Bandits, Experts, and Games

CMSC 858G Fall 2016 University of Maryland

Intro to Probability*

Alex Slivkins Microsoft Research NYC

* Many of the slides adopted from Ron Jin and Mohammad Hajiaghayi

Outline

- Basics: "discrete" probability
- Basics: "continuous" probability
- Concentration inequalities

Random events

- *Experiment*: e.g.: toss a coin twice
- Sample space: possible outcomes of an experiment
 - \succ S = {HH, HT, TH, TT}
- *Event*: a subset of possible outcomes
 - > A={HH}, B={HT, TH}
 - > complement \overline{A} = {HT, TH, TT}
 - > disjoint (mutually exclusive) events: if $A \cap B = \emptyset$.
- Shorthand:
 - > AB for $A \cap B$
- For now: *assume finite #outcomes*

Definition of Probability

- *Probability of an outcome u:* a number assigned to u, $Pr(u) \ge 0$
 - Two coin tosses: {HH, HT, TH, TT} each outcome has probability ¼.
 - > Axiom: $\sum_{u \in S} \Pr(u) = 1$
- *Probability of an event* $A \subset S$: a number assigned to event: $Pr(A) = \sum_{u \in A} Pr(u)$
- Probability space:
 - > sample space S
 - > probability Pr(u) for each outcome $u \in S$

Joint Probability

B

A

- For events A and B, joint probability Pr(AB) (also written as Pr(A ∩ B)) is the probability that both events happen.
- Example: A={HH}, B={HT, TH}, what is the joint probability Pr(AB)?

Zero

Independence

B

A • Two events *A* and *B* are independent if Pr(AB) = Pr(A) Pr(B)"Occurrence of A does not affect the probability of B" > **Prop:** $Pr(\overline{A}B) = Pr(\overline{A}) Pr(B)$ > Proof: $Pr(AB) + Pr(\overline{A}B) = Pr(B)$ $Pr(\overline{A}B) = Pr(B)-Pr(AB)$ = Pr(B)-Pr(A) Pr(B)= Pr(B) (1-Pr(A)) = Pr(B) Pr(A).

• Events {A_i} are *mutually independent* in case $Pr(\bigcap_i A_i) = \prod_i Pr(A_i)$

A

Independence: examples

- <u>Recall</u> A and B are independent if Pr(AB) = Pr(A)Pr(B)
- Example: Medical trial 4000 patients
 - 4000 patientsSuccess2001800> choose one patientFailure1800200unif. at random: each patient chosen w/prob1/4000
 - A = {the patient is a Woman}
 B = {drug fails}
 - ➤ Is event A be independent from event B ?
 - > Pr(A)=0.5, Pr(B)=0.5, Pr(AB)=9/20

 $\frac{Pr(AB) = Pr(A)Pr(B)}{Women}$ $\frac{Women}{1800}$

A

Independence: examples

- Consider the experiment of tossing a coin twice
- Examples: is event A independent from event B?
 - > $A = \{HT, HH\} = \{Coin1=H\}, B = \{HT\}$
 - > $A = \{HT\}, B = \{TH\}$
- Disjoint ≠ Independence
- If A is independent from B, B is independent from C, is A independent from C?

Not necessarily, say A=C

Conditional probability

If A and B are events with Pr(A) > 0,
 conditional probability of B given A is

 $\Pr(B \mid A) = \frac{\Pr(AB)}{\Pr(A)}$

• Example: medical trial

	Women	Men
Success	200	1800
Failure	1800	200

Choose one patient at random $A = \{Patient \text{ is a Woman}\}$ $B = \{Drug \text{ fails}\}$ Pr(B|A) = 18/20Pr(A|B) = 18/20

• If A is independent from B, Pr(A|B) = P(A)

Conditional Independence

- Event A and B are *conditionally independent given C* if Pr(AB|C) = Pr(A|C) Pr(B|C)
- Events {A_i} are conditionally mutually independent given C if $Pr(\cap_i A_i | C) = \prod_i Pr(A_i | C)$

Conditional Independence (cont'd)

A

C

B

- Example: three events A, B, C
 - Pr(A) = Pr(B) = Pr(C) = 1/5 Pr(AC) = Pr(BC) = 1/25, Pr(AB) = 1/10 Pr(ABC) = 1/125
 - > Are A, B independent? $1/5*1/5 \neq 1/10$
 - Are A, B conditionally independent given C?
 Pr(A|C)= (1/25)/(1/5)=1/5,
 Pr(B|C)= (1/25)/(1/5)=1/5
 Pr(AB|C)=(1/125)/(1/5)=1/25=Pr(A|C)Pr(B|C)
- A and B are independent
 ≠ A and B are conditionally independent

