
Joint-Family: Enabling Adaptive Bitrate Streaming in

Peer-to-Peer Video-on-Demand
Kyung-Wook Hwang∗, Vijay Gopalakrishnan†, Rittwik Jana†,

Seungjoon Lee†, Vishal Misra∗, K.K. Ramakrishnan†, Dan Rubenstein∗
∗Columbia University, kwhwang@ee.columbia.edu, {misra, danr}@cs.columbia.edu

†AT&T Labs – Research, {gvijay, rjana, slee, kkrama}@research.att.com

Abstract—We propose Joint-Family, a protocol that combines
peer-to-peer (P2P) and adaptive bitrate (ABR) streaming for
video-on-demand (VoD). While P2P for VoD and ABR have been
proposed previously, they have not been studied together because
they attempt to tackle problems with seemingly orthogonal goals.
We motivate our approach through analysis that overcomes a
misconception resulting from prior analytical work, and show
that the popularity of a P2P swarm and seed staying time has a
significant bearing on the achievable per-receiver download rate.
Specifically, our analysis shows that popularity affects swarm
efficiency when seeds stay “long enough”. We also show that
ABR in a P2P setting helps viewers achieve higher playback rates
and/or fewer interruptions. We develop the Joint-Family protocol
based on the observations from our analysis. Peers in Joint-
Family simultaneously participate in multiple swarms to exchange
chunks of different bitrates. We adopt chunk, bitrate, and peer
selection policies that minimize occurrence of interruptions while
delivering high quality video and improving the efficiency of the
system. Using traces from a large-scale commercial VoD service,
we compare Joint-Family with existing approaches for P2P VoD
and show that viewers in Joint-Family enjoy higher playback
rates with minimal interruption, irrespective of video popularity.

I. INTRODUCTION

The ever-increasing demand placed by streamed video traf-
fic across both wired and wireless networks has been managed
by two seemingly complementary approaches: adaptive bitrate
(ABR) [1, 2], and peer-to-peer (P2P) delivery [3, 4]. ABR
encodes a video at multiple bitrates, and maximizes the video
bitrate within the available bandwidth, giving a higher fidelity
video when possible, and dropping to lower quality rather than
forcing an interruption of playback. P2P-based systems are
a popular alternative to deliver on-demand video, improving
the viewing experience by utilizing the upload capacity of
the downloading nodes, thereby increasing overall upload
capacity. Even traditional Content Distribution Network (CDN)
providers such as Akamai [5] are choosing to experiment with
and deploy P2P-based delivery of video content.

Intuitively, P2P and ABR do not seem well-suited to work
together, because viewers watching the video at differing rates
are presumably unable to exchange video parts with one
another. Hence it appears that enabling ABR interferes with
the ability for peers to share video parts with one another.
We show in this paper that, contrary to current intuition, ABR
and P2P can be effectively combined in a way that leverages
their strengths: P2P techniques improve upload capacity, and
ABR enables the highest quality viewing at that capacity while
minimizing interruptions.

In this paper, we present a novel system called Joint-
Family that combines P2P and ABR to provide high-quality
streaming1 Video-on-Demand (VoD). The basis for Joint-
Family comes from our analysis based on a Markov model,

1As opposed to download-and-play

where we identify the relationship between video popularity,
seed staying time and downloading rate. We show that when
seeds stay “sufficiently long”, content popularity affects swarm
efficiency (Section II-B). This implies that swarms of popular
videos can have higher download rates than less popular ones
if seeds stay long enough. This is in contrast to existing
fluid modeling results [6] which claim independence between
popularity and download capacity. Hence, we identify the
conditions under which existing results are contradicted. We
then analyze the effectiveness of caching previously watched
videos and sharing them as a mechanism to extend seed
staying time (Section II-C). With caching we can also transfer
underutilized capacity from one swarm to another and thereby
improve global performance. Finally we show how ABR,
when combined with P2P, enables a swarm to efficiently
adapt to the best video rate without a priori knowledge of
the video’s popularity (Section II-D). We use our Markov
model to show that ABR allows P2P swarms to migrate to
the highest sustainable rate for that swarm: highly popular
content will induce large swarms and have a high sustainable
download capacity, whereas less popular content will have
smaller swarms and a lower sustainable download capacity.

Based on our analytical observations, we design a novel
protocol called Joint-Family to deliver high-quality videos
with minimal playback interruptions in a P2P system, using
multi-swarm participation and ABR (in Section III). A peer in
Joint-Family caches and shares multiple ABR videos using
storage space at the end system, and increases capacity of
swarms (especially for unpopular videos) by supplementing
it with (unused) peer capacity. Hence, the peer participates in
multiple swarms concurrently, and shares different parts of the
ABR video at multiple bitrates. To support this, we identify
the right combination of chunk selection, peer selection, and
bitrate adaptation policies that minimize interruptions. Our
design makes Joint-Family immediately suitable for existing
VoD infrastructures in which the provider owns the distribution
infrastructure (e.g., CDNs [5], IPTV [7]). We also describe
how the protocol can be applied in a decentralized setting by
utilizing mechanisms that encourage sharing of content [8].
We conduct extensive performance evaluations of Joint-Family
using traces from a nationally deployed VoD service (in
Section IV), and show that ABR with P2P is indeed feasible.
Compared to a generalized implementation of the state-of-
the-art in P2P VoD, our instantiation of Joint-Family delivers
high quality VoD streaming, even for unpopular videos, with
minimal interruptions.

II. ANALYSIS OF P2P SYSTEMS FOR VOD

We analytically show how video popularity, the staying
time of a peer in a swarm, and caching help increase system
capacity. Further, we show how ABR can significantly improve
the playback experience even for unpopular content.

978-1-4799-1270-4/13/$31.00 c©2013 IEEE

Parameter Definition
B Bit size of streaming video
u Upload capacity of each peer (leecher or seed)
λ Leecher arrival rate (Poisson arrival)

1/γ Average seed staying time of exponential distribution
x Number of leechers
y Number of seeds
r Playback rate of video
c Number of videos each peer can locally cache

TABLE I. PARAMETERS AND DEFINITION

A. Assumptions

The notations used in our model are summarized in Table I.
We use the leecher arrival rate λ for a video as its popularity
(i.e., if arrival rate of video i is larger than that of video j, then
i is more popular than j). A leecher’s download (streaming)
rate can be faster than the video playback rate for potentially
fewer playback interruptions. We assume that each leecher
watches a video till the end, and thus seeds have the entire
video. However, all our experiments in Section IV also account
for viewers’ premature abandonment based on real traces.
Similar to other P2P studies [9, 10] and based on the wireline
subscriber statistics [11], we assume that upload capacity u is
the limiting factor (the download capacity per peer is much
larger). u is identical for every peer. We investigate the impact
of heterogeneous peers in Section IV-G.

B. Popularity, Download Rate, and Seed Staying Time

The fluid model based analysis by Qui and Srikant [6]
suggests that the download performance of files is relatively
independent of their popularity. They explain that the supply
and the demand placed by leechers are always offset regardless
of video popularity. There has been subsequent work [9, 12]
based on their model to explain performance on live or on-
demand streaming. In contrast to these models, we first show
that more popular a video, the higher the download rate as
long as the following conditions hold:

• request arrivals are stochastic, and
• after completing the download, each peer stays on to

serve the video (as a seed) sufficiently long compared
to the average download time.

Fluid models assume deterministic arrivals of requests,
which likely holds when a video is highly popular (i.e., the
request arrival rate going to infinity). However, when the re-
quest arrivals are stochastic — as seen in practice — a version
of Feller’s paradox takes place, and Palm calculus [13] can
explain what the fluid model misses. Intuitively, if we plot the
intervals between request arrivals and observe the download
rate at any random instant, our observation is likely to fall
into a “larger” interval. In these large intervals, the download
rates of leechers monotonically increases, since we assume the
seeds stay for a sufficiently long time and many active leechers
transition to being seeds. This simultaneously increases the
supply as well as reduces the demand for download capacity.
Feller’s paradox explains why these longer intervals have a
greater effect on the time averaged download times, and in
our case the effect is beneficial.

