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Abstract
We consider the following channel assignment problem arising in wireless networks. We are given a graph

G = (V,E), and the number of wireless cards Cv for all v, which limit the number of colors that edges incident
to v can use. We also have the total number of channels CG available in the network. For a pair of edges incident
to a vertex, they are said to be conflicting if the colors assigned to them are the same. Our goal is to color edges
(assign channels) so that the number of conflicts is minimized. We first consider the homogeneous network where
Cv = k and CG ≥ Cv for all nodes v. The problem is NP-hard by a reduction from EDGE COLORING and we
present two combinatorial algorithms for this case. The first algorithm is a distributed greedy method, which
gives a solution with at most (1 − 1

k )|E| more conflicts than the optimal solution. We also present an algorithm
yielding at most |V | more conflicts than the optimal solution. The algorithm generalizes Vizing’s algorithm in
the sense that it gives the same result as Vizing’s algorithm when k = ∆ + 1. Moreover, we show that this
approximation result is best possible unless P = NP . For the case where Cv = 1 or k, we show that the
problem is NP-hard even when Cv = 1 or 2, and CG = 2, and present two algorithms. The first algorithm is
completely combinatorial and produces a solution with at most (2 − 1

k )OPT + (1 − 1
k )|E| conflicts. We also

develop an SDP-based algorithm, producing a solution with at most 1.122OPT + 0.122|E| conflicts for k = 2,
and (2−Θ( ln k

k ))OPT + (1−Θ( ln k
k ))|E| conflicts in general.

1 Introduction
We consider a channel assignment problem arising in multi-channel wireless networks. In wireless networks nearby
nodes interfere with each other and cannot simultaneously transmit over the same wireless channel. One way to
overcome this limitation is to assign independent channels (that can be used without interference) to nearby links of
the network. Consider the example shown in Figure 1. When all links use the same channel, only one pair of nodes
may communicate with each other at a time due to conflicts. However, if there are three channels available and each
node has two wireless interface cards (so it can use two channels), then we may assign a different channel to each
link to avoid conflicts among edges in this channel assignment. Channel assignment to utilize multiple channels
have recently been studied by many researchers in networking community [1, 2, 3, 4].

We informally define the SOFT EDGE COLORING problem as follows. We are given a graph G = (V,E), and
constraints on the number of wireless cards Cv for all v, which limit the number of colors that edges incident to v

can use. In addition, we have a constraint on the total number of channels available in the network (denoted as CG).
For a pair of edges incident to a vertex, they are said to be conflicting if the colors assigned to them are the same.
Our goal is to color edges (assign channels) so that the number of conflicts is minimized while satisfying constraints
on the number of colors that can be used.

SOFT EDGE COLORING is a variant of the EDGE COLORING problem. In our problem, coloring need not be
proper (two adjacent edges are allowed to use the same color)—the goal is to minimize the number of such conflicts.
In addition, each node has its local color constraint, which limits the number of colors that can be used by the edges
incident to the node. For example, if a node has two wireless cards (Cv = 2), the node can choose two colors and
edges incident to the node should use only those two colors.
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Figure 1: Each node has two wireless interface cards (thus can use two different channels) and three channels are available in
total. We can assign a distinct channel to each link as shown above so that there is no conflict among edges.

Our results. We briefly summarize our results. We first consider the homogeneous network where Cv = k and
CG ≥ Cv for all nodes v. For an arbitrary k, the problem is NP-hard by a reduction from EDGE COLORING. We
present two combinatorial algorithms for this case. The first algorithm is a simple greedy method, which gives a
solution with at most (1 − 1

k )|E| more conflicts than the optimal solution; furthermore, it can be computed in a
distributed fashion. We also present an algorithm yielding at most |V | more conflicts than the optimal solution.
The algorithm generalizes Vizing’s algorithm in the sense that it gives the same result when k = ∆ + 1. In fact,
our algorithm gives an optimal solution when dv mod k = k − 1 for all vertices v. Moreover, we show that this
approximation result is best possible unless P = NP .

In a heterogeneous network, we consider the case where each node v can have different Cv = 1 or k. We show
that the problem is NP-hard even when Cv = 1 or 2, and CG = 2, and present two algorithms for this case. The first
algorithm is completely combinatorial and produces a solution with at most (2− 1

k )OPT +(1− 1
k )|E| conflicts. We

also develop an SDP-based algorithm, producing a solution with at most 1.122OPT +0.122|E| conflicts for k = 2,
and (2−Θ( ln k

k ))OPT + (1−Θ( ln k
k ))|E| conflicts in general (slightly better than the combinatorial algorithm).

Relationship to MIN K-PARTITION and MAX K-CUT. The MIN K-PARTITION problem is the dual of MAX
K-CUT problem where we color vertices with k different colors so that the total number of conflicts (monochromatic
edges) is minimized. Our problem for the homogeneous network when CG = Cv = k for all v is an edge coloring
version of MIN k-PARITION problem1. Kann et al. [5] showed that for k > 2 and for every � > 0, there exists
a constant α such that the MIN k-PARTITION cannot be approximated within α|V |2−� unless P = NP . In our
problem when Cv = k for all v, we have an approximation algorithm with additive term of |V |.

