only for 17% and increases the network energy usage for 75%
of the pages. Data compaction does not always lead to net-
work energy savings due to the time involved in performing
these sophisticated data compaction tasks, and the complex
network radio state transitions.

Our contributions in this paper are (i) we conduct one of
the first studies of operational cloud-based mobile browsers -
such a study is useful in its own right given the limited tech-
nical information available on many existing solutions today;
and (ii) we take a first step towards understanding the trade-
offs involved in moving browser functionality, specifically JS
execution, and data compaction, to the cloud. While our
evaluations are conducted with CB, we believe the results ex-
pose important and more broadly applicable trade-offs that
must be considered when using the cloud to support these
functionalities.

2 Background

In this section we give an overview of the working of CB
based on a combination of publicly available information
and carefully constructed experiments.

Figure 1 shows the waterfall diagram for network activ-
ity when downloading a page using Direct and CB. Each
bar corresponds to a HTTP object request-response pair.

We break the total time for each bar into three parts - 1.
Setup time, 2. Wait time, 3. Download Time. The
Setup time includes the times for DNS resolution, initial
connection establishment and the actual URL request; The
Wait Time is the time before the client starts receiving the
data; The Download time is the time taken to transfer the
data from the server to the client. The Wait Time in CB
consists of (i) processing time at the cloud proxy like pars-
ing, processing JS etc. and (ii) time taken by the proxy to
fetch all the objects from the server.

As shown in the figure, Direct first fetches the main HTML
page directly from the web server, parses it and loads the
other objects required to render the page using multiple
(parallel) HTTP connections. The page is then rendered
locally on the device. On the other hand, CB connects to
the cloud proxy and after a Wait Time receives a compact
version of the page from the proxy in a proprietary format
(which we call Cloud Browser Markup Language (CBML)).
During the Wait Time, the cloud proxy employs data com-
paction techniques on the page like reformatting, re-sizing
images, compression for small-screen rendering. The client
extracts the CBML and renders the page.

CB offloads JS processing to the cloud proxy. It sup-
ports two modes of operation for pages with JS. In older
versions CB supports a mode where all JS in a page are
run for a timeout of 5s, after which they are stopped and a
CBML is sent to the client. There are many web pages that
change their content either automatically (e.g., timer-based)
or through user-interaction (e.g., user-clicks) using JS. The
older version could not accurately render many pages that
change content through long-running JS (> 5s) and does not
support rich interactivity. In newer versions CB supports
a second mode where the client opens a secure, persistent
connection with the cloud proxy and the proxy continuously
runs the JS, pushes different bursts of objects at different
times whenever the page changes. This approach helps CB
accurately render most pages. Even with the second ap-
proach, in our experiments we have seen CB failing to ren-
der some pages that continuously download objects through
JS that run forever. We use the second mode of CB in our
experiments since it renders most pages accurately.

3 Evaluating Cloud Browser Design

We evaluate key design decisions taken by existing mobile
cloud browsers in the context of CB. In this section we de-
scribe the evaluation goals and methodology.

Evaluation goals: In evaluating CB, our primary goals
are (i) to understand and quantify the impact of offloading
JS execution to the cloud under various scenarios and (ii)
to understand the benefits of performing data compaction
of pages in the cloud.

Setup and Methodology: We ran experiments using
CB and Direct on a Samsung galaxy S3 phone using an LTE
network in West Lafayette. We choose 40 of the top US
pages in Alexa [6]. The pages cover a wide range of cate-
gories like news, sports, photo streaming, business and sci-
ence. We conduct experiments in the wild by downloading
these pages using Direct and CB. We conduct 20 experiment
runs with each page. To subject the two schemes to similar
signal strength conditions, in each run we first download a
page using Direct and then using CB back-to-back. More-
over, we request the URLs with 60 secs time interval be-
tween each request when using both Direct and CB. We run

 0

 0.2

 0.4

 0.6

 0.8

 1

-30 -20 -10 0 10 20 30

C
D

F

Download Time Increase(seconds)

CB better

Figure 2: CDF of the median
Download time increase (Time CB -
Time Dir) for each page with CB.

