Bandits, Experts, and Games

CMSC 858G Fall 2016
University of Maryland

Intro to Probability*

Alex Slivkins
Microsoft Research NYC

* Many of the slides adopted from Ron Jin and Mohammad Hajiaghayi
Outline

- Basics: “discrete” probability
- Basics: “continuous” probability
- Concentration inequalities
Random events

- **Experiment**: e.g.: toss a coin twice
- **Sample space**: possible outcomes of an experiment
 - $S = \{HH, HT, TH, TT\}$
- **Event**: a subset of possible outcomes
 - $A = \{HH\}$, $B = \{HT, TH\}$
 - complement $\bar{A} = \{HT, TH, TT\}$
 - disjoint (mutually exclusive) events: if $A \cap B = \emptyset$.
- Shorthand:
 - AB for $A \cap B$
- For now: *assume finite #outcomes*
Definition of Probability

- **Probability of an outcome** \(u \):
 a number assigned to \(u \), \(\Pr(u) \geq 0 \)
 - Two coin tosses: \{HH, HT, TH, TT\}
 each outcome has probability \(\frac{1}{4} \).
 - Axiom: \(\sum_{u \in S} \Pr(u) = 1 \)

- **Probability of an event** \(A \subset S \):
 a number assigned to event: \(\Pr(A) = \sum_{u \in A} \Pr(u) \)

- **Probability space**:
 - sample space \(S \)
 - probability \(\Pr(u) \) for each outcome \(u \in S \)
Joint Probability

- For events A and B, the **joint probability** \(\Pr(AB) \) (also written as \(\Pr(A \cap B) \)) is the probability that both events happen.

- Example: A={HH}, B={HT, TH}, what is the joint probability \(\Pr(AB) \)?

 Zero
Independence

- Two events A and B are independent if
 \[\Pr(AB) = \Pr(A) \Pr(B) \]
 “Occurrence of A does not affect the probability of B”

- **Prop:** $\Pr(\overline{AB}) = \Pr(\overline{A}) \Pr(B)$

- **Proof:**
 \[
 \Pr(AB) + \Pr(\overline{AB}) = \Pr(B) \\
 \Pr(\overline{AB}) = \Pr(B) - \Pr(AB) \\
 = \Pr(B) - \Pr(A) \Pr(B) \\
 = \Pr(B) (1 - \Pr(A)) = \Pr(B) \Pr(\overline{A}).
 \]

- Events $\{A_i\}$ are *mutually independent* in case
 \[\Pr(\bigcap_i A_i) = \prod_i \Pr(A_i) \]
Independence: examples

- Recall A and B are independent if $\Pr(AB) = \Pr(A)\Pr(B)$

- Example: Medical trial
 4000 patients
 - choose one patient unif. at random: each patient chosen w/prob $1/4000$
 - $A = \{\text{the patient is a Woman}\}$
 $B = \{\text{drug fails}\}$
 - Is event A be independent from event B?
 - $\Pr(A)=0.5, \Pr(B)=0.5, \Pr(AB)=9/20$

<table>
<thead>
<tr>
<th></th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success</td>
<td>200</td>
<td>1800</td>
</tr>
<tr>
<td>Failure</td>
<td>1800</td>
<td>200</td>
</tr>
</tbody>
</table>
Independence: examples

- Consider the experiment of tossing a coin twice
- Examples: is event A independent from event B?
 - A = \{HT, HH\} = \{Coin1=H\}, B = \{HT\}
 - A = \{HT\}, B = \{TH\}
- Disjoint ≠ Independence
- If A is independent from B, B is independent from C, is A independent from C?
 Not necessarily, say A=C
Conditional probability

- If A and B are events with $\Pr(A) > 0$, the **conditional probability of B given A** is
 \[\Pr(B \mid A) = \frac{\Pr(AB)}{\Pr(A)} \]

- Example: medical trial

<table>
<thead>
<tr>
<th></th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success</td>
<td>200</td>
<td>1800</td>
</tr>
<tr>
<td>Failure</td>
<td>1800</td>
<td>200</td>
</tr>
</tbody>
</table>

Choose one patient at random
A = {Patient is a Woman}
B = {Drug fails}
\[\Pr(B \mid A) = \frac{18}{20} \]
\[\Pr(A \mid B) = \frac{18}{20} \]

- If A is independent from B, $\Pr(A \mid B) = \Pr(A)$
Conditional Independence

- Event A and B are *conditionally independent given C* if
 \[\Pr(AB|C) = \Pr(A|C) \Pr(B|C) \]
- Events \(\{A_i\} \) are conditionally mutually independent given C if
 \[\Pr(\bigcap_i A_i|C) = \prod_i \Pr(A_i|C) \]
Conditional Independence (cont’d)