For the case when Cv = 1 or k, we use a SDP formulation similar to one used for MAX K-CUT and utilize
the upperbounds obtained in [6]. To obtain a (2 − Θ( ln k

k ))-approximation, we compare the upperbounds with two
lowerbounds — one based on necessary interference at a vertex determined by its degree, and one given by the SDP
relaxation.
Other Related Work. Fitzpatrick and Meertens [7] have considered a variant of graph coloring problem (called
the SOFT GRAPH COLORING problem) where the objective is to develop a distributed algorithm for coloring vertices
so that the number of conflicts is minimized. The algorithm repeatedly recolors vertices to quickly reduce the
conflicts to an acceptable level. They have studied experimental performance for regular graphs but no theoretical
analysis has been provided. Damaschke [8] presented a distributed soft coloring algorithm for special cases such
as paths and grids, and provided the analysis on the number of conflicts as a function of time t. In particular, the
conflict density on the path is given as O(1/t) when two colors are used, where the conflict density is the number
of conflicts divided by |E|.

In the traditional edge coloring problem, the goal is to find the minimum number of colors required to have a
proper edge coloring. The problem is NP -hard even for cubic graphs [9]. For a simple graph, a solution using
at most ∆ + 1 colors can be found by Vizing’s theorem [10] where ∆ is the maximum degree of a node. For
multigraphs, there is an approximation algorithm which uses at most 1.1χ� + 0.8 colors where χ� is the optimal
number of colors required [11] (the additive term was improved to 0.7 by Caprara et al. [12]).

1Or it can be considered as MIN k-PARTITION problem when the given graph is a line graph where the line graph of G has a vertex corresponding to each
edge of G, and there is an edge between two vertices in the line graph if the corresponding edges are incident on a common vertex in G.



1.1 Problem definition We are given a graph G = (V,E) where v ∈ V is a node in a wireless network and an
edge e = (u, v) ∈ E represents a communication link between u and v. Each node v can use Cv different channels
and the total number of channels that can be used in the network is CG. More formally, let E(v) be the edges
incident to v and c(e) be the color assigned to e. Then |

�
e∈E(v) c(e)| ≤ Cv and |

�
e∈E c(e)| ≤ CG.

A pair of edges e1 and e2 in E(v) are said to be conflicting if the two edges use the same color. Let us define
the conflict number (CFe) of an edge e ∈ E to be the number of other edges that conflict with e. In other words, for
an edge e = (u, v), CFe is the number of edges (other than e itself) in E(u)

�
E(v) that use the same channel as e.

Our goal is to minimize the total number of conflicts. That is,

CFG =
1
2

�

e∈E

CFe. (1.1)

In the remainder of this paper, we mean channels by colors and use edge coloring and channel assignment,
interchangeably. We also use conflicts and interferences interchangeably.

2 Algorithms for Homogeneous Networks
In this section, we consider the case for a homogeneous network where for all nodes v, the number of channels that
can be used is the same (Cv = k). For an arbitrary k, the problem is NP-hard as the edge coloring problem can be
reduced to our problem by setting k = CG = ∆ where ∆ is the maximum degree of nodes.
2.1 Greedy Algorithm We first present and analyze a greedy algorithm for this problem. The algorithm works
as follows: We choose colors from {1, . . . , k} (We only use k colors even when CG > k and the approximation
ratio of our algorithm remains the same regardless of the value of CG.) For any uncolored edge e = (u, v), we
choose a color for edge e that introduces the smallest number of conflicts. More formally, when we assign a color
to e = (u, v), we count the number of edges in E(u)

�
E(v) that are already colored with c (denoted as n(c, e)),

and choose color c with the smallest n(c, e).

THEOREM 2.1. The total number of conflicts by the greedy algorithm in homogeneous networks is at most

CFG =
1
2

�

e∈E

CFe ≤ OPT + (1− 1
k
)|E|. (2.2)

Theorem 2.1 directly follows from Lemma 2.1 and 2.2. The proofs are included in Appendix.

LEMMA 2.1. The total number of conflicts when Cv = k for all node v is at least
1
2

�
v

d2
v
k − |E|.

LEMMA 2.2. The total number of conflicts introduced by Algorithm 1 is at most
1
2

�
v

d2
v
k − |E|

k .

Note that the algorithm can be performed in a distributed manner and each node needs only local information.
We can also consider a simple randomized algorithm, in which each edge chooses its color uniformly at random
from {1, . . . , k}. The algorithm gives the same expected approximation guarantee and it can be easily derandomized
using conditional expectations. The following corollary of Lemma 2.1 will be used to prove approximation factors
for heterogenous networks.

COROLLARY 2.1. Given an optimal solution, let OPT (S) (S ⊆ V ) be the number of conflicts at vertices in S and

|E(S)| be
�

v∈S
dv
2 . Then we have OPT (S) ≥ 1

2

�
v∈S

d2
v
k − |E(S)|.
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Figure 2: The figures illustrate how recoloring is performed in BALANCEDCOLORING. The colors beside edges indicate the
original color and the color after recoloring.

2.2 Improved Algorithm In this section, we give an algorithm with additive approximation factor of |V |. Our
algorithm is a generalization of Vizing’s algorithm in the sense that it gives the same result as Vizing’s algorithm
when k = ∆ + 1 where ∆ is the maximum degree of nodes. We first define some notations. For each vertex v, let
mk = �dv

k � and αv = dv −mvk. Let |Ei(v)| be the size of the color class of color i at vertex v i.e. the number of
edges adjacent to v that have color i.

DEFINITION 2.1. A color i is called strong on a vertex v if |Ei(v)| = mk + 1. A color i is called weak on v if

|Ei(v)| = mk . A color i is called very weak on v if |Ei(v)| < mk.

DEFINITION 2.2. A vertex v has a balanced coloring if the number of strong classes at v is at most min(αv +1, k−
1) and no color class in E(v) is larger than mk + 1. A graph G = (V,E) has a balanced coloring if each vertex

v ∈ V has a balanced coloring.

