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Abstract

We first study the distribution of path duration in multi-hop wireless networks. We show
that as the number of hops along a path increases, the path duration distribution can be ac-
curately approximated by an exponential distribution under a set of mild conditions, even
when the link duration distributions are not identical. Then, we develop an approximate
model for computing the distribution of link duration under a Random Waypoint (RWP)
mobility model, and demonstrate that the path duration distribution converges to an expo-
nential distribution with increasing number of hops. Simulation results obtained using ns-2
simulator are provided to validate our analysis.
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1 Introduction

Routing protocols for multi-hop wireless ad-hoc networks are classified as being ei-
ther table-driven or on-demand. Table-driven routing protocols attempt to maintain
a path between any two nodes at all times, whereas on-demand routing protocols
establish a path between two nodes only upon request. Due to node mobility, links
along provided paths may become unavailable in an unpredictable manner, a sit-
uation which triggers path recovery. These statistical fluctuations of link and path
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durations are expected to shape the performance and overheads of on-demand rout-
ing protocols. A better and more thorough understanding of these statistical char-
acteristics is therefore warranted. In particular, accurate modeling of link and path
durations can help better evaluate the performance of current and new on-demand
routing protocols without having to run time-consuming detailed simulations.

The distributions of interest are expected to depend on the mobility models used in
the simulations as well as on the range of node speeds. Sadagopan et al. [16] have
recently presented a numerical study of the distribution of multi-hop path dura-
tions under various mobility models. Their study shows that the distribution of path
duration can be accurately approximated by an exponential distribution when the
number of hops is larger than 3 or 4 for all mobility models considered. However,
no explanation was offered for the emergence of the exponential distribution.

In this paper, we develop an approximate framework for handling this issue. We
show that, under certain conditions, the distribution of path duration (appropriately
scaled) converges to an exponential distribution, when the number of hops becomes
large. This result is in line with the simulation results provided in [16], and is simply
another incarnation of Palm’s Theorem [9, Thm. 5-14, p. 157], the one-dimensional
precursor of the celebrated Palm-Khintchine Theorem [9, Thm. 5-15, p. 160] – This
result states that the superposition of a large number of independent equilibrium re-
newal processes, each with a small intensity, behaves asymptotically like a Poisson
process. A preliminary version of this work was reported in the conference paper
[7]. We validate our results through an approximate model which we develop for
computing the distribution of link and path durations with varying number of hops
under a Random Waypoint (RWP) mobility model. Ns-2 simulation results are pro-
vided to further validate our analysis.

The paper is organized as follows. In Section 2 we describe a basic framework
for studying the distribution of path durations. Section 3 introduces the version of
Palm’s Theorem to be used here. This is followed by a discussion of basic modeling
assumptions in Section 4. We outline the RWP mobility model in Section 5 and
describe how the distributions of link and path durations in the RWP mobility model
can be computed in Section 7. Numerical examples are provided in Section 8 under
the RWP mobility model. Section 9 provides a justification for the assumptions
made in Section 4.

A word on the notation and convention used throughout: We find it convenient to
define all the random variables (rvs) of interest on some common probability space
(Ω,F ,P). Two IR–valued rvs X and Y are said to be equal in law if they have the
same distribution, a fact we denote by X =st Y . For any α > 0, we denote by Eα
any rv that is exponentially distributed with parameter α, i.e.,

P [Eα ≤ x] =





1− e−αx if x > 0

0 if x ≤ 0.
(1)
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If H is a probability distribution on IR+, let m(H) denote its first moment which is
always assumed to be finite. Convergence in distribution (with n going to infinity)
is denoted by =⇒n. For any x in IR2, with components (η, ζ), set ||x|| = √η2 + ζ2.
Also, with a > 0 and x in IR2, let Da(x) denote the open disk of radius a centered
at x.

2 A Basic Framework

Consider a mobile ad-hoc network where a set of nodes creates and maintains net-
work connectivity. The routing algorithm is assumed to be an on-demand algorithm,
i.e., a path between a source (node) and a destination (node) is set up only when a
request is made. A detailed discussion of available on-demand routing protocols is
outside the scope of this paper, and we refer the interested reader to the monographs
[13,17] for additional information concerning these routing protocols.

Let V = {1, . . . , I} denote the set of I mobile communicating nodes. Each node
moves across a domain D of R2 or R3 according to some mobility model. Since
there is no fixed infrastructure and nodes are mobile, links between nodes are set up
and torn down dynamically. We assume that a link is either up or down. Two nodes
without a link between them will establish such a link as soon as they become aware
of each other, e.g., when they come within transmission range of each other or
when the signal-to-interference-noise-ratio (SINR) at the receiver exceeds a certain
threshold, and packets from each other can be successfully decoded. The latter case
captures more accurately a physical layer with channel fading. Although this is not
needed for the analysis, communication links are assumed bidirectional since such
bidirectional communication is typically required between two nodes for reliably
forwarding packets, e.g., by means of acknowledgments for each transmission.

The establishment of a path from a source node to a destination node requires the
simultaneous availability of a number of communication links that are all up, one
originating at the source node and another ending at the destination node – Together
these links provide the desired connectivity between source and destination. The
path duration is then defined as the amount of time that elapses from the moment
the path is established until that time when one of the links along the path goes
down, due to either mobility or degradation in SINR. For simplicity of analysis,
path setup delays are assumed negligible.

We model this situation as follows: For distinct nodes i and j in V , we introduce
a {0, 1}-valued reachability process {ξij(t), t ≥ 0} with the interpretation that
ξij(t) = 1 (resp. ξij(t) = 0) if the “link” (i, j) is up (resp. down) at time t ≥ 0.
Such a link (i, j) is understood as a unidirectional link from node i to node j.
Since the communication links are assumed bidirectional, we must have ξij(t) =
ξji(t). The process {ξij(t), t ≥ 0} is simply an alternating on-off process, with
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successive up and down time durations given by the rvs {Uij(k), k = 1, 2, . . .} and
{Dij(k), k = 1, 2, . . .}, respectively.