- Example: three events A, B, C
 - \(\Pr(A) = \Pr(B) = \Pr(C) = 1/5 \)
 - \(\Pr(AC) = \Pr(BC) = 1/25, \Pr(AB) = 1/10 \)
 - \(\Pr(ABC) = 1/125 \)

- Are A, B independent? \(1/5 \times 1/5 \neq 1/10 \)

- Are A, B conditionally independent given C?
 - \(\Pr(A|C) = \frac{1/25}{1/5} = 1/5 \)
 - \(\Pr(B|C) = \frac{1/25}{1/5} = 1/5 \)
 - \(\Pr(AB|C) = \frac{1/125}{1/5} = 1/25 = \Pr(A|C)\Pr(B|C) \)

- A and B are independent
 - \(\neq \) A and B are conditionally independent
Random Variable

- **Experiment**: e.g.: toss a coin twice
 - sample space S and probability $\Pr(\cdot)$
- A **random variable** X assigns a number to every outcome
 - $X = \#\text{heads}$
 - “function from sample space to numbers”
 - shorthand: RV for “random variable”
- **Distribution** of X assigns probability $\Pr(X = x)$ to every $x \in \mathbb{R}$
 - *probability mass function* (pmf) $f_X(x) = \Pr(X = x)$
- **Support** of X is the set of all $x \in \mathbb{R}$ for which $f_X(x) > 0$
Random Variable: Example

- Experiment: three rolls of a die. Let X be the sum of #dots on the three rolls.
- What are the possible values for X?
- $\Pr(X = 3) = \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} = \frac{1}{216}$,
- $\Pr(X = 5) = ?$
Expectation

- Expectation of random variable X
 \[E[X] = \sum_x x \Pr(X = x) \]
 - weighted average of numbers in the support

- Nice properties:
 - $E[c] = c$ for any constant c.
 - Linear: $E[\alpha X] = \alpha E[X]$ for any $\alpha \in \mathbb{R}$
 - Monotone: if $X \leq Y$ with prob. 1, then $E[X] \leq E[Y]$
Conditional expectation

- Conditional expectation of RV X given event A:
 \[E[X|A] = \sum_{x \in \text{support}} x \Pr(X = x|A) \]

 - same formula as $E[X]$, but with conditional probabilities
 - expectation of X in a “conditional” probability space
 - same sample space as before
 - all probabilities conditioned on A
 - same nice properties as before
Variance

- **Variance** of RV X:
 \[Var(X) = E\left((X - E[X])^2\right) = E(X^2) - (E[X])^2 \]
 - characterizes how much X spreads away from its expectation

- Nice properties:
 - $Var(X) \geq 0$
 - $Var(X + c) = Var(X)$ for any constant c
 - $Var(\alpha X) = \alpha^2 Var(X)$ for any $\alpha \in \mathbb{R}$

- **Standard deviation** $\sigma(X) = \sqrt{Var(X)}$

- NB: variance can be infinite!
 - $X = 2^i$ with probability 2^{-i}, for each $i = 1,2,3, \ldots$.
Uniform distribution

- choose “uniformly at random” (u.a.r.)
 - sample space: K items
 - same probability $\frac{1}{K}$ for each item.

- (discrete) uniform distribution
 - random variable X can take K possible values
 - all values have the same probability $\frac{1}{K}$
Bernoulli & Binomial

- **Bernoulli** distribution
 - success with probability p, failure otherwise
 - **Bernoulli** RV X (a.k.a. 0-1 RV):
 \[
 \Pr(X = 1) = p \quad \text{and} \quad \Pr(X = 0) = 1 - p
 \]
 - $E[X] = p$, $\Var(X) = E[X^2] - E[X]^2 = p - p^2$

- **Binomial distribution**
 - $X =$ #successes in n draws of a Bernoulli distribution
 - $X_i \sim \text{Bernoulli}(p), \ i = 1 \ldots n$
 - $X = \sum_{i=1}^{n} X_i$, $X \sim \text{Bin}(p, n)$
 - $E[X] = np$, $\Var(X) = np(1-p)$
Independent RVs

- Two random variables X and Y on the same experiment
 - outcomes of two coin tosses
- Joint distribution: $f_{X,Y}(x, y) = \Pr(X = x, Y = y)$
- X and Y are independent if for all $x, y \in \mathbb{R}$
 $$f_{X,Y}(x, y) = \Pr(X = x) \Pr(Y = y)$$
 - equiv.: if events $\{X = x\}$ and $\{Y = y\}$ are independent
- Basic properties:
 $$E[XY] = E[X]E[Y]$$
 $$\text{Var}(X+Y) = \text{Var}(X) + \text{Var}(Y)$$
- RVs X, Y, Z, \ldots mutually independent if
 $$\Pr(X = x, Y = y, Z = z, \ldots) = \Pr(X = x) \Pr(Y = y) \Pr(Z = z) \ldots$$
- Shorthand: IID for “independent and identically distributed”
Outline