In the following we present an algorithm that achieves a balanced coloring for a given graph G = (V,E); we
show in Theorem 2.3 that a balanced coloring implies an additive approximation factor of |V | in terms of number of
conflicts. In Algorithm BALANCEDCOLORING(e) described below, we color edge e so that the graph has a balanced
coloring (which may require the recoloring of already colored edges to maintain the balanced coloring), assuming
that it had a balanced coloring before coloring e. We perform BALANACEDCOLORING for all edges in arbitrary
order. The following terms are used in the algorithm description. Let |Sv| denote the number of strong color classes
at vertex v.

DEFINITION 2.3. For vertex v ∈ V with |Sv| < min(αv + 1, k − 1) or with |Sv| = k − 1, i is a missing color if i

is weak or very weak on v. For vertex v ∈ V with |Sv| = αv + 1, i is a missing color if i is very weak on v

DEFINITION 2.4. An ab-path between vertices u and v where a and b are colors, is a path connecting u and v and

has the following properties:

• Edges in the path have alternating colors a and b.

• Let e1 = (u, w1) be the first edge on that path and suppose e1 is colored a, then u must be missing b and not

missing a.

• If v is reached by an edge colored b then v must be missing a but not missing b, otherwise if v is reached by

an edge colored a then v must be missing b and not missing a.

DEFINITION 2.5. A flipping of an ab-path is a recoloring of the edges on the path such that edges previously with

color a will be recolored with color b and vice versa.

Algorithm BALANCEDCOLORING(e = (v, w))
Let w1 = w. At i-th round (i = 1, 2, . . .), we do the following.



STEP 1: Let Cv be the set of missing colors on v. If i = 1, Cw1 is the set of missing colors on w1. When i ≥ 2, Cwi

is the set of missing colors on wi minus cwi−1 . (cwi−1 is defined in STEP 2 at (i − 1)-th round). If Cv ∩ Cwi �= ∅,
then choose color a ∈ Cv ∩ Cwi , color edge (v, wi) with a and terminate.
STEP 2: If Cv ∩ Cwi = ∅, choose cv ∈ Cv and cwi ∈ Cwi . Find a cvcwi-path that starts at wi and does not end at v.
If such a path exists, flip this path, color edge (v, wi) with cv and terminate.
STEP 3: If all cvcwi-paths that start at vertex wi end at v, fix one path and let (v, wi+1) be the last edge on that path.
The edge (v, wi+1) must have color cwi . Uncolor it and color edge (v, wi) with cwi . Mark edge (v, wi) as used and
repeat the above steps with edge (v, wi+1) (go to (i + 1)-th round).
Analysis In the following, we prove that our algorithm terminates and achieves a balanced coloring. First we
prove that we can always find a missing color at each round (Lemma 2.3 and 2.4) and at some round j < dv, the
algorithm terminates (Lemma 2.5). Due to the choice of missing colors and ab-path, we can show that our algorithm
gives a balanced coloring (Lemma 2.6 and 2.7).

LEMMA 2.3. For the given edge (v, w1), there is a missing color at v and w1. That is, Cv �= ∅ and Cw1 �= ∅.

Proof. When |Sv| < min(αv + 1, k− 1) or |Sv| = k− 1, there must be at least one weak color, which is a missing
color. If |Sv| = αv +1 then we can show that the remaining k−αv−1 color classes cannot be all weak (i.e. having
size mv). Note that dv = mvk + αv, so if there are αv + 1 strong color classes and the remaining color classes have
all exactly size mv then the number of edges at v is strictly larger than dv, which is not possible. So there must be a
very weak class of which size is strictly less than mv. ��

For wi, i ≥ 2, we need to choose a missing color at wi other than cwi−1 . We prove in the following lemma, that
there is a missing color other than cwi−1 .

LEMMA 2.4. At i-th round (i ≥ 2), there is a missing color other than cwi−1 at wi.

Proof. Note first that cwi−1 was not a missing color at wi in (i−1)-th round since otherwise we should have stopped
at STEP 2. Consider the case that cwi−1 was a strong color in (i− 1)-th round. As it is not possible that all k colors
are strong, there must be a weak (or very weak) color c other than cwi−1 in (i − 1)-th round. After uncoloring
(u, wi), the number of strong color classes will be reduced and we now have |Sv| < min(αv + 1, k − 1). Then c is
missing at wi in i-th round.

For the case that cwi−1 was a weak color in (i−1)-th round, |Sv| = αv +1 in (i−1)-th round (otherwise, cwi−1

should have been a missing color). After uncoloring (u, wi), Sv remains the same but cwi−1 is a very weak color.
We need to show that there is a very weak color other than cwi−1 . The number of edges that have weak or very weak
colors is at most (dv − 1)− (αv + 1)(mv + 1) = (k−αv − 1)mv − 2 = (k−αv − 3)mv + 2(mv − 1). Therefore,
there must be at least one very weak color other than cwi−1 . ��

LEMMA 2.5. At some round j < dv there exists a cvcwj -path starting at wj and not ending at v.