Our analysis uses a continuous time Markov chain, where
we define x, y ≥ 0 to be the respective numbers of leechers
and seeds in a swarm. Our model is motivated by a two-
dimensional (2D) model by Veciana and Yang [14] (which
only presents recursive relationship). In our analysis, we first
fix y and derive a conditional expectation using a variant
of M/M/∞ queue. We then derive simple formulas for the
expected number of leechers and download time. While our

analysis could be equally applicable for file sharing scenarios,
we focus on video streaming only.

Given y seeds, consider a Markov chain, where each state
corresponds to the number of leechers (x). Then, the transition
rate from state i to i+1 is: qi,i+1 = λ for i ≥ 0, where λ is the
request arrival rate. For the transition down from i to i−1, we
assume a “perfect cascade” as used in Fan et al. [10], where
all leechers except the latest arrival can always upload to other
leechers. Then, qi,i−1 = (η(i−1)+y)u/B for i ≥ 1, where η
corresponds to the efficiency parameter for data transfer from
leechers [14]. This parameter is experimentally shown to be
close to 1 for most practical cases [6, 9], and we also use η = 1
in the rest of the paper. Then we obtain the following recursive
equation for the steady-state probability of state i ≥ 1:

πi =
ρi

∏i
k=1 (k + y − 1)

π0 (1)

where ρ = λB/u. From
∑

∞

i=0 πi = 1, we have:

π0 =
1

(y−1)!
ρ(y−1) (eρ −

∑y−2
i=0

ρi

i!)
(2)

Recall that the steady state probability is under the con-
dition for a particular y. Using Equations (1) and (2) we can
obtain the conditional expectation as follows:

E[X|Y = y] =
∞
∑

i=0

iπi = ρ− y+1+
e−ρρ(y−1)

Γ(y − 1)− Γ(y − 1, ρ)

(3)
where Γ(y) is the gamma function (Γ(y) = (y − 1)!) and
Γ(y, ρ) is the upper incomplete gamma function (Γ(y, ρ) =

(y − 1)!e−ρ
∑y−1

i=0
ρi

i!). (The detailed derivation is omitted for
space constraint.)

Now, let us consider the distribution for the number of
seeds (y). A seed arrival is equivalent to a leecher completing
download of the video. As a result, at steady-state, the leecher
arrival rate λ is the same as the seed arrival rate. On the
other hand, a seed leaves the swarm at the rate of γ (i.e.,
determined by the staying time). This forms the standard
M/M/∞ queueing system, where the up-transition rate is λ
and the down-transition rate is γy. Thus, P [Y = y] = e−σ σy

y! ,

where σ = λ/γ. By combining this with (3), we get:

E[X] =
∞
∑

y=0

(

ρ− y + 1 +
e−ρρ(y−1)

Γ(y − 1)− Γ(y − 1, ρ)

)

e−σσy

y!

(4)

From Little’s Law, the average download time is E[T] = E[X]
λ .

Evaluation: We numerically evaluate (4) and demonstrate the
relationship between video popularity and download perfor-
mance. We also validate our model with experiments using
a discrete event-driven P2P VoD simulator (see Section IV-A
for detail). In our experiments, we consider a 1800-second
video of r=625Kbps, resulting in B=1125Mbits. We use
u=312.5Kbps. We also simulate state transitions using the 2D
Markov model [14] for comparing results with our analysis.
Specifically, we start at state (x = 0, y = 0) and simulate
transitions according to the transition rates until we reach a
steady state (where the change on both x and y becomes
very small). After reaching a steady state, we record the time
between arrival and conversion to a seed for each of next 3000
leechers and compute the downloading rate. We use a similar

10
−3

10
−2

10
−1

10
0

0

0.5

1

1.5

2
x 10

4

λ

d
o
w

n
lo

a
d
 r

a
te

 (
K

b
p
s
)

MOD

2D−MC

SIM−Stochastic

SIM−Periodic

Fig. 1. Download rate as a function of λ with
1/γ = 3600 secs. (X axis in log scale)

0 1000 2000 3000 4000 5000
10

2

10
3

10
4

10
5

10
6

1/γ (seconds)

a
v
e

ra
g

e
 d

o
w

n
lo

a
d

 r
a

te
 (

in
 k

b
p

s
)

λ=1

λ=0.1

λ=0.01

λ=0.001

Fig. 2. Download rate as a function of seed staying
time 1/γ. (Y axis in log scale)

1 2 3 4 5
1

1.05

1.1

1.15

1.2

1.25

1.3

c

n
o
rm

a
liz

e
d
 d

o
w

n
lo

a
d
 r

a
te

λ=0.001 (MOD)

λ=0.001 (SIM2)

λ=0.001 (SIM1)

λ=0.1 (MOD)

λ=0.1 (SIM2)

λ=0.1 (SIM1)

Fig. 3. Caching multiple videos: each download
rate is divided by the download rate when c = 1.
(1/γ = 3600 secs)

warm-up strategy for our event-driven experiments.

Figure 1 shows the average download rate of leechers for
different λ with 1

γ =1 hour. We compare four cases: simulated
transition on the 2D Markov model [14] (2D-MC), numerical
results from our analysis model (MOD), and two simulation
results with one using stochastic arrivals (SIM-Stochastic) and
the other using periodic arrivals (SIM-Periodic). Note that
SIM-Periodic is to understand the impact of the assumption
used in previous fluid models [6, 9]. First, the figure shows
that our model closely matches 2D-MC and SIM-Stochastic.
We observe a clear trend in which the average download rate
increases as λ (i.e., popularity) increases. In contrast, the trend
with SIM-Periodic is distinct from the other cases, where the
increase in download rate seems slowing down with increasing
λ. This result indicates that the leecher arrival pattern also
plays a critical role in the download performance, and the
assumption of periodic arrivals in the fluid models [6, 9] can
lead to incorrect conclusions in practical scenarios.

We next investigate the effect of seed staying time on
download performance. In Figure 2, we plot the average
download rate from our analytical model when we vary the
seed staying time (X axis) and arrival rate (different lines).
When the seed staying time is smaller than 2000 seconds,
the download rate changes little with different popularity (λ),
just like in [6, 9]. However, as the seed staying time is
sufficiently large, the download rate varies significantly as λ
varies, showing video popularity affects download performance
only under a long seed staying. When the video size is
larger and the corresponding download time increases, the seed
staying time is also required to be longer accordingly for the
same observation (figures not shown here).

C. Caching to Increase Staying Time and Download Rate

As seen in Section II-B, a necessary condition where
popularity and download rate are correlated is for peers to
stay as seeds for a sufficiently long period, compared to their
download time. One way to increase seed staying time of a
video is for a peer to cache the video and act as a seed serving
other viewers of the same video even after the peer has moved
on to viewing another video. However, with multiple videos in
cache, a peer would need to split its upload capacity between
those multiple videos, and thus it is not immediately clear
whether caching multiple videos would improve performance.

To analyze the benefit of caching, we first assume that
each video is the same size of B bytes, and a peer can store a
maximum of c videos. Note that our analysis in Section II-B
corresponds to c = 1. One can envisage a variety of policies
on how to split the upload capacity between multiple videos,

depending on whether a peer is actively watching a video or
not. To make the analysis tractable, we use a simple policy
where a leecher watching a video serves only the video that it
is watching. When not actively watching, a peer equally splits
its upload capacity between c videos in its cache. We remove
this assumption in our protocol design and experiments.