The reachability processes can be defined in a number of ways. For example, con-
sider the situation where the I nodes travel through the region D. For each i in V ,
let {X i(t), t ≥ 0} describe the trajectory of node i, i.e., X i(t) denotes the posi-
tion of node i at time t ≥ 0. If we do not explicitly model channel fading between
nodes, it is reasonable to assume that two nodes can communicate with each other
reliably if the distance between them is smaller than some fixed transmission range
rmin > 0. Hence, a link between two distinct nodes i and j in V exists at time t ≥ 0
if and only if their distance is smaller than rmin, leading to the definition

ξij(t) := 1 [||X i(t)−Xj(t)|| ≤ rmin] , t ≥ 0. (2)

In the literature this model is known as the disk model [6,14].

Alternative models can take into account the physical layer characteristics of the
channel. For instance, two nodes i and j in V can maintain a link between them at
time t ≥ 0 if and only if

min

(
Pj · Fji(t)

Ψi(t)
,
Pi · Fij(t)

Ψj(t)

)
> Γ (3)

for some threshold Γ > 0, where Pi is the maximum transmission power of node
i, and F (t) = (Fij(t)) denotes the channel gain matrix (including fading) at time t
with Fji(t) ≥ 0 and Fii(t) = 0, i, j = 1, . . . I . Different choices of Ψi(t) in (3) lead
to different physical layer models. This is discussed in more details in Appendix A.

Next we endow V with a time-varying graph structure by introducing a time-
varying set E(t) of directed edges through the relation

E(t) := {(i, j) ∈ V × V : ξij(t) = 1}, t ≥ 0 (4)

where by convention we have set ξii(t) = 0 for each i in V and all t ≥ 0. Thus,
a path can be established (in principle) between nodes s and d at time t ≥ 0, if
node d is reachable from node s by a path in the undirected graph derived from the
directed graph (V,E(t)). Let Psd(t) denote the set of paths from node s to node d
providing this reachability. This set of paths is empty when the nodes s and d are not
reachable from each other at time t. When non-empty, this set Psd(t) may contain
more than one path since multiple paths may exist between the pair of nodes s and
d. In such a case, the routing protocol in use selects one of the possible paths and
let Lsd(t) denote the set of links in Psd(t) which determines the selected path.

For each link ` in Lsd(t), let T`(t) denote the time-to-live or excess life after time
t, i.e., T`(t) is the amount of the time that elapses from time t onward until link `
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is down. The time-to-live or duration Zsd(t) of the established path from node s to
node d using the links in Lsd(t) is defined as the amount of time that elapses from
time t until one of the links in Lsd(t) goes down. This quantity is simply given by

Zsd(t) := min (T`(t) : ` ∈ Lsd(t)) , t ≥ 0. (5)

S

n1

n2

n3

n4

n5

n6

D

Fig. 1. An example of a path and reachability.

We illustrate these notions on the eight node situation depicted in Fig. 1: Assume
that a path is requested from node s to node d at some time t ≥ 0. A dotted line
between two nodes i and j indicates that the bidirectional link between them is
up, i.e., ξij(t) = ξji(t) = 1. Here, since there is no dotted line between s and d,
i.e., ξsd(t) = 0, no one-hop path can be established at the time of path request.
Similarly, we note that ξn1n4(t) = 0 since there is no bidirectional link between
nodes n1 and n4, but ξn4n5(t) = 1 since a bidirectional link exists between nodes
n4 and n5. However, more than one path can be established from s to d since Psd(t)
comprises the two paths {(s, n2), (n2, d)} and {(s, n3), (n3, d)}. The underlying
routing algorithm selects one of them, say {(s, n2), (n2, d)}, a fact indicated by the
bold lines, whence Lsd(t) = {(s, n2), (n2, d)}. As shown in Fig. 2, the path dura-
tion is given by min

(
T(s,n2)(t), T(n2,d)(t)

)
, and the excess life of link (n2, d) being

smaller than that of link (s, n2), the path duration is therefore given by T(n2,d)(t).

3 Palm’s Theorem

We begin our discussion by introducing Palm’s Theorem [9]: Let {X (n)
` , ` =

1, . . . , h(n); n = 1, 2, . . .} be an array of independentR+-valued rvs with {h(n), n =
1, 2, . . .} a monotone increasing sequence of (non-random) integers which exhausts
N, i.e., limn→∞ h(n) = ∞. Fix n = 1, 2, . . .. For each ` = 1, . . . , h(n), the rv X(n)

`

is distributed according to the cumulative distribution function (CDF) F (n)
` given

by
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Fig. 2. Link excess life and path duration.

F
(n)
` (x) =





1

m(G
(n)
`

)

∫ x
0 (1−G(n)

` (y)) dy if x > 0

0 if x ≤ 0
(6)

where G(n)
` is a CDF with support in R+. The distributions {G(n)

` , ` = 1, . . . , h(n)}
are not necessarily identical.

To state the requisite assumptions, we introduce the quantities

λ
(n)
` :=

(
m(G

(n)
` )

)−1
, ` = 1, . . . , h(n), n = 1, 2, . . . .

We assume that the following conditions hold:

Assumption 1 There exists λ > 0 such that

lim
n→∞

h(n)∑

`=1

λ
(n)
` = λ .

Assumption 2 For every x ≥ 0,

lim
n→∞

(
max

`=1,...,h(n)
G

(n)
` (x)

)
= 0 .

A more concrete way to express Assumption 2 is as follows: For every x ≥ 0 and
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any given ε > 0, there exists an integer n? = n?(x; ε) such that

max
`=1,...,h(n)

G
(n)
` (x) ≤ ε, n = n?, n? + 1, . . .

We can now state Palm’s Theorem [9, p. 157] in a form convenient for our purposes.

Theorem 1 Under Assumptions 1 and 2, it holds that

min
(
X

(n)
` , ` = 1, . . . , h(n)

)
=⇒n Eλ . (7)

In other words,

lim
n→∞P

[
min

(
X

(n)
` , ` = 1, . . . , h(n)

)
≤ x

]
=





1− e−λx if x > 0

0 if x ≤ 0
.

The so-called homogeneous case assumes the existence of independent and iden-
tically distributed (i.i.d.) rvs {Xk, k = 1, 2, . . .} distributed according to some
distribution F given by (6) with another distribution G on R+, and takes

X
(n)
` = h(n) ·X`, ` = 1, . . . , h(n)

for each n = 1, 2, . . ., with corresponding distributions

G
(n)
` (x) = G

(
x

h(n)

)
, x ≥ 0, ` = 1, . . . , h(n) .