Proof. At some round j, if the algorithm does not terminate at Step 1 of some round k < j, the colors are going
to run out (i.e. the missing color cwj is the same as color cwi , i < j and all edges (v, wi) with color cwi have been
already used by the algorithm). We show that there is no cvcwi-path connecting v and wj (thus the algorithm has
to terminate at Step 2). Suppose that there exists a cvcwi-path P connecting v and wj , v is missing color cv and
not missing color cwi , so v must be reached on an edge colored cwi . Let e = (v, wi) be the edge in P adjacent to
v. Since we used in the algorithm all edges with color cwi , then edge (v, wi) must have been already used by the
algorithm. Now rewind the algorithm to the point where (v, wi) was uncolored, wi is missing cwi and not missing
cv, so if P exists there must be also a cvcwi-path connecting wi and wj . This contradicts that at round i < j we
could not find such path. ��



LEMMA 2.6. A flipping of an ab-path in a graph with balanced coloring will not violate the balanced coloring.

Proof. Suppose an ab-path runs from u to v. Suppose u is missing color b and not missing color a. Let e = (u, w0)
be the first edge of that path, so it is colored by a. Flipping the ab-path will recolor e with color b, but since b was
missing on u the color class |Eb(v)| will not exceed mv + 1, and also the number of strong classes will not become
larger than min(αv + 1, k− 1) as we made color a missing on u. The same argument works for v but with possibly
b and a interchanged in the argument. For internal vertices on the path nothing changes as the number of edges
colored a and b stays the same. ��

LEMMA 2.7. Let v be a vertex that has a balanced coloring. Let e ∈ E(v) be uncolored and let i be a missing

color on v. Coloring e with i will not violate a balanced coloring at v.

Proof. Suppose that at a vertex v, |Sv| < min(αv + 1, k − 1). Then the number of strong color classes at v is
strictly less than αv + 1 and coloring edge e with i will not violate a balanced coloring at v as |Sv| will not exceed
min(αv + 1, k − 1) and Ei(v) will not exceed mv + 1 (i is missing on v). Suppose at a vertex v, |Sv| = αv + 1,
then we show in Lemma 2.3 and 2.4 that there must be a very weak color class. When |Sv| = k − 1, the remaining
color is very weak as one edge is not colored. Thus coloring e with i will not make Ei(v) a strong color class and
the number of strong color classes remains the same. So the balanced coloring at v will not be violated. ��

THEOREM 2.2. The above algorithm terminates and achieves a balanced coloring.

Proof. In Lemma 2.5 we show that at some round j, (1 ≤ j ≤ dv), if we do not terminate at Step 1 of the algorithm
then there will be a cvcwj -path P starting at wj and not ending at v. Now, if for some i, (1 ≤ i ≤ j), Cv ∩ Cwi �= ∅
then vertices v and wi are missing the same color cv. By Lemma 2.7, coloring edge (v, wi) with color cv will not
violate a balanced coloring at v or at wi, hence the algorithm terminates at Step 1 with a balanced coloring for G.
If ∀i, i ≤ j, C ∩ Cwi = ∅ we show that the algorithm terminates at Step 2 of round j. As mentioned above, at round
j there will be a cvcwj -path P starting at wj and not ending at v. On this path, the edge adjacent to wj is colored
with cv since wj is missing cwj and not missing cv. Note that flipping path P will recolor this edge with color cwj

making color cv missing on wj . Furthermore, by Lemma 2.6, flipping P will not violate the balanced coloring at
any vertex in P . Thus cv is now missing at v and wj and as in Step 1 we can now color edge (v, wj) with color cv

without violating a balanced coloring at v or wj . So the algorithm terminates at Step 2 with a balanced coloring. ��

THEOREM 2.3. A balanced coloring of a graph achieves a |V | additive approximation factor

Proof. We have shown an algorithm that colors the edges of a graph G = (V,E) such that the coloring is balanced
at each vertex. Here we show that the algorithm introduces at each vertex v ∈ V one more conflict than the optimal
solution. At each vertex v suppose there is an ordering on the size of the color classes, 1 being a strong class and
k being the weakest class. Note that at a vertex v, the number of conflicts is minimized when the number of strong
classes is αv and the remaining colors are weak. As the number of strong classes achieved by our algorithm is at
most αv + 1, the first αv classes introduce the same number of conflicts in both the optimal and our solution.
The (αv + 1)th color class in a balanced coloring which is strong, exceeds the corresponding color class in OPT

(which is necessarily weak) by 1. Then the additional number of conflicts is 1
2(mv + 1)mv − 1

2mv(mv − 1) = mv .

Now if there is an additional edge in the (αv + 1)th color class in a balanced coloring then there must be an
additional edge in some color class i, αv +1 < i < k in OPT i.e. some color class i is weak in OPT but very weak
in our balanced coloring. The number of additional conflicts of OPT in i is 1

2mv(mv− 1)− 1
2(mv− 1)(mv− 2) =

mv−1 . So, finally the additional number of conflicts introduced by the balanced algorithm is 1 at each vertex. Thus
the approximation factor is |V |. ��

COROLLARY 2.2. When αv = k − 1 for all v, the algorithm gives an optimal solution.



Proof. Note that the balanced coloring gives exactly k − 1 strong color classes and one weak color class when
αv = k − 1, which is the optimal. ��

We can show that the approximation ratio given by the algorithm is best possible unless P = NP . The proof is
included in Appendix A.3.

THEOREM 2.4. It is NP-hard to approximate the channel assignment problem in homogeneous networks within an

additive term of o(|V |1−�), given a constant �.

3 Networks where Cv = 1 or k

In this section, we present two algorithms for networks with Cv = 1 or k and analyze the approximation factors of
the algorithms. The case where Cv = 1 or k is interesting since (i) it reflects a realistic setting, in which most of
mobile stations are equipped with one wireless card and nodes with multiple wireless cards are placed in strategic
places to increase the capacity of networks. (ii) as shown in Theorem 3.1, the problem is NP-hard even when Cv = 1
or 2. (The proof is in Appendix A.4.)