Using our Markov chain based analysis, but also consider-
ing a cache of size c, the down-transition rate from state i to
i− 1 would be:

qci,i−1 = (i+ y/c− 1)u/B (5)

for i ≥ 1. Note that the benefit of caching from this analysis
actually serves as a lower bound, as the transition rate qci,i−1
assumes that all c videos are always requested. In particular,
if a cached video is not requested, in practice a peer would
allocate its upload capacity to the other videos being requested,
resulting in a higher transition (service) rate than modeled here.

While a peer’s upload capacity is split into c videos, a video
stays longer in its cache for larger c. The cache replacement
policy plays a role in determining how long a video would stay
in the cache. In our analysis, we make a simplifying assump-
tion that a peer uses FIFO (First-In First-Out) replacement.
However, in our experiments, we also compare FIFO with LFU
(Least Frequently Used). With FIFO, the time a peer stays as
a seed, S, for each video is hypoexponentially distributed with
the average E[S] = c/γ. The distribution for the number of
seeds in the system still holds for c > 1 as:

P [Y = y] = e−σcσy
c /y! (6)

where σc = cλ/γ. From (5) and (6), we can obtain the
average download time T by following similar derivation as
in Section II-B. In our numerical evaluation of E[X] with
c > 1, we substitute y in Equation (3) with an integer value
⌊y/c⌋ instead of y/c for simplicity. Note that this simplification
underestimates the download rate in the presence of caching
and thus provides a lower bound of the benefit from caching.

Evaluation: We validate our caching analysis using the sim-
ulator as in Section II-B with a synthetic trace. Figure 3 plots
the normalized average download rate from our analysis and
from the simulation for different cache size c. For SIM1, we
simulate exactly the policy described for deriving Equation
(5) for validation. Also, SIM2 shows the results without our
assumption so that a leecher actively watching a video also
uploads all other videos in its cache. We first observe that
the analysis (MOD) and simulation results match well. Also,
caching is more beneficial with small λ (i.e., less popular
videos). We then see the diminishing returns as c grows since
our small u which is the bottleneck quickly becomes more

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

λ

d
o

w
n

lo
a

d
 o

r
p

la
y
b

a
c
k
 r

a
te

 (
in

 k
b

p
s
)

r=312.5Kbps, download rate

r=625Kbps, download rate

r=937.5Kbps, download rate

r=312.5Kbps, playback rate

r=625Kbps, playback rate

r=937.5Kbps, playback rate

Fig. 4. Download/playback rate vs. arrival rate
with different chunk bitrates

10
−4

10
−2

10
0

200

300

400

500

600

700

800

900

1000

λ

p
la

y
b

a
c
k
 r

a
te

 (
K

b
p

s
)

MOD

SIM

Fig. 5. Validation of ABR analysis
using simulation

Node A

Video 3

Bitrate r1

Bitrate r2

Bitrate r3

Swarm(V3,r1)

Swarm(V3,r3)

Swarm(V3,r2)

Peer Nodes

Node A

Data Transfer

Peer Conn.

Video 4

Swarms

Video 1

Swarms

Video1 Video2 Video3 Video4

Fig. 6. A peer in Joint-Family participates in multiple swarms.

utilized (thus, we omit the results for c > 5). Finally, we show
that the download rate in SIM2 only improves as we remove
our assumption. In Section IV-E we explore different cache
replacement schemes such as LFU using real-world traces.

D. Adaptive Bitrate Analysis

We showed in Section II-B that more popular videos result
in higher download rates only with seeds staying long enough.
When the download rate is (unnecessarily) much higher than
the video playback rate, we now leverage the abundant capacity
to improve the video quality through ABR. Using the example
of a single video at different bitrates via our model, we
show in Figure 4 that as the video popularity varies, the
achievable average download rate varies quite significantly.
We choose 3 different bitrates (312.5 – 937.5 Kbps) with the
corresponding horizontal lines. When the video is unpopular,
the peer download rate can be smaller than the playback rate,
especially for the higher bitrates, likely resulting in playback
interruptions. When the video is more popular (λ = 0.01 or
higher), the download rate is higher than the playback rate,
especially for the lower bitrates (e.g., 312.5Kbps).

We make the following observations: First, using a single
bitrate for all videos is suboptimal. If the bitrate is set too
high, streaming an unpopular video would result in significant
amount of playback interruption. If the bitrate is too low
(with the goal of minimizing interruptions), viewers of popular
videos would be unnecessarily restricted to low bitrates – i.e.,
poor streaming quality. To overcome this, one might consider
predicting the video popularity and using the highest bitrate
sustainable for that popularity. But that is challenging, since
we have to deal with prediction error and popularity changes.
With ABR, the system can potentially adapt to the currently
available bandwidth of a video, which does not require the
popularity information, and thus the bitrate adaptively becomes
large for popular videos and small for unpopular videos.

We now show that by using ABR with P2P VoD, we
can deliver higher video quality to a viewer of more popular
videos which can sustain higher bitrate. Suppose we have m
playback bitrates: R = {r1, r2, . . . , rm}, where ri < ri+1. In
our analysis, we assume an idealized rate adapting scheme,
where a leecher only increases the video bitrate to reach the
highest bitrate it can sustain. Specifically, each leecher starts
with r1 and increases the bitrate from ri to ri+1 if it has at
least su seconds of video chunks at rate ri buffered ahead
of its playback point (also explained in Section III-C). If a
leecher is not able to go to a higher bitrate, then it stays at the
current bitrate until the streaming finishes. Also, we assume

that all leechers for a given video go through the same set of
“transition points” in a steady state. In other words, all leechers
download B1 bytes at r1 before switching up to r2 and receive
B2 bytes at r2 before transitioning to r3, and so on.

Our goal is to find an equilibrium point (B1, B2, . . . , Bm),
and then calculate the corresponding download rate:
∑

m

i=1
Bi

∑

m

i=1
Bi/ri

. To determine an equilibrium point, we use

the following steps. Suppose we have an estimate of
B̃ = (B̃1, B̃2, . . . , B̃m). We consider m independent Markov
chains, one for each bitrate as described in Section II-B.
Each state is the number of leechers downloading at the
corresponding bitrate. We assume that a seed for a video splits
its capacity across multiple bitrates, such that it serves chunks
of rk in proportion to B̃k. That is, the down-transition rate for
the Markov chain corresponding to chunks of rk is:

qki,i−1 = (i+ fky − 1)u/B̃k, (7)

where fk = B̃k
∑

j
B̃j

. Then, following the analysis for each

Markov chain in Section II-B (Equation (4)), we can derive the
average download time (T̃k) and the corresponding download
rate (d̃k). However, since the bitrate switch happens only after
su seconds of chunks at rk are buffered, we can calculate the
corresponding time as T ′

k = surk/(d̃k − rk), which we expect

to match T̃k in an equilibrium point. In our evaluation, we
calculate B′

k = T ′

kd̃k and numerically find an estimate B̃ that
minimizes the Euclidean distance from B′ = (B′

1, . . . , B
′

m).
Evaluation: We can employ a variety of methods to find
the equilibrium point minimizing the Euclidean distance (e.g.,
gradient descent) between B̃ and B′. However, to minimize the
error arising from the particular method we use, we evaluate
an entire space (using small fixed increment on B̃ values) and
report the point with the minimum distance. We use a 1800
second video with 4 bitrates {250, 500, 750, 1000} Kbps,
and set su = 50. In the simulation, peers have to switch
down to lower bitrates if the size of buffered chunks becomes
smaller than sd, and we use sd = 10 (see Section III-C for
detail). Figure 5 shows the average playback rates obtained
from both our model and simulator as video popularity varies.
Considering that, unlike the model, peers in simulation may go
down to lower bitrates and peers transfer data chunk-by-chunk
(each 10 second chunk) instead of bit-by-bit, the two results
match reasonably (especially in the variation with popularity),
and demonstrate that with ABR in a P2P system, we can
achieve a higher playback rate for a more popular video.