Random Variable

• *Experiment*: e.g.: toss a coin twice

- > sample space S and probability $Pr(\cdot)$
- A *random variable X* assigns a number to every outcome

 $\succ X =$ #heads

- "function from sample space to numbers"
- shorthand: RV for "random variable"
- *Distribution* of *X* assigns probability Pr(*X* = *x*) to every *x* ∈ ℜ
 probability mass function (pmf) *f_X(x)* = Pr(*X* = *x*)
- *Support* of *X* is the set of all $x \in \Re$ for which $f_X(x) > 0$

Random Variable: Example

- Experiment: three rolls of a die. Let X be the sum of #dots on the three rolls.
- What are the possible values for X?
- Pr(X = 3) = 1/6*1/6*1/6=1/216,
- Pr(X = 5) = ?

Expectation

• Expectation of random variable *X*

$$E[X] = \sum_{x} x \Pr(X = x)$$

> weighted average of numbers in the support

• Nice properties:

- $\succ E[c] = c$ for any constant *c*.
- > Additive: E[X + Y] = E[X] + E[Y]
- > Linear: $E[\alpha X] = \alpha E[X]$ for any $\alpha \in \Re$
- > Monotone: if $X \le Y$ with prob. 1, then $E[X] \le E[Y]$

Conditional expectation

• *Conditional expectation* of RV *X* given event *A*:

$$E[X|A] = \sum_{x \in \text{suport}} x \Pr(X = x|A)$$

> same formula as E[X], but with conditional probabilities

- = expectation of *X* in a "conditional" probability space
 - ➤ same sample space as before
 - > all probabilities conditioned on *A*
- same nice properties as before

Variance

• *Variance* of RV X: $Var(X) = E((X - E[X])^2) = E(X^2) - (E[X])^2$

> characterizes how much X spreads away from its expectation

• Nice properties:

- $\succ Var(X) \geq 0$
- > Var(X + c) = Var(X) for any constant c
- $\succ Var(\alpha X) = \alpha^2 Var(X)$ for any $\alpha \in \Re$
- standard deviation $\sigma(X) = \sqrt{Var(X)}$
- NB: variance can be infinite!

> $X = 2^i$ with probability 2^{-i} , for each i = 1, 2, 3, ...

Uniform distribution

- choose "uniformly at random" (u.a.r.)
 - > sample space: *K* items
 - > same probability $\frac{1}{K}$ for each item.
- (discrete) uniform distribution
 - > random variable *X* can take *K* possible values
 - > all values have the same probability $\frac{1}{\kappa}$

Bernoulli & Binomial

• Bernoulli distribution

 \succ success with probability p, failure otherwise

> *Bernoulli* RV *X* (a.k.a. 0-1 RV): Pr(X = 1) = p and Pr(X = 0) = 1 - p

> E[X] = p, $Var(X) = E[X^2] - E[X]^2 = p - p^2$

• Binomial distribution

> X =#successes in n draws of a Bernoulli distribution

➤ X_i~Bernoulli(p), i = 1 ... n
X =
$$\sum_{i=1}^{n} X_i$$
, X~Bin(p, n)
> E[X] = np, Var(X) = np(1-p)

Independent RVs

Two random variables X and Y on the same experiment
 > outcomes of two coin tosses

- Joint distribution: $f_{X,Y}(x,y) = \Pr(X = x, Y = y)$
- *X* and *Y* are *independent* if for all $x, y \in \Re$ $f_{X,Y}(x, y) = \Pr(X = x) \Pr(Y = y)$

> equiv.: if events $\{X = x\}$ and $\{Y = y\}$ are independent

• Basic properties:

E[XY] = E[X] E[Y]Var(X+Y)=Var(X)+Var(Y)

- RVs X, Y, Z, ... *mutually independent* if Pr(X = x, Y = y, Z = z, ...) = Pr(X = x) Pr(Y = y) Pr(Z = z) ...
- Shorthand: *IID* for "independent and identically distributed"

Outline

- Basics: "discrete" probability
- Basics: "continuous" probability
- Concentration inequalities

Infinitely many outcomes

- experiments can have infinitely many outcomes
 - > all finite sequences of coin tosses
 - *countably* many outcomes => same treatment as before
- experiments can have *"continuously"* many outcomes
 - throw a dart randomly into a unit interval Outcomes: all numbers in [0,1]
 - infinite sequence of coin tosses
 Outcomes: infinite binary sequences
- Sample space *S*: set of all possible outcomes
 - Events: subsets of S
- Probabilities assigned to events, not to individual outcomes!