Assumption 2 now reads limn→∞G
(n)
` (x) = G(0) = 0, i.e., a link duration is

strictly positive with probability one. The convergence (7) reads

h(n) ·min
(
X` ; ` = 1, . . . , h(n)

)
=⇒n Eλ

where λ = m(G)−1. Assumption 1 is automatically satisfied since (m(G
(n)
` ))−1 =

λ
h(n) for each ` = 1, . . . , h(n).

4 Modeling Assumptions and Distributional Convergence

As discussed in Section 1, the overall performance of an on-demand routing proto-
col is affected significantly by the overhead it incurs, which in turn depends on the
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distribution of path durations. Hence, there is a great deal of interest in understand-
ing the distributional properties of the rvs defined through (5).

4.1 The set-up

We are concerned with asymptotic distributional results (as the number of hops
becomes large) in the context of the following standard parametric scenario: For
each n = 1, 2, . . ., let V (n) = {1, . . . , I (n)} and D(n) denote the set of mobile nodes
and the domain across which the nodes move, respectively. For each node i in V (n),
the D(n)-valued process {X (n)

i (t), t ≥ 0} denotes the trajectory of node i in D(n).
The I(n) trajectory processes {X (n)

i (t), t ≥ 0}, i = 1, . . . , I (n), are assumed to be
mutually independent. Moreover, the stochastic process that governs the arrival of
path requests is assumed to be independent of these reachability processes.

Scaling – The situation of interest will be the one where

I(n) ∼ nI(1) and Area(D(n)) ∼ n · Area(D(1)) (8)

as n goes to infinity; 2 it is customary to reparametrize so that I (n) = n. When in
force, the scaling (8) guarantees

I(n)

Area(D(n))
∼ I(1)

Area(D(1))
, (9)

so that the density of nodes, i.e., the number of nodes per unit area, is asymptoti-
cally constant.

Stationarity – As the system is expected to run for a long time, we can assume that
steady state has been reached. This possibility is captured by taking the I(n)×(I(n)−1)

2

reachability processes to be jointly stationary. For distinct i < j in V (n), let the rvs
{(U (n)

ij (k), D
(n)
ij (k)), k = 2, 3, . . .} denote the sequence of up and down times for

the reachability process {ξ(n)
ij (t), t ≥ 0}. Writing

W (n)(k) = ((U
(n)
ij (k), D

(n)
ij (k)), i < j, i, j ∈ V (n)), k = 1, 2, . . . ,

we require that the sequence of rvs {W (n)(k), k = 2, 3, . . .} be strictly stationary.
In particular, for distinct i < j in V (n), the sequence {(U (n)

ij (k), D(n)
ij (k)), k =

2, 3, . . .} constitutes a stationary sequence with generic marginals (U
(n)
ij , D(n)

ij ). We

denote by G(n)
ij the CDF of U (n)

ij . This model is general enough that link dynamics

2 From now on we omit this qualifier in all asymptotic equivalences.
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due to both mobility and channel fading can be captured by appropriately selecting
the CDFs for U (n)

ij .

Well-known results for renewal processes and independent on-off processes in
equilibrium [9, Sections 5-6] can be generalized as follows: With ` = (i, j), in
the notation introduced in Section 2, we have

P
[
T

(n)
` (0) ≤ x

∣∣∣ξ(n)
ij (0) = 1

]
= F

(n)
` (x), x ∈ R (10)

where the CDF F (n)
` is of the form (6) for some link duration CDF G(n)

` . In other
words, F (n)

` is simply the distribution of the forward recurrence time associated
with U (n)

` . From (6) the duration of an one-hop path has a non-increasing probabil-
ity density function (PDF). If X (n)

` denotes any R+-valued rv distributed according
to F (n)

` , then the relation (10) simply states, with a little abuse of notation, that

[
T

(n)
` (0) ≤ x

∣∣∣ξ(n)
ij (0) = 1

]
=st X

(n)
` .

The rv (5) can now be viewed as the rv Z (n) defined by

Z(n) := min
(
X

(n)
` : ` = 1, . . . , H (n)

)
(11)

where H(n) = |L(n)
sd (0)|. Due to the underlying stationarity assumptions, it clearly

suffices to consider only the case t = 0 as we do from now on.

4.2 Modeling assumptions

The form of either (5) or (11) already highlights the sources of difficulty in mod-
eling and studying the distribution of path durations: First, the set Lsd(0) of active
links is a random subset of E(0), which is determined by the reachability processes
(and of the appropriate time-to-live rvs entering (5)). Second, the reachability pro-
cesses are usually not independent of each other, as should be apparent from either
formulation (2) or (3). At first blush this seems to preclude applying Palm’s Theo-
rem in order to obtain the asymptotic properties of the rv defined at (11). Therefore,
in order to make progress, we shall need to make several simplifying assumptions.

Asymptotics of the random set L(n)
sd (0) – Under scaling (8) the average number

of hops in a path between two randomly selected nodes typically increases with n.
For example, under the disk model (2) with a fixed transmission range, the expected
number of hops along a path scales with

√
n. This suggests that we can select a pair
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of nodes s and d in V (n) such that limn→∞ |L(n)
sd (0)| = ∞, where for convenience

the sequence {|L(n)
sd (0)|, n = 1, 2, . . .} is assumed to be deterministic.

Independence – For each n = 1, 2, . . ., we assume that the reachability processes
{ξ(n)

ij (t), t ≥ 0} (i < j in V (n)) are mutually independent. This assumption is not
true in general even under the assumption of mutual independence of the trajec-
tory processes. One source of dependence between the reachability processes arises
from the fact that two reachability processes {ξij(t), t ≥ 0} and {ξjk(t), t ≥ 0}
(with distinct i, j, k in V (n)) share a common node j, and it is clear that the reacha-
bility process {ξik(t), t ≥ 0} is not independent of the first two processes.