III. JOINT-FAMILY DESIGN

We take the learnings from our analysis in Section II to
design a P2P protocol that supports the delivery of high quality
video using ABR. To the best of our knowledge, Joint-Family
is the first practical P2P VoD system that incorporates ABR.

A. Overview

Most P2P systems maintain a notion of a “swarm” per
video. Peers watching this video participate in the swarm and
exchange chunks with other peers. With ABR, this delineation
of a swarm per video becomes unclear since the same video
has different set of files, one at each rate. A natural extension,
and one that we use, is to assign a different swarm for each
rate of the video. This change alone, however, is not sufficient.
Peers today participate in one swarm only. Each time they
attempt to change rates due to the ABR rate adaption, they
would have to leave one swarm and join the swarm of the
next rate. Leaving one swarm and joining another is inefficient
as it is heavyweight process and also introduces a lot of
churn in the system. Instead, a peer in Joint-Family joins the
different swarms of each video concurrently and maintains
active connections. The peer then sends out requests to the
appropriate swarm as it downloads and uploads chunks of
different bitrates as a result of bitrate adjustment.

Once we have the support for multiple swarms of a given
video, the same primitive can be extended to support partic-
ipation in multiple swarms of different videos. This allows a
peer to serve cached chunks of videos it has already viewed,
which as shown in Section II-C and II-D has a beneficial
effect on the overall download performance and playback rate
for ABR videos. Figure 6 illustrates the typical multi-swarm
participation of peer A. A has 4 videos in its cache. The
figure focuses on Video3 and shows that, as a result of rate
adaptation, A has chunks in each of the 3 rates of Video3.
A simultaneously participates in the swarms associated with
each of these rates (solid dot in each swarm). The figure also
shows A concurrently uploading chunks at different rates to
peers (unfilled dots) in the corresponding swarms. These peers
will also be participating in multiple swarms, but may not
necessarily be connected to A in all of these other swarms.
The same process is repeated for the other videos in A’s cache.

B. Protocol Mechanisms for Multi-Swarm P2P

While multi-swarm participation is conceptually straight-
forward, realizing it in P2P systems requires a detailed under-
standing of inter-dependencies between protocol components
and careful protocol re-design.

Connection management: We term all connections that node
A has to peers in swarms of the video it is currently watching
as selfish. Connections to swarms of cached videos are termed
altruistic. The peer on the other end of a selfish connection,
B, can be either a leecher or a seed. In the latter case, the
connection is altruistic for B. However, a connection cannot be
altruistic for both endpoints. In typical P2P systems, a node can
have connections to a maximum of n peers to avoid depleting
local resources (e.g., by having too many TCP connections).
When a peer participates in multiple swarms for multiple
videos, there is an inherent tension between the number of
selfish connections and altruistic ones.2 Specifically, if the

2We do not differentiate swarms for a single video since a peer can always
switch between different bitrates.

peer uses its entire quota for selfish connections, caching is
rendered useless. Conversely, even with sufficient connections,
a leeching peer can suffer from starvation if the majority of
its connections are altruistic.

Our solution with multiple swarms is to partition the
number of connections for different swarms. We define a
parameter αl, such that the number of altruistic connections
for a leecher is at most nαl. In Joint-Family, a leecher needs
to re-classify the connections regularly and ensure that the
number of altruistic connections is below the threshold. In the
experiments, we use αl=0.5. However, by definition, a peer
who does not actively watch any video cannot have a selfish
connection. For those peers, αl=1 is used.

Another aspect in a multi-swarm P2P system is to choose
which peers to serve. In BitTorrent-like P2P VoD systems,
the peer selection behavior changes depending on whether
a peer is leeching or not. Specifically, a leecher unchokes
those peers that sent the leecher the most chunks, while a
seed unchokes those peers that can download the fastest. In
Joint-Family, a peer can simultaneously be a leecher (for the
video it is currently watching) and a seed (for other videos
in its cache). As a result, if the BitTorrent policy is strictly
followed, a leecher has no incentive to use upload capacity
for altruistic connections. This is because the leecher is more
likely to be unchoked when it uses all its upload bandwidth
for bilaterally selfish connections. We present more detailed
protocol mechanisms related to peer selection in Section III-D.

Caching and sharing multiple videos: As shown in Sec-
tion II-B, increasing seed staying time in a swarm increases
the capacity of the swarm. Our approach to increase staying
time is, as modeled in Section II-C, to cache videos previously
watched and share them with other peers. Sharing multiple
videos simultaneously is currently not possible in VoD systems
as peers move from one swarm to another as they change
videos. However, our primitive of participating in multiple
swarms allows a peer in Joint-Family to cache and share
multiple videos in parallel. We assume that each peer can
store at most c different videos in its local cache regardless
of the length of the video (we recognize videos can be of
different lengths, and ABR or premature abandonment can also
cause a difference in size). When the cache is full, a peer can
choose the video to be deleted based on well-known cache
replacement policies. In Section IV-E, experimental results on
the benefits of caching are presented.

C. Chunk Selection and Rate Adaptation

Chunk selection: The chunk selection policy determines the
order in which a peer watching a video downloads chunks
of that video. While Rarest-First (RF) has been the de-facto
standard chunk selection policy for file sharing systems, RF
is inherently unsuitable for streaming systems which desire
chunks to arrive in order [10]. ABR further complicates this,
as the rarest chunk at the time of download may not match
the right bitrate at the time of playback.

In Joint-Family, we use Earliest-First (EF) chunk selection.
EF allows for a fast startup, potentially fewer and shorter
interruptions, and smaller wastage of downloaded chunks when
users abandon viewing a video. Also, with buffer-based rate
adaption schemes for ABR, having more sequential chunks in
the playback buffer is more likely to help the peer move up
to a higher playback rate quickly. While we do not address

it in this paper, EF is also amenable to DVD-like operations.
Note that we use EF despite previous work reports that the use
of EF can lead to “throughput collapse” when peers possess a
similar collection of chunks [10]. We argue that this throughput
collapse is a side-effect of using EF with Tit-for-Tat peer
selection policy. Further, the performance degradation highly
depends on the number of seeds in the swarm, and our caching
mechanism helps avoid the “missing piece syndrome” [15].

Rate selection: Having identified the chunk to download, the
peer needs to decide which of the video rates to download.
As is frequently adopted in practice [1, 16], we have designed
Joint-Family to use hysteresis when making a change in the bi-
trate, so that the quality does not change too frequently, thereby
providing the user a better quality-of-experience (QoE). A
leecher uses a simple rate adaptation scheme based on its
buffer status. Once the peer’s buffer goes above (below) a
certain threshold, it triggers the peer to adopt a bitrate increase
(decrease). We supplement this with hold-down timers to avoid
rapid bitrate fluctuations. Specifically, a peer increases the
bitrate if its buffer has more than su seconds of chunks to
play back (i.e., sequential chunks), and the last bitrate change
was more than hu secs ago. Contrarily, a peer decreases the
bitrate if (1) its buffer has less than sd secs of chunks, and (2)
the last downward rate change was more than hd secs ago.

A possible improvement in bitrate selection could be to
also consider chunk availability at a rate. For example, for a
particular portion of a video, if more peers have the chunk
at bitrate ri than at rj , a leecher might prefer the chunk at
ri. We briefly explored this direction, but found that without
careful design, peers can end up being stuck at lower bitrates
even when there is capacity. This is because other peers may
have downloaded lower bitrate chunks at a time when the
swarm could only support that low rate. A sophisticated bitrate
selection scheme that takes both chunk availability and video
playback quality into account is still an open area of research.