THEOREM 3.1. The channel assignment problem to minimize the number of conflicts is NP-hard even when Cv = 1
or 2, and CG = 2.

3.1 Extended Greedy Algorithm We first present an extended greedy algorithm when Cv = 1 or k, and
CG ≥ Cv. The approximation factor is 2− 1

k . Even though the algorithm based on SDP (semi-definite programming)
gives a slightly better approximation factor (see Section 3.2), the greedy approach gives a simple combinatorial
algorithm. The algorithm generalizes the idea of the greedy algorithm for homogeneous networks. In this case, an
edge cannot choose its color locally since the color choice of an edge can affect colors for other edges to obey color
constraints.

Before describing the algorithm, we define some notations. Let Vi ⊆ V be the set of nodes v with Cv = i (i.e.,
we have V1 and Vk). V1 consists of connected clusters V 1

1 , V 2
1 , . . . V t

1 , such that nodes u, v ∈ V1 belong to the same
cluster if and only if there is a path composed of nodes in V1 only. (See Figure 6 in Appendix for example.) Let Ei

1

be a set of edges both of which endpoints are in V i
1 . We also define Bi

1 to be a set of edges whose one endpoint is
in V i

1 and the other is in Vk. We can think of Bi
1 as a set of edges in the boundary of cluster V i

1 . Note that all edges
in Ei

1
�

Bi
1 should have the same color. Ek is a set of edges both of which endpoints are in Vk. E1 is defined to be�

i E
i
1.

In the greedy algorithm for homogeneous networks, each edge greedily chooses a color so that the number of
interferences it creates (locally) is minimized. Similarly, when Cv = 1 or k, edges in the same cluster V i

1 choose a
color so that the number of conflicts it creates is minimized. Formally, we choose a color c with minimum value of�

e=(u,v)∈Bi
1,v∈Vk

nc(v) where nc(v) is the number of edges e� ∈ E(v) with color c. Once edges in Ei
1
�

Bi
1 for all

i choose their colors, the remaining edges (edges belonging to Ek) greedily choose their colors.
Any edges (u, v) incident to a vertex in V1 should use the same color and therefore are conflicting with each other

no matter what algorithm we use. Given an optimal solution, consider OPT (V1) and OPT (Vk) where OPT (S) is
the number of conflicts at vertices in S ⊆ V . Similarly, we have CF (V1) and CF (Vk) where CF (S) is the number
of conflicts at vertices in S ⊆ V in our solution. Then we have OPT (V1) = CF (V1). Therefore, we only need to
compare OPT (Vk) and CF (Vk).

THEOREM 3.2. The number of conflicts created by the extended greedy algorithm at Vk is at most (2−1/k)OPT +
(1− 1/k)|E|.

Proof. We will simply show that the number of conflicts created by the extended greedy algorithm at Vk is at most
(2−1/k)OPT (Vk)+(1−1/k)|E(Vk)| where |E(Vk)| is

�
v∈Vk

dv
2 as CF (V1) = OPT (V1). For each e ∈ E \E1,



n(e) be the number of conflicts at vertices in Vk which are introduced when we assign a channel to e. Then the total
number of conflicts at Vk is

�
n(e).

We first consider the number of conflicts created when we assign colors to edges in Bi
1 (recall that Bi

1 is a set
of edges of which endpoints are in V i

1 and Vk ). For an edge e = (u, v) where u ∈ V i
1 and v ∈ Vk, let dv(e) be

the number of edges in E(v) to which a color is assigned before e. Then when we choose a color for Ei
1
�

Bi
1, the

number of conflicts at vertices in Vk with edges not in Ei
1
�

Bi
1, is at most

�
v∈Vk

�
e∈E(v)

�
Bi

1
dv(e)

k

as we choose a color with minimum conflicts. If v has ei(v) edges in Bi
1, 1

2ei(v)(ei(v) − 1) additional conflicts
(between edges in Bi

1) are created. For edges in Ek we use the greedy algorithm presented in Section 2, and

therefore, the number of conflicts created when we assign colors in Ek is at most

�
v∈Vk

�
e∈E(v)

�
Ek

dv(e)

k .
Summing up all the conflicts,

�

e∈E\E1

n(e) ≤
�

v∈Vk

�
e∈E(v) dv(e)
k

+
�

i
�

v∈Vk
(e2

i (v)− ei(v))
2

As for each node v,
�

e∈E(v) dv(e) ≤ dv(dv−1)
2 −

�
i
(e2

i (v)−ei(v))
2 (colors for edges in Bi

1 will be determined at the
same time), we have

�

e∈E\E1

n(e) ≤ 1
k

�

v∈Vk

(
dv(dv − 1)

2
−

�
i e

2
i (v)− ei(v)

2
) +

�
i
�

v∈Vk
(e2

i (v)− ei(v))
2

=
1
2

�

v∈Vk

dv(dv − 1)
k

+ (1− 1
k
)
�

i
�

v∈Vk
(e2

i (v)− ei(v))
2

=
1
2

�

v∈Vk

d2
v

k
− 1

2
�

v∈Vk

dv + (1− 1
k
)
�

i
�

v∈Vk
(e2

i (v)− ei(v))
2

+
1
2
(1− 1

k
)

�

v∈Vk

dv

≤ (2− 1
k
)OPT (Vk) + (1− 1

k
)|E(Vk)|.

where OPT (Vk) is the optimal number of conflicts at vertices in Vk and |E(Vk)| be
�

v∈Vk

dv
2 .