 0

 0.2

 0.4

 0.6

 0.8

 1

-25 -20 -15 -10 -5 0 5 10 15 20 25

C
D

F

Energy Increase(Joules)

CB better

CPU
Network

Total

Figure 3: CDF of the median En-
ergy increase (Energy CB - Energy
Dir) for each page with CB.

 0

 0.5

 1

 1.5

 2

 2.5

-15 -10 -5 0 5 10

D
at

a
co

m
pa

ct
io

n
ra

tio

Network Energy Increase (J)
Figure 4: Scatter plot compar-
ing the data compaction ratio and
the median increase in energy (net-
work) for each page with CB.

a majority of our experiments during the night time when
the load in the cell tower is low. Since we observe intermit-
tent cellular technology hand-off (LTE to 3G), we log the
network type throughout the experiment in a background
process and filter out runs that do not use LTE completely
for all schemes. We have at least 15 runs per page after this
filtering step. Further we collect packet traces on the device
to analyze request-response timings, object sizes, and other
TCP flow-level information for each page download.

Most of our experiments focus on the first-time download
of a web page, and hence we disable local device caching for
both CB and Direct unless otherwise mentioned. In practice,
we believe enabling local caching on the device will benefit
Direct more since (i) caching of JS and CSS files helps Di-
rect but not CB, since the latter processes these files in the
proxy and does not send them to the client; and (ii) CB
does not use a persistent cache – consequently, cached ob-
jects disappear between invocations of the application. Fi-
nally, disabling caching ensures that our comparison results
are not impacted by proprietary implementation artifacts
of CB (e.g., how effectively the proxy learns the content of
the client cache). Our experiments in Section 4.2 do how-
ever consider local caching for both schemes since the focus
of these experiments is on performance over an entire user
session, and not first-time page downloads alone.

Metrics Used: We consider two important metrics:
• Page download time: We define page download time as the
time between the first SYN and the last ACK for all objects
in a page, as observed in the packet traces collected on the
device. We measured (i) the onload time, i.e., the time until
an onload event occurs at the browser. An onload event
denotes the browser has finished loading the web-page and
this includes time to run a subset of JS (e.g., synchronous
JS); and (ii) the page download time, as described above.
For all the pages we considered, the browser onload event
was found to be smaller than the page download time. Thus,
with Direct, the page download time metric includes all JS
execution until the onload event, as well as JS execution time
after the onload until the last object downloaded. While the
metric does not include the JS execution time beyond the
last object downloaded, this time is observed to be relatively
small for the pages we considered.
• Total energy: This is the aggregate device energy con-
sumption and consists of two components: (i) CPU energy
consumed by a browser process to download a web page and
render it on the device. We collected the CPU utilization of
the Direct and CB processes (every 100 ms) for the full 60

sec period from when the download was initiated. We found
this to be a sufficiently long duration for all JS to complete
execution for the pages we considered. We then calculate the
CPU energy by using the PowerTutor model [17] whose in-
put is the CPU utilization collected as described above. (ii)
Network energy (communication) consumed by the radio in-
terface for a web page download. We calculate the network
energy value using the open source ARO tool [13], which
captures the Radio Resource Control (RRC) state transi-
tions 1and the corresponding energy consumption levels by
performing fine-grained simulation on the packet traces col-
lected from the client device (UE) We focus on CPU and
network energy since they account for the bulk of the differ-
ence in device energy consumption between CB and Direct.
While we do not consider screen energy in this work, we
believe our download time metric should correlate to the
duration for which the screen is on. However, incorporating
screen energy is a direction of future work.

We preferred using energy models to measure the CPU
and network energy consumption, than a direct power mon-
itor hardware because running experiments using a power
monitor requires fair bit of manual intervention to accurately
collect the traces discarding noisy components. Since we
were running a large number of experiments (several pages,
with at least 20 runs for each scheme and each page), we
wanted to make it fully automated for better scalability of
experiment runs. However, we have validated our models
with measurements using power monitor hardware.