A consequence of this independence assumption is that for each n = 1, 2, . . ., the
rvs {X(n)

` , ` = 1, . . . , H (n)} are mutually independent rvs distributed according
to the CDF F

(n)
` associated by (6) with some link duration CDF G

(n)
` . The CDFs

{G(n)
` , ` = 1, . . . , H (n); n = 1, 2, . . .} are not necessarily identical. We are now

ready to discuss the asymptotic behavior of (11) as H (n) becomes large, and the
emergence of the exponential distribution in the limit.

4.3 Distributional convergence of a path duration

Assumption 3 The link duration distributions {G(n)
` , ` = 1, . . . , H (n); n = 1, 2, . . .}

satisfy Assumptions 1 and 2 with some constant λ > 0.

With obvious identification, we readily obtain from Theorem 1 the following con-
vergence result.

Theorem 2 Under Assumption 3, we have

lim
n→∞P

[
Z(n) ≤ x

]
=





1− e−λx if x > 0

0 if x ≤ 0
. (12)

We introduced the assumption of independence of the reachability processes in
order to obtain Theorem 2 by an application of Palm’s Theorem. While this as-
sumption may be viewed as unrealistic (more on that in a moment), we note that
more general versions of Palm’s Theorem (or of its variant) are available, and yield
similar distributional convergence without the independence assumption under a
scaling assumption slightly different from Assumption 1 (see [8] for an example).
Furthermore, the example using the RWP mobility model in Section 9 suggests that
the dependency in link excess lives introduced by the lack of independence of the
reachability processes is negligible between two links separated by other interme-
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diate link(s) and is weak even between two neighboring links sharing a common
node.

This provides further comfort for the validity of Theorem 2 to the effect that when
the number of hops is large (and the link excess lives are approximately indepen-
dent), the distribution of path duration can be accurately approximated by an ex-
ponential rv under a set of mild conditions. As a byproduct, we see that if the path
duration can be approximated by an exponential rv, then the inverse of expected
value of the path duration is approximately given by the sum of the inverses of
expected link durations.

As noted earlier, (6) implies that the PDF of the duration of an one-hop path is a
non-increasing function. This observation contrasts with the numerical results (Fig.
6) in [16], where the authors suggest, on the basis of simulation results, that the
one-hop path duration may not have a non-increasing PDF. We suspect this might
be due to (i) the limited number of statistics they collected from the simulation as
a result of low mobility or to (ii) the slightly different definition of path duration
used in the paper. Note that the PDF plots become much smoother with increasing
mobility or speed of nodes in [16], thereby yielding a larger number of collected
samples (e.g., Figs. 6 and 7 vs. Figs. 8 - 10 in [16]).

5 The Random Waypoint Mobility model

The random waypoint (RWP) mobility model without pause [10] is now introduced,
It will be used for computing the distributions of link and path durations. Approx-
imations for these quantities are derived in Section 7 when the number of hops
grows unbounded.

We begin by describing the model for a single node roaming across a given convex
domain D of IR2. 3 The trajectory {X(t), t ≥ 0} of this single node is determined
by linear interpolation between a sequence of D-valued rvs {X̃p, p = 0, 1, . . .},
the so-called random waypoints. For each p = 0, 1, . . ., the node reaches the ran-
dom waypoint X̃p at time Tp, and immediately starts moving on the straight line
connecting X̃p and X̃p+1 at constant (possibly random) speed S̃p. With T0 = 0,
we see that

Tp+1 = Tp +
‖X̃p+1 − X̃p‖

S̃p
. (13)

3 The case where D is a subset of IR3 can be handled in a similar way. The details are
omitted in the interest of brevity.
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Moreover, in the interval [Tp, Tp+1), the position of the node is given by

X(t) = X̃p +
X̃p+1 − X̃p

‖X̃p+1 − X̃p‖
S̃p(t− Tp), Tp ≤ t < Tp+1 (14)

while the instantaneous speed is given by

S(t) = S̃p, Tp ≤ t < Tp+1. (15)

Throughout, we make use of this mobility model under the following standard as-
sumptions: (i) The rvs {X̃p, S̃p, p = 0, 1, . . .} are mutually independent; (ii) The
rvs {X̃p, p = 0, 1, . . .} are i.i.d. rvs which are uniformly distributed over the region
D; and (iii) The rvs {S̃p, p = 0, 1, . . .} are i.i.d. rvs which are uniformly distributed
over the finite interval [S?, S

?] with S? > 0; the limits S? and S? are the minimum
and maximum speed of the node, respectively.

Under these assumptions, it can be shown [11] that a stationary regime exists and
(X(t), S(t)) =⇒t (X, S) for someD×[S?, S

?]-valued rv (X, S) withX = (η, ζ).
It turns out that the rvs X and S are independent, with the distribution of X inde-
pendent of the speed distribution used. During the forthcoming discussion, given
our interest in this steady state regime, the node’s position and its instantaneous
speed are always assumed distributed according to the stationary version (X, S).
Its distributional properties are developed in the remainder of this section.

The CDF of the stationary speed S admits a PDF fS given by

fS(s) =
1

s
·
(

ln
(
S?

S?

))−1

, S? ≤ s ≤ S?. (16)

If we now take D to be the disk Da(0) for some a > 0, then the CDF of rv X
admits a PDF, denoted hereafter by fa. 4 By circular symmetry, this PDF depends
only on the distance to the origin. To exploit this fact further, we introduce the
polar coordinates (R,Θ) of X , where R denotes the distance of X to the origin,
i.e., R :=

√
η2 + ζ2, and Θ denotes the angle determined with the η-axis by the

line joining the origin to X , i.e., Θ := arctan
(
ζ
η

)
. As argued in [1], the PDF of R

is well approximated by the PDF φa given by

φa(r) =





4r
a2

(
1− r2

a2

)
if 0 ≤ r ≤ a

0 otherwise
, (17)

4 Although here we carry out most of the asymptotic analysis of the next section with
disks, our results in this section can be extended to the case when a rectangular region is
used (see [1] for an example).
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while Θ is uniformly distributed on [0, 2π). Furthermore, the rvs R and Θ are inde-
pendent, so that the polar coordinates (R,Θ) of X have a joint PDF which is well
approximated by

fR,Θ(r, θ) =
1

2π
φa(r), 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π. (18)

Noting (see [3, p. 241])

fR,Θ(r, θ) = fa(r cos(θ), r sin(θ)) · r , 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π

we conclude to the approximation

fa(x) =





2
π·a2

(
1− ||x||2

a2

)
if 0 ≤ ||x|| ≤ a

0 otherwise
. (19)

In particular,

fa(r, 0) =





2
π·a2

(
1− r2

a2

)
if 0 ≤ r ≤ a

0 otherwise
. (20)

The PDF at (20) is plotted in Fig. 3 for different values of a. While the boundary
effects preclude the spatial distribution of a node to be uniform on the disk, they
diminish with increasing a.
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Fig. 3. Plot of fa(r, 0) for a = 20, 45, 70, 100.
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6 Asymptotic results for the RWP model

We now return to the parametric scenario of Section 4: For each n = 1, 2, . . ., there
are nmobile nodes 5 moving about on the diskDan(0) of radius an with an = α

√
n

for some α > 0. This automatically ensures (8). From now on, we revert back to
the notation D(n) to denote Dan(0).