The last inequality comes from the fact that both 1
2

�
v∈Vk

d2
v
k − 1

2

�
v∈Vk

dv (by Corollary 2.1) and
1
2

�
i
�

v∈Vk
(e2

i (v)− ei(v)) are lower bounds on the optimal solution. ��

Note that as in the homogeneous case, we can obtain the same expected approximation guarantee with a
randomized algorithm, i.e., choose a color uniformly at random for each cluster V i

1 . Note also that the approximation
ratio remains the same for any CG ≥ k. In the following section, we obtain a slightly better approximation factor
using SDP relaxation when Cv = 1 or k and CG = k.
3.2 SDP-based algorithm In this subsection, we assume that k different channels are available in the network
and all nodes have 1 or k wireless cards. We formulate the problem using semidefinite programming. Consider the
following vector programming (VP), which we can convert to an SDP and obtain an optimal solution in polynomial
time. We have an m-dimensional unit vector Ye for each edge e (m ≤ n).

VP: min
�

v

�

e1,e2∈E(v)

1
k
((k − 1)Ye1 · Ye2 + 1) (3.3)

|Ye| = 1 (3.4)



Ye1 · Ye2 = 1 if Cv = 1, e1, e2 ∈ E(v) (3.5)

Ye1 · Ye2 ≥ −1
k − 1

for e1, e2 ∈ E(v) (3.6)

We can relate a solution of VP to a channel assignment as follows. Consider k unit length vectors in m-
dimensional space such that for any pair of vectors vi and vj , the dot product of the vectors is − 1

k−1 . (It has been
shown that − 1

k−1 is the minimum possible value of the maximum of the dot products of k vectors [6, 13].) Given
an optimal channel assignment of the problem, we can map each channel to a vector vi. Ye takes the vector that
corresponds to the channel of edge e. If Cv is one, all edges incident to v should have the same color. The objective
function is exactly the same as the number of conflicts in the given channel assignment since if Ye1 = Ye2 (e1 and
e2 have the same color), it contributes one to the objective function, and 0 otherwise. Thus the optimal solution of
the VP gives a lower bound of the optimal solution in the channel assignment problem.

The above VP can be converted to a semidefinite programming (SDP) and solved in polynomial time (within any
desired precision) [14, 15, 16, 17, 18], and given a solution for the SDP, we can find a solution to the corresponding
VP, using incomplete Cholesky decomposition [19].

We use the rounding technique used for MAXCUT by Goeman and Williamson [20] when k = 2 and show that
the expected number of interferences in the solution is at most 1.122OPT + 0.122|E|.When k > 2, we obtain the
approximation guarantee of (2− 1

k −
2(1+�) ln k

k + O( k
(k−1)2 ) with additive term of (1− 2(1+�) ln k

k−1 (1− k
(k−1)2 ))|E|,

where �(k) ∼ ln ln k

(ln k)
1
2

.
When k = 2: We select a random unit vector r, and assign channel one to all edges with Ye · r ≥ 0 and channel
two to all other edges.

LEMMA 3.1. [20] For −1 ≤ t ≤ 1,
arccos t

π ≥ α
2 (1− t), where α > .87856.

THEOREM 3.3. The expected number of total conflicts by our algorithm is at most 1.122OPT + 0.122|E|.

Proof. See Appendix A.5. ��

When k > 2: We use the rounding algorithm for MAX k-CUT when k > 2 [6]. Given an optimal solution
for VP, we obtain a coloring as follows. We first select k random vectors, denoted as R = {r1, r2, · · · , rk}. Each
random vector ri = (ri,1, ri,2, . . . ri,n) is selected by choosing each component ri,j independently at random from a
standard normal distribution N(0, 1). For each edge e, assign e to vector ri if ri is the closest vector to Ye (i.e., the
vector with the maximum value of Ye · ri). Ties are broken arbitrarily.

Let βij = Yei · Yej . Let P include all pairs of edges in E(v) for any v ∈ Vk. For a pair (i, j) ∈ P , (i, j) is
included in pP (positive pairs)⊆ P if βij ≥ 0 and (i, j) is included in nP (negative pairs) ⊆ P if βij < 0. We
utilized the following two lemmas from [6].

LEMMA 3.2. [6] For (i, j) ∈ nP , E[Xij ] = 1
k + 2(1 + �) ln k

k βij + O(β2
ij) where �(k) ∼ ln ln k

(ln k)
1
2

[21]

LEMMA 3.3. For (i, j) ∈ pP , E[Xij ] ≤ 1
k ((k − 1)βij + 1)

Proof. As E[Xij ] = 1
k ((k − 1)βij + 1) when βij = 0 and 1, and E[Xij ] is a convex function in [0, 1] [6], we have

the lemma. ��

Note the if we simply compare the lowerbound obtained by SDP and the upperbound given in Lemma 3.2
and 3.3, we cannot obtain a constant factor approximation. However, by carefully combining the lowerbound in
Corollary 2.1, we can obtain a slightly better approximation factor than the greedy algorithm. We define V al1(S) to
be 1

k |S| for any set S ⊆ P . In addition, let V al2(S) be 1
k

�
(i,j)∈S((k−1)βij +1). That is, V al2(S) is a lowerbound

obtained by SDP relaxation and V al1(S) is a lower bound based on the fact that all edges incident to a vertex can
interfere with each other. As shown in Figure 3, simply combining two lowerbounds gives a 2-approximation. To
prove a better bound than greedy, we first prove the following lemmas.
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Figure 3: The expected number of conflicts in nP is bounded by V al1(nP ) and conflicts in pP is bounded by V al2(pP ).