4 Results

4.1 Impact of offloading JavaScript execution

In this section we present results from experiments in the
wild using the setup described in section 3. Since many

1In 3G/LTE networks, a key factor affecting the network
energy efficiency is the Radio Resource Control (RRC) state
machine which is designed to efficiently utilize limited radio
resources and to improve the device battery life time. The
LTE spec defines two states - RRC CONNECTED (the ra-
dio is active and consumes data) and RRC IDLE (the radio
is idle and promotes to RRC CONNECTED before consum-
ing data) [9]. Further, each of these states implements a
mechanism to save power without impacting latency called
Discontinuous Reception (DRX), with available/unavailable
RX cycles/periods. In RRC CONNECTED state, the de-
vice will be in a higher power Continuous Reception (CR)
mode when actually consuming data and in a lower power
LONG DRX mode otherwise. The power consumed in
LONG DRX is higher than that in the RRC IDLE state.

modern web pages have dynamic content generated by JS,
we choose 40 pages from the top 100 Alexa pages, all contain-
ing JS for the experiments. In order to reduce the impact of
signal strength variability on the experiment results, we per-
form multiple runs for each of the pages back-to-back, first
using Direct and then using CB (as described in section 3).
We then compute the Energy increase (Energy CB - Energy
Dir) and Download time increase (Time CB - Time Dir) for
each of the back-to-back runs. In figure 2 we present the
median of the increase in download time and in Figure 3
the median of the increase in energy for each page including
CPU, communication (network) and total.

We observe from figures 2 and 3 that CB does not pro-
vide clear benefits over Direct either in energy or download
time. e.g., while CB decreases the download time compared
to Direct for 38.87% of pages, it increases the download time
by as much as 29.8s for other pages. Similarly while CB de-
creases the total energy by up to 20.77J compared to Direct
for 52.7% of the pages, it increases the total energy by up to
21.31J for other pages. Interestingly, even though CB does
JS execution in the cloud, it increases the CPU and network
energy for close to 50% of the pages.

On further analysis, we found a few key factors that de-
termine when CB is beneficial:

Extent of JS in the page: In general, for pages that are
heavy on JS processing (CPU intensive), CB saves on CPU
energy as the JS is processed in the cloud while Direct pro-
cesses JS locally on the device. Further, CB saves on net-
work energy by not shipping the JS code down to the client,
thereby achieving significant data compaction (atleast 61%)
on such pages. For pages that are light on JS processing,
generally CB does not save on CPU energy because the over-
head involved in decompressing the CBML (the proprietary
format of the page sent by the CB proxy) outweighs the
savings obtained by not processing the JS locally, and the
savings in network energy may be small because CB does
not decrease the bytes transferred considerably.

Long Vs. short running JS: While the previous observa-
tion may be expected, interestingly we find many pages that
are heavy on JS, but using Direct is better than CB. To aid
our understanding on why Direct does better for such pages,
we choose two pages, one where CB does better than Direct
and other where CB does worse and look at the RRC state
transitions for one download for both the pages in figure 5.

As seen from figure 5(a) for ‘page A‘, CB transmits all the
data in one burst. Further, we found that CB transmits a
single burst of data for pages that complete all JS execution
in a short time (< 5s). For ‘page B‘, as shown in figure 5(b)
CB sends multiple bursts of data at different times. This
page has a long-running JS (> 10s) that runs towards the
end of the page load and downloads 5 different images one
after another with a fixed timeout, then shows each image
in the form of a slide show. In newer versions CB supports
long-running JS by streaming different bursts of data to the
client (Section 2) and hence we see multiple bursts of data
for this page.

To further understand why streaming multiple bursts from
the cloud can potentially hurt network energy, we show a
scatter plot comparing the data compaction ratio for each
page with the corresponding median increase in energy (net-
work) in figure 4. It can be observed from the figure that in
all pages where CB does better than Direct, it achieves sig-
nificant data compaction whereas for many pages where CB

(a) CB Download – page A

(b) CB Download – page B

Figure 5: LTE RRC state transition diagram for two
page downloads with CB. CB does better in ‘page A‘ and
Direct does better in ‘page B‘. The periods with active
data transfer are shown as darker regions (dark yellow)
and the inactive periods are shown with lighter regions
(light yellow). Note that the radio is still on during the
inactive periods too [9].