These n nodes move independently of each other, each according to the RWP mo-
bility model over D(n) as described in Section 5. For each i = 1, . . . , n, letX (n)

i =

(η
(n)
i , ζ

(n)
i ) denote the (stationary) position of node i. Thus, the rvsX (n)

1 , . . . ,X (n)
n

are i.i.d. rvs with support on D(n) whose distributional properties were discussed
earlier. In particular, their common PDF fan will be approximated by (19). There-
after we denote byX (n) anyD(n)-valued rv distributed according to the distribution
with PDF fan .

We do not explicitly model the channel fading between nodes and assume that two
nodes can communicate with each other reliably if the distance between them is
smaller than some transmission range rmin > 0. This leads to the definition (2) for
the reachability processes where the value of rmin is fixed and independent of n.

For each x in D(n), we simplify the notation by writing D(x) instead of Drmin(x).
For any B in B(IR2), we have

P
[
X(n) ∈ B

∣∣∣X(n) ∈ D(x)
]

=
1

P
[
X(n) ∈ D(x)

] ·
∫

B(x)

fan(z)dz (21)

where we have set B(x) := B ∩ D(x).

The conditional distribution ofX (n) given thatX(n) lies in the disk D(x) admits a
PDF given by

f (n)(z|x) =





fan (z)

P

[
X (n)∈D(x)

] if z ∈ D(n) ∩ D(x)

0 otherwise

. (22)

This conditional distribution has support contained in the disk D(x) with

∫

D(x)

f (n)(z|x)dz = 1,

5 This corresponds to I(n) = n.
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so that we must have

inf
z∈D(x)

f (n)(z|x) · πr2
min ≤ 1 ≤ sup

z∈D(x)

f (n)(z|x) · πr2
min. (23)

For each x in D(n), set

M (n)(x) := sup
z,z′∈D(x)

∣∣∣f (n)(z|x)− f (n)(z′|x)
∣∣∣ (24)

and for arbitrary ε > 0, define the set

Aεn :=
{
x ∈ D(n) : M (n)(x) ≤ ε

}
. (25)

If Aεn were non-empty, then membership of the point x in Aε
n implies

∣∣∣ sup
z∈D(x)

f (n)(z|x)− inf
z∈D(x)

f (n)(z|x)
∣∣∣ ≤ ε

and by virtue of (23), it then follows that
∣∣∣∣∣f

(n)(z|x)− 1

πr2
min

∣∣∣∣∣ ≤ ε, z ∈ D(x).

Given that ε can be selected arbitrarily small, this plausibility argument forms the
basis for the statement that for sufficiently large n the conditional distribution of
X(n) given [X(n) ∈ D(Xi)] can be approximated by a uniform distribution on
D(x). This is formalized in the following results whose proof is provided in Ap-
pendix B.

Proposition 3 For all ε > 0, we have limn→∞P
[
X(n) ∈ Aεn

]
= 1.

7 Distribution of Link and Path Durations

We discuss how to approximate the distribution of link durations under the RWP
mobility model without pause discussed in the two previous sections. To do so, we
focus on two nodes, denoted by n1 and n2, that become neighbors at some time
t ≥ 0, and find the distribution of the link duration between them.

We assume that the radius of the disk a is sufficiently large (a � rmin) so that the
conditional distribution discussed in the previous section can be approximated by
a uniform distribution. Without loss of generality we assume a = 1 and scale other
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parameters accordingly. 6 This also implies that the average distance between two
consecutive random waypoints selected by a node, is much larger than the transmis-
sion range rmin. Therefore, in most cases when two nodes become neighbors, with
a high probability, neither of these two nodes will reach the next random waypoint
before the link between them is torn down after they move out of the transmission
range of each other. In other words, the average travel time of a node between two
consecutive random waypoints selected by the node is much larger than the aver-
age link duration between two nodes. Hence, for simplicity of analysis we assume
that neither node reaches its next random waypoint while they are neighbors, and
truncate the link duration to model the arrival of the nodes at the random waypoints.

For the purpose of computing the distribution of link duration, rather than modeling
the mobility of both nodes explicitly, we only model the net effects of mobility
between the nodes by pretending that node n1 is fixed and modeling the relative
motion of node n2 with respect to n1.

Denote the (relative) speed of node n2 with respect to node n1 by S. Then, the CDF
of the link duration U , conditional on the relative speed S, can be approximated as

P [U ≤ d | S = s] = lim
ε↓0

P [U ≤ d | s < S ≤ s+ ε]

≈ g(d · s) (26)

with

g(t) :=





(
1−

√
1−

(
t

2rmin

)2
)
· u(t) if t ≤ 2rmin

1 if t > 2rmin

where u(·) is a unit step function. The derivation of (26) is provided in Appendix C.
Therefore, if the distribution H of relative speed S is known, the CDF of the link
duration U can be approximated using (26), and we obtain

P [U ≤ d] =
∫

s

P [U ≤ d | S = s] dH(s) ≈
∫

s

g(d · s)dH(s) . (27)

Let V (1) (resp. V (2)) represent the velocity of node n1 (resp. n2). Since the mo-
bility of a node is independent of that of the others, the relative motion of node n2
with respect to node n1 is simply the difference V = V (2) − V (1), as shown in
Fig. 4.