LEMMA 3.4. The number of conflicts by the algorithm is at most V al2(P ) + δ( k−1
2(1+�) ln k − 1) +

�
(i,j)∈nP O(β2

ij)

where δ = −2(1+�) ln k
k

�
(i,j)∈nP βij .

Proof.

�

(i,j)∈P

E[Xij ] =
�

(i,j)∈pP

E[Xij ] +
�

(i,j)∈nP

E[Xij ]

≤
�

(i,j)∈pP

1
k
((k − 1)βij + 1) +

�

(i,j)∈nP

(
1
k

+ 2(1 + �)
ln k

k
βij + O(β2

ij))

= V al2(P ) +
�

(i,j)∈nP

(
1
k

+ 2(1 + �)
ln k

k
βij)−

�

(i,j)∈nP

1
k
((k − 1)βij + 1) +

�

(i,j)∈nP

O(β2
ij)

≤ V al2(P ) + δ(
k − 1

2(1 + �) ln k
− 1) +

�

(i,j)∈nP

O(β2
ij). (3.7)

��

LEMMA 3.5. The number of conflicts by the algorithm is at most V al1(P )−δ+V al2(P )(1− 1
k )+

�
(i,j)∈nP O(β2

ij)
where δ = −2(1+�) ln k

k

�
(i,j)∈nP βij .

Proof. By Lemma 3.2 the number of conflicts of pair of edges in nP is at most V al1(nP )− δ +
�

(i,j)∈nP O(β2
ij)

and by Lemma 3.3 the number of conflicts of pair of edges in pP is at most V al1(pP ) + k−1
k

�
(i,j)∈pP βij so we

have:

�

(i,j)∈P

E[Xij ] ≤ V al1(nP )− δ + V al1(pP ) +
k − 1

k

�

(i,j)∈pP

βij +
�

(i,j)∈nP

O(β2
ij)

= V al1(P )− δ +
k − 1

k

�

(i,j)∈pP

βij +
�

(i,j)∈nP

O(β2
ij)

≤ V al1(P )− δ + V al2(P )(1− 1
k
) +

�

(i,j)∈nP

O(β2
ij) (3.8)

��

THEOREM 3.4. The number of conflicts created by the algorithm is at most ((2− 1
k−

2(1+�) ln k
k +O( k

(k−1)2 ))OPT +

(1− 2(1+�) ln k
k−1 (1− k

(k−1)2 ))|E|, where �(k) ∼ ln ln k

(ln k)
1
2

.



Proof. By Lemma 3.4 and 3.5 the number of conflicts is upper bounded by min(V al2(P ) + δ( k−1
2(1+�) ln k −

1), V al1(P ) − δ + V al2(P )(1 − 1
k )) +

�
(i,j)∈nP O(β2

ij), which is maximized when δ = 2(1+�) ln k
k−1 (V al1(P ) −

1
kV al2(P )). Let f(k) = 2(1+�) ln k

k−1 . Then the maximum number of conflicts is

(1− f(k))V al1(P ) + (1− 1
k

+
f(k)

k
)V al2(P ) +

�

nP

O(β2
ij).

Note that V al1(P ) ≤ OPT (Vk) + |E(Vk)| and V al2(P ) ≤ OPT (Vk). Therefore, the total conflict at Vk is at most

(2− 1
k
− (k − 1)f(k)

k
)OPT (Vk) + (1− f(k)|E(Vk)| +

�

nP

O(β2
ij).

Since β2
ij ≤ 1

(k−1)2 , we have the theorem. ��

4 Discussion
Note that in all of our algorithms the total number of different colors used in the network is only max Cv rather than
CG. Although the number of conflicts may be reduced using more colors than max Cv (see for example Figure 1),
it is not easy to make sure that each edge has at least one channel which are available at both endpoints in that case.
In fact, it may be possible that the size of the set of common channels is small, which may result in creating more
conflicts. One possible solution is to further improve the solution by recoloring edges with additional colors after
obtaining the solution by the algorithm. It will be an interesting future work to analyze how much we can improve
the performance by such recoloring.
Acknowledgements. The second author would like to thank Nikhil Bansal for useful discussions.
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A Proofs
A.1 Proof of Lemma 2.1 For a node v, let E(v) be the edges incident to v. E(v) will be partitioned into k sets
according to colors assigned to edges. Let Ei(v) be a set of edges with color i. E(v) =

�
i Ei(v). Let c(e) be the

color assigned to e. Then

1
2

�

e

CFe =
1
2

�

e=(u,v)

(|Ec(e)(v)| + |Ec(e)(u)|− 2)

=
1
2

�

v

�

e∈E(v)

(|Ec(e)(v)|− 1)

=
1
2

�

v

�

i

|Ei(v)|(|Ei(v)|− 1)

=
1
2

�

v

�

i

|Ei(v)|2 − |E|

Note that for each node v,
�

i |Ei(v)|2 is minimized when the size of Ei(v) is the same for all colors i. Therefore,
we have

1
2

�

e

CFe ≥
1
2

�

v

(
dv

k
)2 · k − |E| =

1
2

�

v

d2
v

k
− |E|.