Definition of Probability

• *Probability of an event* : a number assigned to event Pr(A)

- ➤ Axiom 1: 0<= Pr(A) <= 1</p>
- > Axiom 2: Pr(S) = 1, $Pr(\emptyset) = 0$
- Axiom 3: For any two events A and B, Pr(AUB)= Pr(A)+Pr(B)-Pr(AB)

- Corollaries
 - \succ Pr(\overline{A})= 1- Pr(A)
 - For every sequence of disjoint events

 $\Pr(\bigcup_i A_i) = \sum_i \Pr(A_i)$

Probability space

• *Probability space* consists of three things:

- sample space S
- > set of events \mathcal{F} (where each event is s subset of S)
- > probability Pr(A) for each event $A \in \mathcal{F}$
- \mathcal{F} is the set of events that "we care about"
 - OK to care about some, but not all events
 (*F* does not have to include all events)
 - > \mathcal{F} must satisfy some formal properties (" σ -algebra") to make probability well-defined

Random variable X

• *Experiment*: infinite sequence of coin tosses

- > sample space: infinite binary sequences $(b_1, b_2, ...)$
- A *random variable X* assigns a number to every outcome

 $> X = 0. b_2 b_4 b_6 \dots \in [0,1]$

"function from sample space to numbers"

• *Distribution* of *X*: assigns probability to every interval: $Pr(a \le X \le b)$

> cumulative distribution function (cdf) $F_X(x) = \Pr(X \le x)$

Continuous vs discrete

• *"Continuous"* random variable *X*:

- > each possible value happens with zero probability
- "throw a dart randomly into a unit interval"
- *"Discrete"* random variable *Y*:
 - > each possible value happens with positive probability
 - #heads in two coin tosses
 - NB: may happen even if #outcomes is infinite, e.g.: $Pr(Y = i) = 2^{-i}, \quad i = 1,2,3,...$

• RVs can be neither "continuous" nor "discrete"! E.g., max(X,Y)

Probability density function (pdf)

• **Pdf** for random variable X is a function $f_X(x)$ such that

$$\Pr(a \le X \le b) = \int_{a}^{b} f_X(x) \, dx$$

> not guaranteed to exist (but exists in many useful cases)

- *Support* of $X = \{ all x such that f_X(x) > 0 \}$
 - > How to define "support" if pdf does not exist? E.g.:
 - *Y* is discrete random variable, and Z = X with probability $\frac{1}{2}$, and Z = Y otherwise.
 - Then support(*Z*) = support(*X*) U support(*Y*)

Expectation

• If pdf f_X exists, then expectation is

$$E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx$$

- General definition (for any random variable)
 - > Lebesgue integral of X with respect to measure $Pr(\cdot)$
 - > no need to know what it is, for this course
- Same nice properties as in the discrete case

Uniform distribution

• Informally:

- ➤ "Throw a random dart into an interval [a, b]"
- " each number has the same probability "
- Formally:
 - ➤ sample space: all numbers in [a, b]
 - > probability density function: $f_X(x) = 1/(b a)$
 - equivalently:

$$\Pr(a' \le X \le b') = (b' - a')/(b - a)$$

for every interval $[a', b'] \subset [a, b]$

Independent RVs

- Two random variables *X* and *Y* on the same experiment
 - " two throws of a dart into a unit interval "
- *Joint distribution* of *X* and *Y* assigns probability $Pr(X \in I, Y \in J)$, for any two intervals *I*, *J*
- X and Y are independent if for all intervals I, J $Pr(X \le x, Y \le y) = Pr(X \le x) Pr(Y \le y)$

▷ equivalently: if events $\{X \le x\}$ and $\{Y \le y\}$ are independent

• Random variables X, Y, Z, ... *mutually independent* if $Pr(X \le x, Y \le y, Z \le z, ...) = Pr(X \le x) Pr(Y \le y) Pr(Z \le z) ...$

Normal (Gaussian) Distribution

• Random variable $X \sim N(\mu, \sigma^2)$ defined by pdf

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- > two parameters: expectation μ and variance σ^2
- "standard normal distribution": N(0,1)
- Nice properties:
 - ► If $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ are independent, then $X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
 - ➤ Central Limit Theorem (informally): If $Y_1, ..., Y_n$ are IID RVs with finite variance, their average converges to a normal distribution as $n \to \infty$