D. Earliest-deadline (ED) Peer Selection

The peer selection policy determines the subset of requests
that a peer serves upon receiving requests. While most P2P
systems use tit-for-tat (TFT) as the peer selection policy, TFT
requires that peers have content to exchange with each other
and works best when peers have a diverse set of chunks.
This aspect creates an implicit inter-dependency between the
chunk selection and peer selection policies. Specifically, TFT
works well with RF, as RF is designed to create such chunk
diversity. However, there is growing realization that there
are inefficiencies due to TFT [8, 17] in streaming systems,
particularly with regard to interruptions.

With EF, however, peers at different points of their play-
back will not have content of mutual interest to exchange with
each other. For this reason, we complement EF by choosing the
peer with the “Earliest-deadline”. To satisfy a viewer’s uninter-
rupted playback experience, each chunk must be delivered to
the viewer prior to its deadline. In our Earliest-Deadline (ED)
peer selection scheme, a requesting peer specifies a chunk and
its deadline with each request. Then, a potential provider (seed
or leecher) receiving requests from multiple connected peers
during a certain interval chooses to serve the peer with the
earliest deadline (with ties broken at random). By serving peers
with the most urgent need, ED focuses on ‘fairness’ of each
peer’s streaming performance. While this notion of fairness is
certainly a ‘qualitative’ one, we show in Section IV-F that

ED performs substantially better than TFT with respect to
quantitative metric such as interruption time.

Switching to ED, we also consider the following aspects.

Choking peers: Unlike TFT, a peer does not choke another
in ED. This brings up new protocol aspects to be addressed.
First, as a provider, a peer may receive upload requests from
all of its connected peers. To ensure that the per-chunk upload
rate does not become too small, we limit the number of
concurrent uploads from a peer. Second, when it is not choked,
a downloading peer can have a large number of parallel down-
loads, and the per-chunk download rate can greatly decrease,
resulting in longer start-up delays and frequent interruptions. In
many cases, all the downloads may share a single downstream
bottleneck link to that peer. To address this, each peer adjusts
the maximum number of parallel downloads dynamically,
based on the availability of its download bandwidth. Peers can
increase the number of parallel downloads until they use up
their download capacity. They stop adding streams when an
additional download has the potential to decrease the speed of
the ongoing downloads.

Handling free riding: Free riders in P2P systems can signif-
icantly impact the overall system performance and introduces
unfairness. TFT was designed specifically to prevent such free
riding. However, as stated earlier, TFT introduces dependency
on chunk selection that is incompatible with P2P streaming.
While using ED instead of TFT does not protect against free
riders, ED offers better performance in terms of streaming
and QoE compared to TFT. The decoupling of peer selection
from chunk selection allows us to overcome inefficiencies
due to TFT [8, 17] in deployments that do not worry about
free riding (e.g., managed content delivery [5]). In scenarios
where eliminating free-riding is of concern, we can use the
mechanisms proposed in Contracts [8], modified appropriately
for P2P VoD, to incentivize peers to share content.

Contracts was designed for live streaming and hence relies
on promoting users close to the source as the main incentive.
While this incentive is not very useful for P2P VoD, we
can leverage the other aspects of Contracts, i.e., exchanging
receipts, using the tracker for verification and preventing
collusion. Peers in Joint-Family can exchange similar receipts
for contributing upload capacity. When requesting content,
peers have to show proof that they have shared data with
other peers in the form of receipts. Note that using receipts not
only allows us to move from pair-wise exchange mechanisms
towards one that allows a peer to carry credit for work done
in sharing one video to fetching a different video.

IV. PERFORMANCE EVALUATION

We evaluate the performance of Joint-Family and compare
it to a generalized version of state-of-the-art P2P approaches,
using trace-driven simulations. We first show that the changes
proposed in Joint-Family result in significant improvements in
terms of the video playback rate and the interruption time.
We then show how each of the design policies contributes to
improving system performance.

A. Experiment Setup

To evaluate Joint-Family, the BitTorrent simulator [18]
is used with the following major modifications: (1) video
streaming support (e.g., playback buffer), (2) bitrate adaption
(Section III-C), (3) multi-swarm participation (Sec. III-B), (4)
different chunk (Sec. III-C) and peer selection policies (Sec.

Parameter Default value
Number of initial servers 5
Upload bandwidth of each server 25 Mbps
Peer upload/download bandwidth 625 Kbps/2 Mbps
Non-ABR video bitrate 625 Kbps
ABR video bitrates 250,500,750,1000 Kbps
Max. concurrent uploads per server 30
Max. concurrent uploads per peer 5
Chunk size 10 secs
Startup buffer size per peer 10 secs

TABLE II. SIMULATION PARAMETERS

III-D). Note that for the hybrid chunk selection (EF+RF), a
peer initially uses EF, but switches to EF+RF once enough
chunks are in its playback buffer. This helps achieve lower
startup delay and playback continuity by providing the slack
needed to deal with possible future reductions in the download
rate. In our experiments, a peer uses EF with probability 0.7
and RF with 0.3, once there are 5 or more chunks in its buffer.

To reflect realistic viewing patterns of a large population
of users, trace data from a nationally deployed VoD service
is used. The data covers a two week period with millions
of requests. The trace contains information including the
anonymized user ID, request time, video ID, video length, and
the duration viewed for each session. For the experiments, our
14-day trace is split into seven 2-day trace segments. We use
these trace segments to get 7 different simulation runs and
report the average results and 95% confidence intervals.

We summarize the different parameters used in the sim-
ulations in Table II. We use 5 servers, each with 25Mbps
uplink capacity to host all the videos and behave like seeds. We
assume continuous network connectivity of each joining peer
until the end of an experiment so that the peer helps other peers
as a seed for previously viewed videos. While the playback rate
for non-ABR videos is set to 625Kbps, we use 4 quality levels
for ABR videos: 250, 500, 750 and 1000Kbps (the average
being 625Kbps). Like most P2P systems, each video is broken
into chunks of 10 seconds of playback, and a peer can play
back a chunk while it is being downloaded (subject to the
startup delay and the appropriate portion being available). For
ABR, hold-down time for bitrate switch-up (hu) and switch-
down (hd) are set to 30 and 10 seconds, respectively. Also, for
the buffer size parameters of switch-up and switch-down, we
use su = 50 and sd = 20 secs. We chose these bitrate switch
parameters based on our experiments (not shown here) where
the parameters achieved the largest average playback rate with
fairly small playback interruptions. We use playback rate and
interruption time as the metrics to evaluate video playback
performance. While the former gives information about the
quality of video viewed by the user, the latter captures the
aggregate disruptions experienced by the viewer.

B. Joint-Family vs. Server-based ABR

To first understand the benefit of using P2P for ABR
video delivery, we compare Joint-Family with the traditional
server-based ABR scheme. Viewers in the server-based ABR
do not share their downloaded content. Joint-Family uses a
cache size of c = 5. The same buffer-based rate adaptation
is applied in both schemes. We look at the average viewers’
playback bitrate and interruption time in Table III as the server
bandwidth increases. We assume a single server, with the
maximum number of concurrent uploads allowed for each 25
Mbps of server upload bandwidth being 30, as in Table II (e.g.,
125Mbps server bandwidth allows 30∗5 = 150 concurrent up-
loads). Joint-Family requires only 125Mbps server bandwidth

Server bandwidth 125 Mbps 500 Mbps 1 Gbps 2 Gbps
Server-based 261 Kbps 334 Kbps 501 Kbps 723 Kbps

ABR 195 seconds 67 secs 16 secs 2 secs
Joint-Family 748 Kbps 881 Kbps 940 Kbps 975 Kbps

(c=5) 4 seconds 0 sec 0 sec 0 sec
TABLE III. PLAYBACK RATES AND INTERRUPTION TIME WITH

SERVER-BASED ABR SCHEME AND JOINT-FAMILY

to achieve about the same performance as a server-based ABR
with 2Gbps server bandwidth. Note that the improvement in
the playback rate of Joint-Family with larger server bandwidths
reaches a point of diminishing returns because the highest ABR
video bitrate is limited to 1000Kbps.