A.2 Proof of Lemma 2.2 To upperbound the number of conflicts by the greedy algorithm, consider an edge
e = (u, v). Let n(e) be the number of conflicts that e introduces when it gets colored. The total number of conflicts
in the final coloring is

�
e n(e). Since we choose a color for e such that it introduces the smallest conflicts in node

u and v, n(e) is at most �dv(e)+du(e)
k � where dv(e) and du(e) are the number of edges that get colored before e in

E(v) and E(u), respectively. Therefore, the total number of conflicts by the greedy algorithm is:

CFG =
�

e

n(e) ≤
�

e=(u,v)

�dv(e) + du(e)
k

�

≤
�

v

�

e∈E(v)

dv(e)
k

=
1
k

�

v

dv−1�

i=0

i

=
1
k

�

v

dv(dv − 1)
2

=
1
k

�

v

d2
v

2
− 1

k

�

v

dv

2



=
1
2

�

v

d2
v

k
− |E|

k
.

A.3 Proof of Theorem 2.4 Suppose that we have a simple graph G = (V,E). It is known that finding the edge
chromatic number χ�(G) of G is NP-hard (the edge chromatic number is the minimum number of colors for edge-
coloring G) [9]. By the Vizing’s theorem [10], the chromatic index of a simple graph G is ∆ or ∆ + 1 where ∆ is
the maximum degree of any vertex v ∈ V .

Given a constant �, let G� = (V �, E�) be the graph which has |V |
1
�−1 copies of G. Note that |V �| = |V |

1
� . We

set CG = Cv = ∆ If χ�(G) = ∆ then the optimal solution of the channel assignment problem is 0. Otherwise if
χ�(G) = ∆ + 1, then each of component of G� has at least one conflict and therefore, the optimal solution has at
least |V |

1
�−1 conflicts, which is the same as |V �|1−�. Thus if we have an approximation algorithm with additive term

of o(|V �|1−�) for a graph G� = (V,E�), we can decide the chromatic index of G, which is NP-hard. Contradiction.

A.4 Proof of Theorem 3.1 A node v is defined to have a balanced assignment if for each color i used by any edge
in E(v), the number of edges assigned to color i is exactly dv

Cv
. A network has the minimum number of conflicts if

every node has a balanced assignment. Given an instance C of the problem 3SAT, we construct a graph G, in which
each node has a balanced assignment if and only if C is satisfiable.

We need three types of components — inverting components, variable setting components, and satisfaction
testing components. Figures 4 and 5 in Appendix show the components we need. In each component, a black or
gray node has Cv = 1, and a white node has Cv = 2. In inverting components, if the input pair of edges use the
same channel, the output pair should use different channels (and vice versa) for a white node to have a balanced
assignment. In a component, a pair of input or output edges are said to be true if the same channel is assigned to the
pair, and false if different channels are assigned to them. (To assign true to a pair of edges we may choose either
channel 1 or 2.) The inverting component can be used to obtain the invert of a variable.

Using the variable setting components, we can set pairs of edges to be either true or false. We need to have as
many pairs as there are appearances of variable vi or ¬vi in C. Note that the specific channel assigned to each edge
can be chosen as we want when we assign true or false to a pair of edges. For example, we can either use channel
one or two for true assignments.

For each clause cj in C, we have one satisfaction testing component (see Figure 5). In a satisfaction testing
component, a white node has a balanced assignment if and only if at least one of three pairs is true. That is, if all
three pairs are false, then we have exactly three edges with channel one and three edges with channel two for the
three pairs, which prevents the white node from having a balanced assignment. On the other hand, if at least one is
true, we can find an assignment of either (5, 1) or (4, 2) for the three pairs ((i, j) means that i edges have channel
one and j edges have channel two), and there are balanced assignments for both cases.

A.5 Proof of Theorem 3.3 Let Xij be 1 if ei and ej have the same color for ei, ej ∈ E(v). For any vertex v

with Cv = 1, all edges in E(v) should have the same color in any solution. Therefore, we only consider edges
ei, ej ∈ E(v) for vertices with Cv = 2. Let c(e) be the color assigned to edge e.

E[Xij ] = Pr(c(ei) = c(ej))
= 1− Pr(c(ei) �= c(ej))
= 1− 2Pr(Yei · r ≥ 0, Yej · r < 0)

= 1−
arccos(Yei · Yej )

π

≤ 1− α

2
(1− Yei · Yej )

= (1− α) +
α

2
(Yei · Yej + 1)
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Figure 4: Black and gray nodes have Cv = 1 and white nodes have Cv = 2. CG = 2. (a) Inverting Components (b)
Variable setting components.

Figure 5: Satisfaction Testing Component

The total number of such conflicts is X =
�

Xij . Let OPT (S) (S ⊆ V ) be the optimal number of conflicts at
vertices in S and |E(S)| be

�
v∈S

dv
2 .

�

v∈Vk

�

ei,ej∈E(v)

E[Xij ] =
�

v∈Vk

�

ei,ej∈E(v)

((1− α) +
α

2
(Yei · Yej + 1))

≤
�

v∈Vk

�

ei,ej∈E(v)

(1− α) + αOPT (Vk)

≤ (1− α)
�

v∈Vk

d2
v − dv

2
+ αOPT (Vk)

= (1− α)
�

v∈Vk

d2
v

2
− (1− α)|E(Vk)| + αOPT (Vk)

= 2(1− α)(
�

v∈Vk

d2
v

4
− |E(Vk)|) + (1− α)|E(Vk)| + αOPT (Vk)

≤ 2(1− α)OPT (Vk) + αOPT (Vk) + (1− α)|E(Vk)|
≤ (2− α)OPT (Vk) + (1− α)|E(Vk)|.

By Lemma 3.1 and the fact that CF (V1) = OPT (V1), we have the theorem.
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Figure 6: The figure show an example of clusters V i
1 when Cv = 1 or k. Black nodes have only one wireless card

and white nodes have k wireless cards. Dotted lines belong to Bi
1.


