What the course is about?

- algorithms for making **sequential decisions under uncertainty**
 - theoretical CS, machine learning, AI, operations research, economics
 - since 1933, very active in the past decade
 - “bandits” and “experts” – two prominent models
- focus: theory (design & analysis of algorithms)
 - ... using tools from Probability
 - ... with lots of examples & discussions for motivations & applications
 - ... with connections to Economics (game theory and mechanism design)
This lecture

• course organization
• intro to the problem space
• short break (15-20 mins)
• review of Probability (necessary basics)
Prerequisites

• **Algorithm design & mathematical proofs:**
 competence at the level of CMSC 451 (undergrad algorithms course)

• **Probability & statistics:**
 • I’ll review the basics later in this lecture
 • deeper familiarity would help, but not required

• **Game theory & mechanism design:**
 • relevant in the last 2-3 lectures
 • prior exposure would help but is not required

• **Programming:** familiarity with programming is not required
Logistics

• Instructor: Alex Slivkins, Senior Researcher, Microsoft Research NYC.
• Schedule: Mondays 2:30pm-5:30pm (short break in the middle), AVW 3258
• Office hours: Mondays 11am-2pm (by appointment), AVW 3171.
• Course webpage: http://www.cs.umd.edu/~slivkins/CMSC858G-fall16/
• Announcements: on homepage and via mailing list cmsc858g-0101-fall16@coursemail.umd.edu
• Q&A: we will use Piazza: https://piazza.com/umd/fall2016/cmsc858g/.
• Contact: slivkins@cs.umd.edu (but please use Piazza if appropriate).
 • please use my UMD email, not my Microsoft email
Coursework and assessment

• 2-3 **homeworks**
 • dates TBA, due in class, no extensions (without a good reason)
 • OK to discuss, but everyone writes his/her own solutions

• **Project**: reading, coding, and/or original research on a course-related topic
 • in groups of 2-3 ppl

• **Scribe** one lecture (in pairs).
 • starting from next lecture, sign-up sheet coming
 • write in LaTeX, template & instructions coming

• **Grading**
 homeworks: 50%
 project: 40%, plus up to 10% bonus for coding and/or original research
 scribing: 10%, plus 5% bonus if scribing another lecture.
Projects

• **topic suggestions** -- I will post soon
• **topic proposal** -- will be due
 • form groups of 2-3 ppl (I’ll post a sign-up sheet), each group submits a proposal
• **feedback / discussion**
• **written “final report”** – will be due
• **short presentation** -- in the last two classes
Intro to the problem space

Sequential decisions under uncertainty
(Informal & very stylized) running examples

• **Investment.** Each morning, you choose one stock to invest into, and invest $1. In the end of the day, you observe the change in value for each stock. Goal: maximize wealth.

• **News site.** When a new user arrives, the site picks a news header to show, observes whether the user clicks. Goal: maximize #clicks.

• **Dynamic pricing.** A store is selling a digital good (e.g., an app or a song). When a new customer arrives, the store picks a price. Customer buys (or not) and leaves forever. Goal: maximize total profit.
Basic model: multi-armed bandits

• A fixed set of K actions ("arms")
• In each round $t = 1 \ldots T$ algorithm chooses an arm a_t, and observes the reward r_t for the chosen arm
• "Bandit feedback": no other rewards are observed!
• IID rewards:
 The reward for each arm is drawn independently from a fixed distribution that depends on the arm but not on the round t.
• Time horizon T is known in advance.
Examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Action</th>
<th>Reward</th>
<th>Other feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment</td>
<td>a stock to invest into</td>
<td>change in value during the day</td>
<td>change in value for all other stocks</td>
</tr>
<tr>
<td>News site</td>
<td>an article to display</td>
<td>1 if clicked, 0 otherwise</td>
<td>NONE</td>
</tr>
<tr>
<td>Dynamic pricing</td>
<td>a price p</td>
<td>p if sale, 0 otherwise</td>
<td>sale => sale at any smaller price</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>no sale => no sale at any larger price</td>
</tr>
</tbody>
</table>

- **Full feedback**: reward is revealed for all arms
- **Bandit feedback**: reward is revealed only for the chosen arm
- **Partial feedback**: reward is revealed for some but not (necessarily) for all arms
Exploration-exploitation tradeoff

- Bandit/partial feedback => need to try different arms to acquire new info
 - if algorithm always chooses arm 1, how would it know if arm 2 is better?
- fundamental tradeoff between acquiring info about rewards (exploration) and making optimal decisions based on available info (exploitation)
 - this tradeoff happens in many scenarios (“reinforcement learning”)
 - multi-armed bandits is a simple model to study this tradeoff
Rich problem space

• full feedback vs bandit feedback vs partial feedback
 • (most of the course will be on bandit & partial feedback)
• ... many other distinctions
Distinction #2: where rewards come from?