Figure 6: Running JS in the cloud impacts network
energy with user interactivity in a session

does worse, it obtains lesser compaction. In fact for some
pages where CB does worse, the compaction ratio is >1.
Further we found that for pages where CB streams multi-
ple bursts of data it is not able to achieve better compaction
when compared to pages where it compresses the whole page
and sends in one burst. A possible reason is each of the
bursts might have redundant data since CB streams multi-
ple CBML for the page. We hypothesize, sending deltas in
each burst could potentially help achieve better data com-
paction. Using multiple bursts may diminish network energy
savings (since the radio may need to be in the connected
state throughout).

Overall these results indicate that even though offloading
JS to the cloud could potentially reduce CPU energy, the
benefits have to be carefully weighed against the different
trade-offs based on the page and the network characteristics.

4.2 Comparing energy usage over a user session

In the previous section, we focused on one-time download
of a web page, whereas in practice, users may interact with
pages a lot. e.g., users may submit forms, click on images
or hyperlinks etc. If JS processing is completely offloaded
to the cloud, any interactivity may involve communicating
with the cloud proxy throughout the session. So in this
section we compare the cumulative energy usage with CB
and Direct over an entire user session to study the impact
of user interactivity.

Here we choose ‘page B‘ from the figure 5. As described
earlier, page B shows a slide show of 5 images and contains
buttons for the user to view each images separately. We con-

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5 0 5 10

C
D

F

Energy Increase (Joules)

CB better

JS Network
No JS Network

JS Total
No JS Total

Figure 7: CDF of the median in-
crease in energy (network, total)
for pages with and without JS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

C
D

F

Data compaction ratio (CBSize/DirSize)

With JS
Without JS

Figure 8: CDF of data com-
paction ratios - ratio of CB size
and Direct size for all pages with
and without JS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

C
D

F

Page Download Time(s)

Direct
CB

Figure 9: CDF of page download
times using CB and Direct using a
3G network in NJ

duct an experiment, where we emulate an interactive session
by generating user clicks on the buttons once every minute
to view a particular image. Since the focus of this experi-
ment is on a single user session, we enable caching on the
device for both Direct and CB. Each impulse in figure 6
from minutes 2 to 6 represents a user click.

Figure 6 shows the cumulative energy usage (total and
network) every minute for the whole session. When the user
clicks on the button, Direct runs the JS locally in the client
and displays the particular image that is already cached dur-
ing the first download of the page. Since all 5 images are
available in the local cache, Direct needs no further data
transfer and does not consume any network energy. This is
easily seen from figure 6 as the network energy with Direct
remains unchanged for the whole session, while the total en-
ergy increases by as much as 9.2J over the whole session,
attributed to the CPU energy consumed by running the JS
locally.

In contrast, since CB does not send the JS to the client
and processes it in the cloud, every user click results in the
client communicating with the cloud proxy to run the JS and
send a new CBML of the page to the client. Despite per-
forming data compaction on each of these different CBML,
CB increases both the cumulative network and total energy
over the session. e.g., while the cumulative CPU energy con-
sumed by CB is almost the same as Direct at the end of the
session, it consumes about 60.9J more network energy than
Direct for the whole session, thus consuming considerably
more total energy overall. We conclude that the benefits
with CB are not clear if there is lot of user interactivity be-
cause offloading JS to the cloud increases the communication
cost significantly over a user session.

4.3 Impact of data compaction

There are two key design elements that could impact energy
savings with CB: (i) offloading JS execution; and (ii) data
compaction. In this section we separate these two factors
and study the impact of data compaction in greater detail.
Data compaction here refers to techniques that reduce data
usage by transforming the web page (e.g., reformatting, re-
sizing images for small form factor etc.) and excludes the re-
duction obtained by not shipping the JS down to the client.
We note that the data compaction libraries used by CB are
well-known and many mobile browsers adopt these libraries.