-3

-2 -1

0

Outline

- Basics: "discrete" probability
- Basics: "continuous" probability
- Concentration inequalities

Concentration inequalities

• Setup: $X_1, ..., X_n$ random variables. (not necessarily identically distributed) $\overline{X} = \frac{X_1 + \dots + X_n}{n}$ is the average, and $\mu = \mathbb{E}[\overline{X}]$

• Strong Law of Large Numbers: $\Pr\left(\overline{X} \xrightarrow{n} \mu\right) =$

$$\Pr\left(\bar{X} \stackrel{n}{\to} \mu\right) = 1$$

- Want: \overline{X} is *concentrated* around μ when *n* is large, i.e. that $|\overline{X} \mu|$ is small with high probability.
 - > $\Pr(|\overline{X} \mu| \le "small") \ge 1 "small"$
 - > such statements are called "concentration inequalities"

Hoeffding Inequality (HI)

• High-prob. event:
$$\mathcal{E}_{\alpha,T} = \left\{ |\overline{X} - \mu| \le \sqrt{\frac{\alpha \log T}{n}} \right\}, \alpha \ge 0$$

- <u>**HI**</u>: Assume $X_i \in [0,1]$ for all *i*. Then $\Pr(\mathcal{E}_{\alpha,T}) \ge 1 - 2T^{-2\alpha}.$
 - > $\alpha = 2$ suffices for most applications in this course. T controls probability; can be the time horizon in MAB
 - this is a convenient re-formulation of HI for our purposes more "flexible" and "generic" formulation exists
- "Chernoff Bounds": special case when $X_i \in \{0,1\}$

• Relevant notation:
$$r = \sqrt{\frac{\alpha \log T}{n}}$$
 "confidence radius
[$\mu - r, \ \mu + r$] "confidence interval"

Hoeffding Inequality (extensions)

• **Recall**:
$$\mathcal{E}_{\alpha,T} = \left\{ |\overline{X} - \mu| \le \sqrt{\frac{\alpha \log T}{n}} \right\}, \alpha \ge 0$$

- <u>"HI for intervals"</u>: Assume $X_i \in [a_i, b_i]$ for all *i*. Then $Pr(\mathcal{E}_{\alpha\beta, T}) \ge 1 - 2T^{-2\alpha}$, where $\beta = \frac{1}{n} \sum_{i=1}^{n} (b_i - a_i)^2$.
- <u>"HI for small variance"</u>:

Assume $X_i \in [0,1]$ and $Var(X_i) \leq v$ for all *i*. Then

$$\Pr(\mathcal{E}_{\alpha \boldsymbol{\nu}, T}) \geq 1 - 2T^{-\alpha/4}.$$

as long as *n* is large enough: $\frac{n}{\log n} \ge \frac{\alpha}{9v}$.

• <u>"HI for Gaussians"</u>:

Assume X_i is Gaussian with variance $\leq v$. Then

$$\Pr(\mathcal{E}_{\alpha \boldsymbol{\nu}, T}) \geq 1 - 2T^{-\alpha/2}.$$

Concentration for non-independent RVs

• Setup: $X_1, ..., X_n$ independent random variables in [0,1] (*not necessarily independent* or identically distributed) $\overline{X} = \frac{X_1 + \dots + X_n}{n}$ is the average

• Assume: there is a number $\mu_i \in [0,1]$ such that $E(X_i | X_1 \in J_1, \dots, X_{i-1} \in J_{i-1}) = \mu_i$

for each
$$i = 1, ..., n$$

$$\mu = (\mu_1 + \dots + \mu_n)/n$$

• Let
$$\mathcal{E}_{\alpha} = \left\{ |\overline{X} - \mu| \le \sqrt{\frac{\alpha \log T}{n}} \right\}, \alpha \ge 0$$

for any intervals $J_1, \ldots, J_{i-1} \subset \mathfrak{R}$.

• Then (corollary from "Azuma-Hoeffding inequality") $Pr(\mathcal{E}_{\alpha,T}) \ge 1 - 2T^{-\alpha/2}$

Resources

- A <u>survey on concentration inequalities</u> by Fan Chung and Linyuan Lu (2010)
- Another <u>survey on concentration inequalities</u> by Colin McDiarmid (1998).
- Wikipedia
 - Hoeffding inequality
 - Azuma-Hoeffding inequality