C. Joint-Family vs. State-of-the-art P2P

For the performance comparison of Joint-Family, instead
of comparing with specific existing implementations, we use a
generalized implementation that incorporates the state-of-the-
art in P2P VoD. The generalized implementation (henceforth
BT VoD) uses the hybrid policy (EF+RF) for chunk selection
and TFT for peer selection. Since existing P2P systems only
support a single rate, we experiment with two fixed rates:
1000Kbps and 250Kbps to represent the two extremes (high
quality and no interruption). Note that 250Kbps is the max-
imum bitrate for BT VoD that achieved no interruption for
all viewers. Further, these systems only allow participation in
one swarm (equivalent to c = 1 in Joint-Family). We use two
scenarios for Joint-Family: c = 1 and c = 5. Joint-Family
uses ABR and all the improvements suggested in this paper.
The goal here is to show the total benefits from using Joint-
Family. To understand the dependency between popularity and
playback performance, results are presented for 5 different
groups, where each group has 100 videos for corresponding
popularity. For example, Group 1 consists of the 100 most
popular videos, while Group 5 has the 100 least popular videos.

First, Figure 7(a) shows the average playback rate experi-
enced by peers. With BT VoD, the playback rate is constant
across all videos, since just a single rate is used. Joint-Family,
on the other hand, has the ability to adapt the playback
rate to the available capacity for that video. Consequently,
popular videos experience a high playback rate (as shown in
Section II-D). Interestingly, the average playback rate of the
least popular videos is also much higher with Joint-Family
(by ∼100Kbps) than the lowest possible rate. Similar to our
analysis in Section II-C, we also consistently see the benefit
of caching and participating in multiple video swarms (e.g.,
c = 5 vs. c = 1). To understand whether the playback rate
is sustained with minimal interruptions, we plot the average
interruption time in Figure 7(b). Although the playback rate of
BT VoD with 1000Kbps is always higher than Joint-Family,
it causes significant interruption times. It is particularly bad
for less popular videos where the interruption can range from
100 to almost 400 seconds. In contrast, BT VoD with 250Kbps
and Joint-Family result in comparably negligible interruptions;
Joint-Family with c = 5 essentially performs as well as BT
VoD at 250Kbps while still achieving significantly higher
playback rates. To understand the reason for Joint-Family’s
improvement, we plot the average download rate achieved
by each alternative in Figure 7(c). The different approaches
achieve mostly similar download rate (although Joint-Family
with c = 5 achieves higher throughput for unpopular videos)
that decreases with decreasing popularity.

The combination of these results illustrates why it is
important to adapt: If we pick too high a quality (e.g.,

group1 group2 group3 group4 group5
200

300

400

500

600

700

800

900

1000

1100

popularity group

p
la

y
b

a
c
k
 r

a
te

 (
k
b

p
s
)

BT VoD, r=1000kbps

BT VoD, r=250kbps

JF, c=1

JF, c=5

(a) Playback Rate

group1 group2 group3 group4 group5
0

50

100

150

200

250

300

350

400

popularity group

in
te

rr
u
p
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

BT VoD, r=1000kbps

BT VoD, r=250kbps

JF, c=1

JF, c=5

(b) Interruption time

group1 group2 group3 group4 group5
400

500

600

700

800

900

1000

1100

1200

popularity group

d
o
w

n
lo

a
d
 r

a
te

 (
k
b
p
s
)

BT VoD, r=1000kbps

BT VoD, r=250kbps
JF, c=1

JF, c=5

(c) Download rate
Fig. 7. Comparison between Joint-Family and the state-of-the-art P2P system (group 1: the set of most popular videos).

group1 group2 group3 group4 group5
200

300

400

500

600

700

800

900

1000

popularity group

p
la

y
b
a
c
k
 r

a
te

 (
k
b
p
s
)

stay connected

1/γ = 5 hours

1/γ = 1 hour

leave promptly

Fig. 8. Effect of seed staying time (1/γ) for JF,
c=5

0 500 1000 1500 2000
0

200

400

600

800

1000

playback time (seconds)

p
la

y
b
a
c
k
 r

a
te

(K

b
p
s
)

group1

group3

group5

923Kbps

671Kbps

414Kbps

Fig. 9. Rate adaptation with ABR

4am 7am 10am 1pm 4pm 7pm 10pm 1am 4am 7am
0

0.5

1

1.5

2

2.5

time

b
a

n
d

w
id

th
 u

s
e

 (
G

b
p

s
)

JF (c=5)
BT VoD

Fig. 10. Aggregate upload bandwidth for Joint-
Family and BT VoD

1000Kbps bitrate), users of less popular videos experience
frequent interruption since the achievable download rate may
be lower than the playback rate. Contrarily, if we pick a very
low playback rate (250Kbps), interruptions may be minimized,
but quality of popular videos is unnecessarily sacrificed. By
dynamically adapting to the available capacity (as seen by the
achieved playback rate for the different popularity groups),
Joint-Family is able to achieve a nice balance between quality
and interruptions. Moreover, we see that by caching more
videos (c = 5), Joint-Family exploits the increased capacity
and is hence able to deliver higher quality video at almost no
interruptions across all types of videos.

We now study the effect of seed staying time in Joint-
Family with c = 5. For viewers who are not currently
watching any video, we vary their average staying time 1/γ.
In Figure 8, the ‘leave promptly’ curve indicates that all
viewers leave the VoD network right after they finish watching,
while the ‘stay connected’ curve (identical to ‘JF, c=5’ in
Figure 7(a)) indicates that they stay connected till the end of
each simulation. We first see that the playback results have a
similar trend in that more popular swarms still achieve higher
bitrates. Secondly, the improvement in playback rates with
longer staying times reduces (e.g., ‘1/γ = 5 hours’ and ‘stay
connected’ are almost identical). This is because, unlike our
analysis, viewers’ arrivals do not strictly follow a Poisson
process but instead show significant diurnal patterns with peak
hours (e.g., 8∼12PM in Figure 10) and off-peak hours. Further,
even after viewers leave, they can still come back to the
network (e.g., to watch other videos) and have their previously
viewed videos available for sharing. The interruption time (not
shown here) is negligibly small for all cases.

D. Performance Improvement with ABR

We take a closer look at how a peer’s playback experience
evolves over a video streaming session. As Joint-Family adapts

using ABR according to the available capacity for that video
based on its popularity, we select a sample user from each
popularity group and plot the playback rate over time as well as
its overall average when c = 5. For the clarity of presentation,
in Figure 9, we only show 3 groups. For the popular videos
(Group 1), the video quickly ramps up to 1000 Kbps and stays
at the rate to achieve an average playback rate of 923 Kbps,
which is similar to the total average for Group 1 (as seen in
Figure 7(a)). The Group 3 user also briefly goes up to 1000
Kbps before settling back down to 750 Kbps for the most part.
In both these cases, the average playback is higher than the
bitrate of non-ABR case (625 Kbps). Finally, since there is no
sufficient capacity for the unpopular videos to support a high
rate, the Group 5 user oscillates between 500 and 250 Kbps
to achieve an average of 414 Kbps (while the group average
is 410 Kbps). While this average is lower than 625 Kbps, the
total interruption time for Group 5 with ABR was only 4.7
secs compared to 20.6 secs for the group without ABR.

Thus Joint-Family works harmoniously with ABR, en-
abling peers to dynamically adapt to the available system ca-
pacity among the servers and peers for a particular quality/rate
for the video. As seen in our ABR model in Section II-D, by
allowing peers to participate in multiple swarms, peers viewing
a popular video are naturally able to take advantage of the
higher bitrate chunks that become available because of the
increased system capacity for such popular content.