For this study, we prepare and host snapshots of the 40
pages on our local server in Purdue to understand the im-
pact of data compaction in a more controlled setting. We

then remove all JS code from these pages thus preparing
two versions of each page - one with JS and other with-
out. We conduct an experiment in which we first download
the JS version of a page using both CB and Direct back-to-
back, then download the version without JS using both CB
and Direct. Similar to the experiments in section 4.1, we
perform 20 runs for each version of the page and compute
the Energy increase (Energy CB - Energy Dir) for both the
versions of the pages.

In figure 7 we present the median increase in energy (both
network and total) with CB compared to Direct for both
versions - one with JS and another without JS. The figure
shows that CB does not always perform better than Di-
rect for both versions of the pages (with and without JS).
Moreover, the benefits with CB are more limited for pages
without JS. than pages with JS. For instance, CB increases
the total energy for 83% of pages without JS as compared
to only 47.3% for the JS version of the same pages. To fur-
ther aid our analysis, we plot the data compaction ratio for
the pages with and without JS in figure 8. We see that the
data compaction ratios are smaller when JS is excluded from
the pages, explaining the higher increase in energy with CB
when compared to the version with JS. As a side point, it
is interesting to note that there are some pages for which
the data compaction ratio is > 1, even when CB downloads
these pages in a single burst. We hypothesize that CB might
send page layout information in the CBML to aid the page
rendering in the client and this might be an additional over-
head for small pages.

To understand the correlation between the data compaction
ratio and the energy savings with CB, we analyzed the data
further and found a few factors that determine when data
compaction is beneficial. In general as expected, while the
energy savings with CB does show some correlation with the
compaction ratio, we also find the Wait Time at the proxy
(Section 2) to be a key reason for the additional energy
expended by CB. When the Wait Time is large, the total
download time increases. For the pages without JS, CB in-
curs higher download time for 60% of pages. e.g., we find
a page for which CB consumes more network energy than
Direct, even though the data compaction ratio achieved by
CB is 0.09. This is because, the CB proxy takes a long Wait
Time (6.8s) to download the page from the server and per-
form data compaction, thereby increasing the total down-
load time compared to Direct.

A higher download time leads to increase in network en-
ergy since the client radio stays in the RRC CONNECTED
state [9] throughout the download. In this state, the client
will be in LONG DRX mode periodically, consuming rel-
atively lower power than the CR state (refer footnote 1).
However spending a longer time in LONG DRX through
higher Wait Time, can outweigh the energy savings obtained
by reducing the time spent in the CR state by compression.
Thus our results suggest that the decision to perform data
compaction, should takeWait Time and the LTE radio state
transitions into account.

4.4 Sensitivity study

In this section we perform a sensitivity study using a 3G
network in NJ and a tablet device (Samsung galaxy tab 8.9).
We download the non-JS version of the pages that are hosted
from our server in Purdue locally. Again we find CB does
not provide clear benefits over Direct. e.g., Figure 9 shows
CB increases the page download time compared to Direct
for 70% of pages. We also observed that CB increases the
total energy compared to Direct for about 60% of the pages.
Specifically, CB increases the network energy by up to 6J
for 40% of the pages and increases the CPU energy for all
the pages compared to Direct. Since these pages do not
have JS, it may be that CB consumes more CPU cycles to
decompress the CBML thereby consuming more CPU energy
than Direct. We omit the energy results due to lack of space.

5 Conclusions

In this paper, we argue that there is need to revisit trade-
offs in the design of cloud-assisted mobile browsing given
the dramatic improvements in the processing capabilities of
mobile devices, and given that the cellular radio interface
constitutes a growing component of the total device power.
We substantiate these arguments through one of the first
studies of an operational and widely used cloud-based mobile
browsing solution.

In particular, our observations are:

•Offloading JS to the cloud is not necessarily beneficial: While
the conventional wisdom is that offloading JS to the cloud
could lead to much benefits, our evaluations indicate the
benefits are dependent on the the characteristics of pages
– e.g., by offloading JS to the cloud, CB decreased the to-
tal energy for 52.7% of the pages while increasing the total
energy by up to 21.31J for remaining pages. While pages
heavy on JS processing do better with cloud-based solutions,
pages with long-running JS involving periodic data down-
loads from servers (e.g., to support rolling advertisements)
are harder to support in an energy efficient manner for cloud-
based solutions. For such pages, transmitting all data in a
single burst may reduce response times for the client – use of
multiple bursts may diminish network energy savings (since
the radio may need to be in the connected state through-
out), and lead to less effective data compaction. Performing
page characteristic analysis to determine the best design for
a given page is an important direction for future research.