6 Note that fixing the disk radius and reducing the transmission range rmin is equivalent
to fixing the transmission range first and allowing the disk radius to increase appropriately
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Fig. 4. Relative motion of n2 with respect to n1.

For simplicity of analysis, assume that the angle Θ
′

between V (2) and −V (1) is
uniformly distributed in [0, 2π). Numerical examples obtained using ns-2 simula-
tion in Section 8 show that this assumption introduces only a negligible amount
of discrepancy in link duration distribution. Letting S(i) =

∣∣∣
∣∣∣V (i)

∣∣∣
∣∣∣, we obtain the

relative speed S between the nodes as

S =
√

(S(1) + S(2) · cos Θ′)2 + (S(2) · sin Θ′)2 ,

and

P [S ≤ s] = P
[
(S(1) + S(2) · cos Θ

′
)2 + (S(2) · sin Θ

′
)2 ≤ s2

]
, s ≥ 0 (28)

Therefore, if we know the (stationary) distribution of S (i), we can numerically com-
pute the CDF of S from (28).

If the speed is selected from the interval [S?, S?], the PDF of the stationary distri-
bution of the speed S(i) of node i is given by (16), and the CDF H of S can now be
evaluated numerically via (28) and (16).

Once the CDF H becomes available, the CDF G of the link duration U can be
calculated using (27), and the CDF F of the link excess life can be obtained from
(6). The PDF of path duration with h hops is given by

fZ(n)(x) =
h

m(G)
(1− F (x))h−1(1−G(x)), x ≥ 0 . (29)

In the next section we compare the numbers we obtain using this model against the
simulation results obtained using ns-2 simulator.

for our purposes.
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# of links 20,096 # of 1 hop paths 1,226

# of 2 hop paths 1,420 # of 3 hop paths 1,968

# of 4 hop paths 2,200 # of 5 hop paths 2,268

# of 6 hop paths 2,041 # of 7 hop paths 1,703
Table 1
Simulation statistics with S? = 1 m/s and S? = 30 m/s.

8 NS-2 Simulation Results

We now turn to validating the results of Section 4 by means of simulation results
under the RWP mobility model without pause. The simulation results are obtained
using the ns-2 simulator.

The simulation is run on a rectangular region of 2 km × 2 km. 7 There are 200
nodes moving across this region, and the transmission range of these nodes is fixed
at 250 m. When a node selects the next random waypoint, it is selected according to
a uniform distribution on the rectangular region. A node moves along a straight line
connecting two consecutive random waypoints without a pause. Each simulation
run lasts for 1,200 seconds, but we only look at the last 800 seconds in order to
reduce the effects of the transient period. We take the average of 5 runs.
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Fig. 5. PDF of link duration. (a) S? = 1 m/s, S? = 30 m/s, (b) S? = 10 m/s, S? = 30 m/s.

We record the setup and teardown times of all the links that are established between
any two nodes throughout the simulation and compute the empirical distribution of
the durations of the links that are set up over the period of [400, 1200] seconds. The
number of link statistics collected for the case with [S?, S

?] = [1, 30] m/s is 20,096
(Table 1). The empirical distribution of link duration from the simulation and the

7 As mentioned earlier, the results in Section 6 for disks can be extended to the case with
rectangular regions.
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distribution computed from (27) are plotted in Fig. 5. Small fluctuations in the
predicted distribution are due to the finite number of points used in the calculations.

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

excess life pdf (S
*

 = 1 m/s, S*  = 30 m/s)

time (seconds)

P
D

F

predicted
ns−2 sim

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

excess life pdf (S
*

 = 10 m/s, S*  = 30 m/s)

time (seconds)

P
D

F

(a) (b)

Fig. 6. PDF of link excess life. (a) S? = 1 m/s, S? = 30 m/s, (b) S? = 10 m/s, S? = 30
m/s.

The PDF of a link excess life is plotted in Fig. 6 for both the ns-2 simulation and the
model given by (6). As one can see, the PDFs computed from (27) and (6) match
the empirical distributions very well, thus validating the accuracy of the model.
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Fig. 7. Exponential fitting of path duration distribution and comparison with predicted dis-
tribution (S? = 1 m/s and S? = 30 m/s). (a) Exponential fitting, (b) Plot of natural loga-
rithm of empirical distribution and predicted distribution.

Similarly, as with the links, we record the time at which a path is set up and the
time at which one of its links is broken, as well as the number of hops in the path.
We plot the empirical PDF of path distribution for the paths with 2 and 4 hops in
Fig. 7(a) and exponential fitting curves obtained using the MATLAB expfit(·) func-
tion. The maximum likelihood estimate parameters of the exponential distribution
with hop counts h = 2 and h = 4 are 0.0770 and 0.2123, respectively. Although
the measured distribution is a little noisy, the exponential fitting curve is seen to
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match the data well for h = 4, validating our claim in Theorem 2 that as the num-
ber of hops increases, the distribution of path duration can be well approximated by
an exponential distribution. Our numerical results are consistent with the observa-
tions made in [16] that when the number of hops is larger than 3-4, the distribution
closely resembles an exponential distribution.

Fig. 7(b) plots the natural logarithm of the empirical PDF of path duration and
that of the predicted distribution from (29) (under the independence assumption)
for hop counts h = 1, 2, and 4. Despite the noise in the measurement and limited
number of statistics collected, the simulation data follow the plot of the predicted
distributions fairly closely, further validating the accuracy of our model.

9 Correlation of Link Excess Lives

In Section 4 we assumed that the stationary reachability processes {ξij(t), t ≥ 0}
are mutually independent, so that the excess lives of the links along a path are
mutually independent. However, this assumption does not hold in general. We now
take a closer look at this independence assumption of the excess lives of the links
and attempt to provide some justification for it.

Observe that if two links along a path are separated by at least one other interme-
diary link, since no nodes are shared by the links, the excess lives of these links
are expected to be at most weakly dependent, if not independent. However, two
neighboring links share a node. In the example shown in Fig. 8, node n2 is shared
by links (n1, n2) and (n2, n3). Since the excess lives of these two links depend on
the mobility of node n2, the independence assumption is clearly not true in general
in this case, and calls for a careful study.