E. Effect of Multiple Swarms

To understand the underlying reason for the improved
performance of Joint-Family, we examine the overall system
utilization. We periodically sample the upload bandwidth ag-
gregated across all peers (excluding servers) and report the
time series for Joint-Family (with c = 5) and BT VoD. In this
experiment we do not use ABR to remove the performance
impact by rate adaption. Figure 10 shows Joint-Family effec-

1 2 3 4 5
1

1.05

1.1

1.15

1.2

1.25

1.3

c

n
o

rm
a

liz
e

d
 d

o
w

n
lo

a
d

 r
a

te

group5 (FIFO)

group5 (LFU)

group3 (FIFO)

group3 (LFU)

group1 (FIFO)

group1 (LFU)

Fig. 11. Video popularity and the
effect of cache size (c)

group1 group2 group3 group4 group5
0

20

40

60

80

100

120

popularity group

in
te

rr
u

p
ti
o

n
 t
im

e
 (

s
e

c
o

n
d

s
)

BT VoD (TFT, EF+RF)

TFT, EF

ED, EF

Fig. 12. Interruption time with differ-
ent chunk- and peer-selection policies

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

interruption time per interruption (seconds)

c
u

m
u

la
ti
v
e

 p
ro

b
.

ED
TFT

Fig. 13. CDF of interruption time for
each interruption

group1 group2 group3 group4 group5

400

500

600

700

800

900

1000

popularity group

p
la

y
b

a
c
k
 r

a
te

 (
k
b

p
s
)

312.5Kbps/2Mbps peers

625Kbps/2Mbps peers

312.5Kbps/4Mbps peers

625Kbps/4Mbps peers

Fig. 14. Playback rate of Joint-Family
for heterogeneous peers

Policy # of interruptions Std. Dev
TFT 82.8 250.1
ED 112.1 220.5

TABLE IV. INTERRUPTIONS COUNT WITH ED AND TFT

tively increases the system utilization compared to BT VoD.
Specifically, at the peak viewing period, the aggregate upload
bandwidth by BT VoD is 1.8 Gbps while 2.3Gbps with Joint-
Family (an increase of 27%). By being in multiple swarms,
peers in Joint-Family can use their upload capacity as long
as they receive a chunk request from any of the swarms, thus
improving overall upload capacity and playback experience.

Caching and video popularity: We turn our attention to
increasing system capacity so that we can increase the video
download rate through caching. We run Joint-Family with a
constant bitrate of 625Kbps and experiment with both LFU
cache replacement (popular in the literature for video caches)
and FIFO (used in our analysis). Figure 11 shows the variation
of the download rate as the cache size increases from 1 to
5 videos. We again pick 3 groups of videos with different
popularity: Group 1, 3, and 5. The Y-axis shows the average
download rate of each group normalized by the rate achieved
when c = 1. Similar to our analysis in Section II-C, we
observe that: (a) caching consistently improves the download
rate across videos of all popularity levels, (b) the benefit from
caching reduces as we increase the amount of caching, (c)
unpopular videos see more benefit with caching than popular
videos (about 26% improvement vs. 8%), and (d) the specific
cache replacement mechanism does not play a significant role
(in this limited size of the number of cache entries). Note
that while the normalized download rates for popular videos
improve less than unpopular videos, the absolute value for the
download rate is much higher (1049 vs. 597 Kbps).

F. Impact of Chunk and Peer Selection Policies

We evaluate the contribution of the chunk selection and
peer selection policies in Joint-Family. To perform this ex-
periment, we started with BT VoD and first replaced the
hybrid chunk selection policy with EF (TFT+EF, using the
terminology of peer selection + chunk selection policies). We
then replaced TFT peer selection with ED (ED+EF). A single
bitrate, 625Kbps is used. Similar to Figure 7(c), the download
rates for different policies are comparable and thus omitted
here. Figure 12 shows that BT VoD experiences much longer
interruptions compared to TFT+EF. Specifically, for the least
popular group, the interruption time reduces by 33% when
TFT+EF is used instead of BT VoD. This is because EF
prioritizes chunks closest to the current playback point. In
contrast, even though the download rate of BT VoD is similar
to that of TFT+EF (not shown here), the partial use of RF
in BT VoD results in many downloaded chunks that are not

immediately useful. Next, when replacing TFT by ED (i.e.,
ED+EF), we consistently get further reductions in interruption
times. In particular, the interruption time of ED+EF goes down
by an additional 44% compared to TFT+EF. This can be
attributed to the “fairness” aspect of ED, where we prioritize
peers that really need the chunk soon, as opposed to TFT where
peers unchoke other peers based on their upload rates.

To show this property, in Figure 13, we plot the cumulative
distribution of the interruption time for each interruption the
user experiences. We see that with ED, more than 98% of
interruptions last for less than 3 seconds, while 60% last even
shorter (1 sec or less). The maximum interruption time is less
than 10 secs. On the other hand, with TFT there are much
fewer short interruptions, while the majority of interruptions
are long (40% last for > 120 secs). This result demonstrates
inherent unsuitability of TFT with streaming video. We also
examine the number of interruptions in Table IV. ED ex-
periences more interruptions than TFT. However, since the
duration of each interruption is significantly shorter, the overall
total interruption time due to ED is very small. Additionally,
the fact that 60% of interruptions last for 1 second or less
suggests that the deadline we are using is extremely aggressive.

G. Effect of Heterogeneous Peers

In practice, the upload and download bandwidth of peers
can vary, depending on network technology and pricing plans
chosen by users. We examine the impact of varying the uplink
and downlink bandwidth of peers. We choose 4 bandwidth
combinations: 312.5K/2Mbps, 625K/2Mbps, 312.5K/4Mbps,
and 625K/4Mbps, and each arriving peer has one of those
bandwidth chosen uniformly at random. Figure 14 shows
the playback rate for the corresponding peers. The benefit
is predominantly seen for popular videos. Peers with higher
downlink bandwidth see a greater improvement in the playback
rate for their popular videos than when their uplink bandwidth
changes. The higher downlink bandwidth allows the system
(initially by the servers) to populate the environment (peers)
with higher quality chunks (even if the uplink bandwidth is
halved from 625 to 312.5 Kbps) which is then effectively
shared among the peers viewing the popular video over time
due to the increased system capacity for the popular video.

V. RELATED WORK

Adaptive Streaming: Adaptive bitrate streaming (ABR) has
been gaining popularity as a way to enable users to experience
the highest quality of videos. ABR dynamically adapts to the
user’s network and playback condition. There are several fla-
vors of ABR implementations (e.g., MPEG-DASH, Adobe Dy-
namic Streaming, Microsoft Smooth Streaming, Apple HTTP
Streaming [1, 2, 19, 20]). While ABR has been used for
HTTP server based streaming, the use of P2P systems for

ABR are not yet common. Roverso et al. [21] implement
ABR in P2P systems for live media only. To the best of
our knowledge, we are the first to investigate ABR for P2P
VoD. Scalable video coding (SVC) is yet another approach
that enables end-systems to adapt network conditions. [22–
24] take a multiple description or layered coding approach
which causes interdependency of layers per chunk distribution
in P2P and which is not directly applicable to ABR or our P2P
work. Also, SVC has not been widely implemented due to the
complexity of decoding on the end-systems, and the additional
bandwidth requirements compared to ABR. ABR deployment
has far outpaced other alternatives.

Multiple Swarms: While most of the work has improved the
performance in a single swarm, little effort has been put on
multiple swarms to utilize idle upload/download bandwidth of
peers by means of added capacity obtained between swarms.
Wu et al. [25] and Wang et al. [26] investigate the peer’s band-
width allocation to contribute across multiple swarms in live
streaming but not in VoD. Zhou et al. [15] model inter-swarm
data exchange in VoD, however, their implementation requires
centralized schemes for estimating the demand and supply for
each content piece. Wang et al. [27] focus on adjusting the
peer’s inter-swarm contribution based on the demand, which
corresponds to one of the many aspects considered in our work.