• **IID rewards**: the reward for each arm is drawn independently from a fixed distribution that depends on the arm but not on the round t.

• **Adversarial rewards**: rewards are chosen by an adversary.

• **Constrained adversary**: rewards are chosen by an adversary with known constraints, e.g.:
 • reward of each arm can change by at most ϵ from one round to another
 • reward of each arm can change at most once

• **Stochastic rewards** (beyond IID): reward of each arm evolves over time as a random process
 • e.g. random walk: changes by $\pm \epsilon$ in each round
In each round, there may be a **context** observable before the decision is made.

<table>
<thead>
<tr>
<th>Example</th>
<th>Action</th>
<th>Reward</th>
<th>context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment</td>
<td>a stock to invest into</td>
<td>change in value during the day</td>
<td>current state of the economy</td>
</tr>
<tr>
<td>News site</td>
<td>an article to display</td>
<td>1 if clicked, 0 otherwise</td>
<td>user location & demographics</td>
</tr>
<tr>
<td>Dynamic pricing</td>
<td>a price p</td>
<td>p if sale, 0 otherwise</td>
<td>Customer’s device (e.g.: Windows, Android or Apple?)</td>
</tr>
</tbody>
</table>
Other distinctions

- **Bayesian prior**? (i.e.: problem instance comes from known distribution)
- **Structured rewards**: rewards may have a known structure
 e.g.: arms are points in $[0,1]^d$ and in each round the reward is a linear / concave / Lipschitz function of the chosen arm
- **Global constraints**: e.g.: limited #items to sell
- **Complex decisions**
 A news site picks a *slate* of articles
 A store prices many products at once.
- **Complex outcomes** (more than just the reward)
 Dynamic pricing: which items have been sold?
 News site: time spent reading an article?
Some philosophy

• Reality can be complicated ... we often study simpler models.
• a good model captures some essential issues
 ... present in multiple applications
 ... and allows for clean solutions with good performance
 ... and provides intuition (if not solutions) for (more) realistic models
• but even a good model typically does not fully capture any one application
 ... and that’s OK ...
• very rich problem space => why work on problems with shaky motivation?
<table>
<thead>
<tr>
<th>Example</th>
<th>Action</th>
<th>Rewards / costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>medical trials</td>
<td>drug to give</td>
<td>health outcomes</td>
</tr>
<tr>
<td>internet ads</td>
<td>which ad to display</td>
<td>bid value if clicked, 0 otherwise</td>
</tr>
<tr>
<td>content optimization</td>
<td>e.g.: font color or page layout</td>
<td>#clicks</td>
</tr>
<tr>
<td>sales optimization</td>
<td>which products to sell at which prices</td>
<td>$$$</td>
</tr>
<tr>
<td>recommender systems</td>
<td>suggest a movie, restaurants, etc.</td>
<td>#users that followed suggestions</td>
</tr>
<tr>
<td>computer systems</td>
<td>which server(s) to route the job to</td>
<td>job completion time</td>
</tr>
<tr>
<td>crowdsourcing systems</td>
<td>which tasks to give to which workers</td>
<td>quality of completed work</td>
</tr>
<tr>
<td></td>
<td>which price to offer?</td>
<td>#completed tasks</td>
</tr>
<tr>
<td>wireless networking</td>
<td>which frequency to use?</td>
<td>#successful transmissions</td>
</tr>
<tr>
<td>robot control</td>
<td>a “strategy” for a given state & task</td>
<td>#tasks successfully completed</td>
</tr>
<tr>
<td>game playing</td>
<td>an action for a given game state</td>
<td>#games won</td>
</tr>
</tbody>
</table>