Strictly speaking, the independence assumption does not hold between two neigh-
boring links. However, we first demonstrate that the correlation coefficient between
the excess lives of two neighboring links, which is a measure of dependency be-
tween them, is nonetheless rather small. Using the ns-2 simulation results, we will
validate the statement that indeed the dependency between two neighboring links is
weak, and two links separated by one or more links exhibit very little dependency,
if any.

We adopt the model outlined in Section 5 and describe how we can approximate the
correlation coefficient of the two neighboring links along a path. Without loss of
generality we assume that two neighboring links under consideration are given by
(n1, n2) and (n2, n3), which we denote by `1 and `2, respectively. Here we assume
that the underlying routing protocol does not attempt to optimize the selected path,
and nodes n1 and n3 are uniformly distributed within the transmission range of
node n2 at the time of path selection. A more efficient routing protocol should not
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Fig. 8. Neighboring links.

select n2 as the next hop from n1 if n3 is within the transmission range of n1.
However, due to the broadcast nature of a path request packet, node n3 may not
receive the request message from node n1 correctly, and may reply only to the
broadcast message from node n2.

Denote the excess life of link `i by Xi (i = 1, 2). The correlation coefficient of X1

and X2 is defined [18] to be

ρX1,X2 =
E [X1X2]−E [X1] E [X2]√

V ar(X1)V ar(X2)
=

E [X1X2]− E [X1]2

V ar(X1)
. (30)

From the previous section we can compute the distribution F of the link excess life,
and thus E [X1] and V ar(X1) = E [(X1)2] − E [X1]2. The correlation E [X1X2]
can be computed by conditioning on the speed S(2) of node n2. The details of the
computation of the correlation E [X1X2] are provided in Appendix D.

If the node speed is chosen from the interval [1, 30] m/s, the correlation coefficient
ρ of X1 and X2 calculated from our model (Eq. (D.4) in Appendix D) is approx-
imately 0.0442. The correlation between the neighboring links is therefore rather
weak, although they are not independent.

We also plot the empirical correlation coefficient obtained from the ns-2 simulation
results as a function of the distance between links along a path. This is given in Fig.
9. The x-axis in the figure is the number of intermediate links between the links un-
der consideration plus one; neighboring links have a distance of 1. The correlation
coefficient is plotted on the y-axis. We see that the correlation between two links
which are separated by at least one intermediate link between them is very weak,
if they are not independent. Moreover, the dependency between neighboring links
captured by the correlation coefficient in the plot is rather weak as well, which is
consistent with our analysis in this section. Therefore, although our results indicate
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that the residual lives of links along a path may not be independent in general, both
our analysis and numerical results suggest that any dependency that may exist is
weak in the case of the RWP mobility model.

10 Conclusions

We have studied the distributional properties of path duration in multi-hop wireless
networks. We have shown that, under certain conditions, the distribution of path du-
ration (appropriately scaled) converges to an exponential distribution as the number
of hops increases. The results were verified using a simple RWP mobility model.
This allows us to compute the distribution of link duration given the distribution of
speed of a node as well as the distributions of excess life and path duration.

The analysis was carried out under the assumption that the link durations are mutu-
ally independent. Although this may not be strictly true in general, we have shown
in the case of RWP mobility model that the correlation of the excess lives of two
neighboring links along a path is rather weak. Furthermore, even when link ex-
cess lives are dependent, we suspect that under certain dependence conditions, the
distributional convergence established in this paper will continue to hold. We are
currently investigating the correlation structure of link durations to understand the
implications of link duration dependence on the performance of on-demand routing
protocols and on the distributional properties of path duration.
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A Appendix I
Reachability Processes Based on Physical Layer Models

As mentioned in Section 2, the reachability processes can be defined based on the
physical channel characteristics.

In the simplest form, one can assume that node i can decode the packets from node
j if and only if the received signal power exceeds some threshold Γ > 0 [2,15]. If
Pi is the maximum transmission power of node i, this implies that the reachability
process between nodes i and j is given by (3) with Ψi(t) = 1 as the numerators
give the largest achievable received signal power at the nodes.

Similarly, if one assumes that packets can be successfully decoded if the achieved
SINR exceeds the threshold Γ [6,5], then the reachability process between nodes i
and j is again determined through by (3) with

Ψi(t) = Wi +
∑

k∈TX(t)\{j}
Pk(t) · Fki(t) , (A.1)

where Wi is the noise variance at node i, TX(t) is the set of transmitters at time t
and Pk(t) denotes the transmission power of node k. The right hand side of (A.1)
represents the sum of noise power and the interference at node i at time t. This
implies that nodes i and j have connectivity if and only if the achieved SINR value
using the maximum transmission power exceeds Γ in both directions.

B Appendix II
A Proof of Proposition 3

Let {βn, n = 1, . . .} be a sequence of positive constants in (0, 1) such that (i)
limn→∞ βn = 0, and (ii) limn→∞ βn ·an =∞ so that (iii) limn→∞(1−βn)·an =∞.
If D?n denotes the disk centered at the origin with radius (1 − βn)an, then an easy
calculation based on (17) shows that P

[
X(n) ∈ D?n

]
= (1− βn)2(2− (1− βn)2),

whence
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lim
n→∞P

[
X(n) ∈ D?n

]
= 1. (B.1)

We shall show shortly that

lim
n→∞ sup

x∈D?n
M (n)(x) = 0. (B.2)

In that case, for all ε > 0, there exists a finite integer n? = n?(ε) such that

M (n)(x) ≤ ε, n = n?, n? + 1, . . . (B.3)

for all x in D?n. As a result, the set Aε
n is not empty for large enough n since

D?n ⊆ Aεn, and the conclusion of Proposition 3 immediately follows from (B.1).

In order to show (B.2), fix n = 1, 2, . . . large enough so that (1−βn)·an+rmin < an;
this is possible by (ii) and (iii). Then, note that for x in D?n, the disk D(x) is now
completely contained in D(n). Thus, by the definition (24) of M (n)(x), we get

M (n)(x) = P
[
X(n) ∈ D(x)

]−1 · sup
z,z′∈D(x)

∣∣∣fan(z)− fan(z′)
∣∣∣ (B.4)

as we make use of (22). The approximation (19) readily yields

M (n)(x) =
1

Cn(x)
· sup
z,z′∈D(x)

∣∣∣||z||2 − ||z′||2
∣∣∣ (B.5)

with

Cn(x) :=
πa4

n

2
·P

[
X(n) ∈ D(x)

]
.