•Considering user interactivity when offloading JS is im-
portant: Supporting interactive sessions in a energy-efficient
manner is challenging when offloading JS to the cloud. The
network energy consumed owing to communication with the
cloud server for each client interaction may outweigh the
CPU energy saved by processing JS in the cloud – e.g., in

an interactive session experiment, CB increased the overall
network energy by as much as 60.9J compared to Direct.
•Data compaction is not always beneficial: Performing data
compaction in the cloud is not always beneficial and the ben-
efits in energy savings have to be weighed against the time
taken to perform data compaction, in order to not increase
the network energy – e.g., in our experiments with pages
without JS content, CB performed better than Direct only
for 25% of the pages in network energy and 17% in total
energy. Even though CB achieved 90% compaction of data
on some pages, it increased the energy usage by as much as
9.8J because of the time to perform the compaction.

Overall, our study points to the need to carefully con-
sider these new trade-offs while designing cloud-based mo-
bile browsing solutions. As part of our ongoing work, we are
investigating other design points that have been taken by
existing cloud-based mobile browsers, as well as designing
new solutions driven by our insights.

6 Acknowledgments

We thank our shepherd Michael Piatek and the anonymous
reviewers for their constructive feedback and comments. This
work was supported in part by National Science Foundation
(NSF) Career Award No. 0953622. Any opinions, findings
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of NSF.

7 References

[1] Amazon silk split browser architecture. https:
//s3.amazonaws.com/awsdocs/AmazonSilk/latest/silk-dg.pdf.

[2] By 2014, mobile internet usage will take over desktop internet
usage. http://www.digitalbuzzblog.com/
2011-mobile-statistics-stats-facts-marketing-infographic/.

[3] Data compression proxy in android chrome beta. https:
//developers.google.com/chrome/mobile/docs/data-compression.

[4] Opera mini architecture and javascript. http:
//dev.opera.com/articles/view/opera-mini-and-javascript/.

[5] Skyfire - cloud based mobile optimization browser.
http://www.skyfire.com/operator-solutions/whitepapers.

[6] Alexa. Available at http://www.alexa.com/topsites.
[7] B.-G. Chun et al. Clonecloud: Elastic execution between mobile

device and cloud. In Proc. ACM Eurosys, 2011.
[8] E. Cuervo et al. Maui:making smartphones last longer with

code offload. In Proc. ACM MobiSys, 2010.
[9] J. Huang et al. A close examination of performance and power

characteristics of 4g lte networks. In Proc. ACM Mobisys, 2012.
[10] R. Kemp et al. Cuckoo: a computation offloading framework

for smartphones. In Proc. MobiCASE, 2010.
[11] S. Kosta et al. Thinkair: Dynamic resource allocation and

parallel execution in cloud for mobile code offloading. In Proc.
IEEE INFOCOM, 2012.

[12] K. Matsudaira. Making the mobile web faster.
Communications of the ACM, Vol 56. No 3., 2013.

[13] F. Qian et al. Profiling resource usage for mobile applications:
A cross-layer approach. In Proc. ACM Mobisys, 2011.

[14] A. Saarinen et al. Can offloading save energy for popular apps.
In Proc. ACM MobiArch, 2012.

[15] M. Satyanarayanan et al. The case for vm-based cloudlets in
mobile computing. IEEE/Trans. Pervasive Computing, 2009.

[16] X. S. Wang et al. Accelerating the mobile web with selective
offloading. In Proc. ACM MCC, 2013.

[17] L. Zhang et al. Accurate online power estimation and
automatic battery behavior based power model generation for
smartphones. In Proc. ACM CODES+ ISSS, 2010.

[18] B. Zhao et al. Reducing the delay and power consumption of
web browsing on smartphones in 3g networks. In Proc. ICDCS,
2011.