Chunk selection: To adapt BitTorrent for streaming systems
(either live or VoD), a combination of rarest first (RF) chunk
selection and sequential chunk download (EF) has been ex-
ploited [10, 28, 29]. Existing schemes vary from a simple
probabilistic hybrid model to using sophisticated network cod-
ing techniques. Previous work claims that achieving balance
between system utilization (by RF) and on-line playback (by
EF) can substantially improve playback quality. However, we
show that it is a side-effect of using TFT together as peer
selection policy and further show that using EF only achieves
better playback performance with our ED peer selection.

Peer selection: BitTorrent’s TFT is effective for file sharing
with its incentive mechanism to encourage a peer’s contri-
bution. However, a number of prior works [8, 17, 29–31]
show that TFT is not suitable for streaming applications. This
is primarily because RF chunk selection is not suitable for
streaming, and TFT without RF makes it difficult for new peers
to contribute to older peers. Various peer selection approaches
have been proposed for streaming. Shah et al. [29] modify
TFT’s optimistic unchoke policy, D’Acunto et al. [31] make
peers act more altruistically, and Wen et al. [30] group peers
with similar playback points to help each other. To satisfy a
viewer’s uninterrupted playback experience, we replace TFT
with the Earliest-Deadline (ED) policy, which ensures that each
chunk is delivered to the viewer prior to its deadline.

VI. CONCLUSION

We have presented a holistic redesign of P2P VoD called
Joint-Family that for the first time supports the delivery of
adaptive bitrate videos. We show through analysis that only
with sufficiently long staying times, the available download
capacity in P2P VoD depends on the popularity of the
content, and use this to guide our protocol design. Joint-
Family achieves much better performance than other strategies
as demonstrated by our simulations that use traces from a
commercial VoD service. By choosing Earliest-Deadline as
peer selection and Earliest-First as chunk selection policy,
we dramatically improve the viewer’s QoE by minimizing

interruptions. Joint-Family allows peers to smoothly adapt
their quality and achieve a high playback rate for popular
content. Not only that, even for unpopular content, Joint-
Family achieves almost 40% higher playback rate than an
existing P2P VoD system with a fixed bitrate (250Kbps), while
reducing the total interruption time by a factor of 4. Joint-
Family leverages resources across swarms that are potentially
wasted by other schemes and increases system utilization by
30% at peak viewing periods.

REFERENCES
[1] “Microsoft Smooth Streaming,” http://go.microsoft.com/?linkid=

9682896, June 2010.
[2] “Adobe HTTP Dynamic Streaming,” http://www.adobe.com/products/

hds-dynamic-streaming.html, 2010.

[3] “Joost,” http://www.joost.com.

[4] “UUSee,” http://www.uusee.com.

[5] B. Maggs, “A first look at a commercial hybrid content delivery system,”
in Keynote presentation at IEEE Global Internet Symposium, 2012.

[6] D. Qiu and R. Srikant, “Modeling and Performance Analysis of
BitTorrent-like Peer-to-Peer Networks,” in SIGCOMM 2004, 2004.

[7] “AT&T U-verse,” http://www.att.com/shop/u-verse.html.

[8] M. Piatek, A. Krishnamurthy, A. Venkataramani, R. Yang, D. Zhang,
and A. Jaffe, “Contracts: Practical Contribution Incentives for P2P Live
Streaming,” in NSDI, 2010.

[9] N. Parvez, C. Williamson, A. Mahanti, and N. Carlsson, “Analysis of
Bittorrent-like Protocols for On-Demand Stored Media Streaming,” in
SIGMETRICS, 2008.

[10] B. Fan, D. G. Andersen, M. Kaminsky, and K. Papagiannaki, “Balancing
Throughput, Robustness, and In-Order Delivery in P2P VoD,” in Proc.
CoNEXT, Dec. 2010.

[11] “Global Broadband Statistics, 4Q 2012, Point Topic.” http://point-topic.
com/free-analysis-type/subscriber-numbers/, April 2013.

[12] F. Lehrieder, G. Dán, T. Hossfeld, S. Oechsner, and V. Singeorzan,
“Caching for BitTorrent-like P2P Systems: a Simple Fluid Model and
its Implications,” IEEE/ACM Trans. Netw., vol. 20, no. 4, Aug. 2012.

[13] “Palm calculus,” http://en.wikipedia.org/wiki/Palm calculus.

[14] G. De Veciana and X. Yang, “Fairness, Incentives and Performance in
Peer-to-Peer Networks,” Seeds, 2003.

[15] X. Zhou, S. Ioannidis, and L. Masosulie, “On the Stability and Opti-
mality of Universal Swarms,” in SIGMETRICS, 2011.

[16] G. Tian and Y. Liu, “Towards Agile Smooth Video Adaptation in
Dynamic HTTP Streaming,” in ACM CONEXT, 2012.

[17] K. Huguenin, A.-M. Kermarrec, V. Rai, and M. Van Steen, “Designing
a Tit-for-Tat Based Peer-to-Peer Video-on-Demand System,” in NOSS-
DAV, 2010.

[18] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing
and Improving a BitTorrent Networks Performance Mechanisms,” in
INFOCOM, 2006.

[19] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP: Standards
and Design Principles,” in Proceedings of ACM MMSys, 2011.

[20] “Apple HTTP Live Streaming,” http://developer.apple.com/resources/
http-streaming/, April 2011.

[21] R. Roverso, S. El-Ansary, and S. Haridi, “SmoothCache: HTTP-Live
Streaming Goes Peer-to-Peer,” in IFIP Networking, 2012.

[22] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-Bandwidth Multicast in Cooperative
Environments,” in ACM SOSP, 2003, pp. 298–313.

[23] R. Petrocco, M. Eberhard, J. A. Pouwelse, and D. H. J. Epema, “Deft-
pack: A Robust Piece-Picking Algorithm for Scalable Video Coding in
P2P Systems,” in ISM, 2011.

[24] J. Rückert, O. Abboud, T. Zinner, R. Steinmetz, and D. Hausheer,
“Quality Adaptation in P2P Video Streaming Based on Objective QoE
Metrics,” in IFIP Networking, 2012.

[25] D. Wu, Y. Liu, and K. Ross, “Queuing Network Models for Multi-
Channel P2P Live Streaming Systems,” in INFOCOM 2009, april 2009.

[26] M. Wang, L. Xu, and B. Ramamurthy, “Linear Programming Models
for Multi-Channel P2P Streaming Systems,” ser. INFOCOM’10, 2010.

[27] Z. Wang, C. Wu, L. Sun, and S. Yang, “Strategies of Collaboration in
Multi-Channel P2P VoD Streaming,” in GLOBECOM, 2010, pp. 1–5.

[28] Y. Borghol, S. Ardon, N. Carlsson, and A. Mahanti, “Toward Efficient
On-Demand Streaming with BitTorrent,” in NETWORKING, 2010.

[29] P. Shah and J. francois Paris, “Peer-to-Peer Multimedia Streaming Using
BitTorrent,” in IEEE IPCCC 2007, 2007.

[30] Z. Wen, N. Liu, K. L. Yeung, and Z. Lei, “Closest Playback-Point
First: A New Peer Selection Algorithm for P2P VoD Systems,” in
GLOBECOM. IEEE, 2011.

[31] L. D’Acunto, N. Andrade, J. Pouwelse, and H. Sips, “Peer Selection
Strategies for Improved QoS in Heterogeneous BitTorrent-Like VoD
Systems,” ser. ISM ’10, Washington, DC, USA, 2010, pp. 89–96.