Substituting the relation

P
[
X(n) ∈ D(x)

]
=

2

πa2
n

∫

D(x)

(
1− ||z||

2

a2
n

)
dz

into the expression for Cn(x), we find

Cn(x) = a2
n

∫

D(x)

(
1− ||z||

2

a2
n

)
dz

25



= πa2
nr

2
min −

∫

D(x)

||z||2 dz

≥πr2
min ·

(
a2
n − max

z∈D(x)
||z||2

)
. (B.6)

Direct geometric arguments show that

sup
z,z′∈D(x)

∣∣∣||z||2 − ||z′||2
∣∣∣ ≤ 4rmin ||x|| (B.7)

and

max
z∈D(x)

||z||2 =

(
1 +

rmin
||x||

)2

||x||2 = (||x||+ rmin)2 . (B.8)

Thus, combining the facts (B.7) and (B.8), we conclude from (B.5) that

M (n)(x) ≤ 4

πrmin
· ||x||
a2
n − (||x||+ rmin)2 , x ∈ D?n (B.9)

Elementary calculus now shows that the bound in (B.9) achieves its maximum over
the set D?n when ||x|| = (1− βn)an. Thus,

sup
x∈D?n

M (n)(x) ≤ 4

πrmin
· (1− βn)an

a2
n − ((1− βn)an + rmin)2 (B.10)

and the desired conclusion (B.2) follows.

C Appendix III
Derivation of Approximation in (26)

Consider two nodes n1 and n2 that become neighbors at some time t ≥ 0, as shown
in Fig. C.1. Let φ denote the distance between n1 and n2 when they are closest
to each other. The location of node n2 when the distance between them is φ, is
denoted by x as shown in Fig. C.1. We draw a reference line that is perpendicular
to the arrow from n1 to x and goes through n1; this is shown as a long solid line
in Fig. C.1. Note that the relative motion of node n2 with respect to node n1 is
parallel to the reference line. Also, the relative motion of node n2 is parallel to this
reference line and they become neighbors at some point (before the angle between
the reference line and the arrow from n1 to n2 becomes π

2
). Thus, under the steady
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Fig. C.1. Link duration.

state assumption along with the assumption rmin � 1, the minimum distance φ is
approximately uniformly distributed on the interval [0, rmin) from Proposition 3.

Given the (relative) speed of node n2, denoted by S, and the angle of the arrow
from node n1 to node n2 with the reference line when n2 first comes within the
transmission range of n1, denoted by Θ in Fig. C.1, the duration of the link between
these two nodes is given by

U(S,Θ) =
2rmin cos Θ

S
. (C.1)

Therefore, from the independence of mobility of nodes, we can approximate the
CDF of link duration U conditional on the relative speed S as follows: Using (C.1),
we get

P [U ≤ d | S = s] = P
[
2rmin cos Θ

s
≤ d

]

= P

[
cos Θ ≤ d · s

2rmin

]

= P


sin Θ ≥

√√√√1−
(
d · s

2rmin

)2



≈





(
1−

√
1−

(
d·s

2rmin

)2
)
· u(d) if d ≤ 2rmin

s

1 if d > 2rmin
s

where the last approximation follows from the fact that rmin · sin Θ = φ so that
sin Θ is approximately uniformly distributed in [0, 1) as explained earlier.
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D Appendix IV
Calculation of Correlation E [X1X2]

We explain how the correlation E [X1X2] in (30) can be computed in the RWP
mobility model under consideration. By conditioning on the speed S(2) of node n2,
we have

E [X1X2] = E
[
E
[
X1X2 | S(2)

]]
=
∫

s

E
[
X1X2 | S(2) = s

]
dQ(s)

where Q is the distribution of S(2) at steady state. If the node speed is selected from
the interval [S?, S?], then (16) yields

E [X1X2] =
(

ln
(
S?

S?

))−1

·
S?∫

S?

E
[
X1X2 | S(2) = s

] ds
s
.

We now describe how to compute the conditional expected value E
[
X1X2 | S(2) = s

]
.

This requires computing the conditional distribution of the relative speed between
n2 and its neighbors given the value of S(2), which is different from the a priori
distribution of the relative speed used in Section 7. However, the calculation of this
conditional distribution can be carried out in a similar manner.

Without loss of generality, we take the link `1 = (n1, n2) to compute the link
duration distribution conditional on the value of S(2). Suppose that the mobility of
node n1 (resp. n2) is represented by V (1) (resp. V (2)) as before and assume that
the angle Θ

′
between V (1) and −V (2) is uniformly distributed in [0, 2π). With a

little abuse of notation, the CDF of the relative speed S of node n1 with respect to
node n2 conditional on S(2) is given by

Hs2(s) = P
[
S ≤ s | S(2) = s2

]

= P
[
(S(1) · cos Θ

′
+ s2)2 + (S(1) · sin Θ

′
)2 ≤ s2

]
(D.1)

where S(1) =
∣∣∣
∣∣∣V (1)

∣∣∣
∣∣∣. The conditional distribution Hs2(s) of the relative speed in

(D.1) can be used to compute the conditional distribution of link duration from

Gs2(d) = P
[
U ≤ d | S(2) = s2

]

=
∫

s

P
[
U ≤ d | S(2) = s2, S = s

]
dHs2(s)

=
∫

s

P [U ≤ d | S = s] dHs2(s) (D.2)
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Using (D.2), the conditional link excess life distribution given S (2) = s2 can be
computed according to

Fs2(x) =F (x | S(2) = s2)

=





1
m(Gs2 )

∫ x
0 (1−Gs2(y)) dy if x > 0

0 if x ≤ 0
(D.3)

where m(Gs2) is the mean of Gs2 .

Since X1 and X2 are conditionally independent given the speed S(2) of node n2,
the correlation E [X1X2] can be computed using (D.3) as

E [X1X2] = E
[
E
[
X1X2 | S(2)

]]

=
∫

s2

E
[
X1X2 | S(2) = s2

]
dQ(s2)

=
∫

s2



∫

x1

x1dFs2(x1)
∫

x2

x2dFs2(x2)


 dQ(s2) . (D.4)
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