- Basics: “discrete” probability
- Basics: “continuous” probability
- Concentration inequalities
Infinitely many outcomes

- experiments can have infinitely many outcomes
 - all finite sequences of coin tosses
 - countably many outcomes => same treatment as before
- experiments can have “continuously” many outcomes
 - throw a dart randomly into a unit interval
 Outcomes: all numbers in [0,1]
 - infinite sequence of coin tosses
 Outcomes: infinite binary sequences

- Sample space S: set of all possible outcomes
 - Events: subsets of S

- Probabilities assigned to events, not to individual outcomes!
Definition of Probability

- **Probability of an event**: a number assigned to event $\Pr(A)$
 - Axiom 1: $0 \leq \Pr(A) \leq 1$
 - Axiom 2: $\Pr(S) = 1$, $\Pr(\emptyset) = 0$
 - Axiom 3: For any two events A and B,
 $\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(AB)$

- **Corollaries**
 - $\Pr(A^c) = 1 - \Pr(A)$
 - For every sequence of disjoint events
 $\Pr(\bigcup_i A_i) = \sum_i \Pr(A_i)$
Probability space

- **Probability space** consists of three things:
 - sample space S
 - set of events \mathcal{F} (where each event is a subset of S)
 - probability $\Pr(A)$ for each event $A \in \mathcal{F}$

- \mathcal{F} is the set of events that “we care about”
 - OK to care about some, but not all events
 (\mathcal{F} does not have to include all events)
 - \mathcal{F} must satisfy some formal properties (“σ-algebra”) to make probability well-defined
Random variable X

- **Experiment**: infinite sequence of coin tosses
 - sample space: infinite binary sequences (b_1, b_2, \ldots)
- A *random variable* X assigns a number to every outcome
 - $X = 0.b_2b_4b_6 \ldots \in [0,1]$
 - “function from sample space to numbers”
- **Distribution** of X: assigns probability to every interval:
 - $\Pr(a \leq X \leq b)$
 - cumulative distribution function (cdf)
 - $F_X(x) = \Pr(X \leq x)$
Continuous vs discrete

- **“Continuous”** random variable X:
 - each possible value happens with zero probability
 - “throw a dart randomly into a unit interval”
- **“Discrete”** random variable Y:
 - each possible value happens with positive probability
 - #heads in two coin tosses
 - NB: may happen even if #outcomes is infinite, e.g.:
 \[
 \Pr(Y = i) = 2^{-i}, \quad i = 1, 2, 3, \ldots
 \]
- RVs can be neither “continuous” nor “discrete”! E.g., $\max(X, Y)$
Probability density function (pdf)

- **Pdf** for random variable X is a function $f_X(x)$ such that
 \[\Pr(a \leq X \leq b) = \int_a^b f_X(x) \, dx \]
 - not guaranteed to exist (but exists in many useful cases)

- **Support** of $X = \{\text{all } x \text{ such that } f_X(x) > 0\}$
 - How to define “support” if pdf does not exist? E.g.:
 - Y is discrete random variable, and
 $Z = X$ with probability $\frac{1}{2}$, and $Z = Y$ otherwise.
 - Then $\text{support}(Z) = \text{support}(X) \cup \text{support}(Y)$.

Expectation

- If pdf f_X exists, then expectation is
 \[E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx \]

- General definition (for any random variable)
 - Lebesgue integral of X with respect to measure $\Pr(\cdot)$
 - no need to know what it is, for this course

- Same nice properties as in the discrete case
Uniform distribution

- Informally:
 - “Throw a random dart into an interval \([a, b]\) ”
 - “each number has the same probability ”

- Formally:
 - sample space: all numbers in \([a, b]\)
 - probability density function: \(f_X(x) = 1/(b - a)\)
 - equivalently:
 \[
 \Pr(a' \leq X \leq b') = (b' - a')/(b - a)
 \]
 for every interval \([a', b'] \subset [a, b]\)
Independent RVs

- Two random variables X and Y on the same experiment
 - “two throws of a dart into a unit interval”
- **Joint distribution** of X and Y
 assigns probability $\Pr(X \in I, Y \in J)$, for any two intervals I, J
- X and Y are independent if for all intervals I, J
 $$\Pr(X \leq x, Y \leq y) = \Pr(X \leq x) \Pr(Y \leq y)$$
 - equivalently: if events $\{X \leq x\}$ and $\{Y \leq y\}$ are independent
- Random variables X, Y, Z, \ldots **mutually independent** if
 $$\Pr(X \leq x, Y \leq y, Z \leq z, \ldots) = \Pr(X \leq x) \Pr(Y \leq y) \Pr(Z \leq z) \ldots$$
Normal (Gaussian) Distribution

- Random variable $X \sim N(\mu, \sigma^2)$ defined by pdf

 $$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right)$$

 - two parameters: expectation μ and variance σ^2
 - “standard normal distribution”: $N(0,1)$

- Nice properties:

 - If $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ are independent, then $X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
 - Central Limit Theorem (informally): If Y_1, \ldots, Y_n are IID RVs with finite variance, their average converges to a normal distribution as $n \to \infty$
Outline

• Basics: “discrete” probability
• Basics: “continuous” probability
• Concentration inequalities
Concentration inequalities

- **Setup:** X_1, \ldots, X_n random variables.
 (not necessarily identically distributed)
 \[
 \bar{X} = \frac{X_1 + \cdots + X_n}{n} \text{ is the average, and } \mu = \mathbb{E}[\bar{X}]
 \]

- **Strong Law of Large Numbers:**
 \[
 \Pr \left(\bar{X} \to \mu \right) = 1
 \]

- **Want:** \(\bar{X} \) is *concentrated* around \(\mu \) when \(n \) is large, i.e. that \(|\bar{X} - \mu| \) is small with high probability.
 - \(\Pr(|\bar{X} - \mu| \leq "small") \geq 1 - "small"
 - such statements are called “concentration inequalities”
Hoeffding Inequality (HI)

- High-prob. event: $\mathcal{E}_\alpha = \left\{ \left| \bar{X} - \mu \right| \leq \sqrt{\frac{\alpha \log n}{n}} \right\}, \alpha \geq 0$

- **HI:** Assume $X_i \in [0,1]$ for all i. Then
 \[\Pr(\mathcal{E}_\alpha) \geq 1 - 2n^{-2\alpha}. \]

 - **NB:** $\alpha = 2$ suffices for most applications in this course.

- “Chernoff Bounds”: special case when $X_i \in \{0,1\}$

- Relevant notation:
 - $r = \sqrt{\frac{\alpha \log n}{n}}$ “confidence radius”
 - $[\mu - r, \mu + r]$ “confidence interval”
Hoeffding Inequality (extensions)

- **Recall:** $\mathcal{E}_\alpha = \left\{ |\bar{X} - \mu| \leq \sqrt{\frac{\alpha \log n}{n}} \right\}$, $\alpha \geq 0$

- **“HI for intervals”:** Assume $X_i \in [a_i, b_i]$ for all i. Then
 $$\Pr(\mathcal{E}_{\alpha\beta}) \geq 1 - 2n^{-2\alpha}, \text{ where } \beta = \frac{1}{n} \sum_{i=1}^{n} (b_i - a_i)^2.$$

- **“HI for small variance”:**
 Assume $X_i \in [0,1]$ and $Var(X_i) \leq \nu$ for all i. Then
 $$\Pr(\mathcal{E}_{\alpha\nu}) \geq 1 - 2n^{-\alpha/4}.$$
 as long as n is large enough: $\frac{n}{\log n} \geq \frac{\alpha}{9\nu}$.

- **“HI for Gaussians”:**
 Assume X_i is Gaussian with variance $\leq \nu$. Then
 $$\Pr(\mathcal{E}_{\alpha\nu}) \geq 1 - 2n^{-\alpha/2}.$$
Concentration for non-independent RVs

- **Setup:** X_1, \ldots, X_n independent random variables in $[0,1]$ (not necessarily independent or identically distributed)

 $\bar{X} = \frac{X_1 + \cdots + X_n}{n}$ is the average

- **Assume:** there is a number $\mu_i \in [0,1]$ such that

 $E(X_i | X_1 \in J_1, \ldots, X_{i-1} \in J_{i-1}) = \mu_i$

 for any intervals $J_1, \ldots, J_{i-1} \subset \mathbb{R}$.

- **Let** $\mathcal{E}_\alpha = \left\{ |\bar{X} - \mu| \leq \frac{\alpha \log n}{n} \right\}$, $\alpha \geq 0$

- **Then** (corollary from “Azuma-Hoeffding inequality”)

 $\Pr(\mathcal{E}_\alpha) \geq 1 - 2n^{-\alpha/2}$
Resources

- A survey on concentration inequalities by Fan Chung and Linyuan Lu (2010)
- Another survey on concentration inequalities by Colin McDiarmid (1998).
- Wikipedia
 - Hoeffding inequality
 - Azuma-Hoeffding inequality